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Chapter 1

Introduction

ANUGA is a free and open source software developed by Roberts and col-
laborators from the Australian National University (ANU) and Geoscience
Australia (GA). It is devoted to fluid flow simulations, especially shallow
water flows, such as floods, tsunamis and dam breaks. The official website
of ANUGA is http://anuga.anu.edu.au.

The method implemented in ANUGA is a numerical finite volume method
used to solve the shallow water equations. Some mathematical explanation
of the method is given in the ANUGA User Manual [24]. In two dimen-
sions, the domain is discretised into finite number of triangular elements.
ANUGA then evolves the conserved quantities (water depth and momenta)
with respect to time to obtain the numerical solution to a given problem.
The evolution is based on the given quantity and flux values. The numerical
flux used in ANUGA is the Kurganov’s flux [13, 12]. The boundary condi-
tions that we use in this work include reflective, transmissive, Dirichlet and
time boundaries.

The results in this report were produced by ANUGA version 2.0 from
svn repository revision 9730 at time Sun May 3 23:12:17 2015. The flow
algorithm used was DE1, unless otherwise stated explicitly.

To get an automated report, we can run either run individual tests or
the complete (whole) test.

To do an individual test, we can run the python module
produce_results.py

available in the corresponding test directory. The module will do the numer-
ical simulation of the given problem, plot the simulation results in png files,
and typeset the corresponding individual automated report. The individual
automated report is in the pdf file report.pdf saved in the same directory.

To do the complete test, we can just run the python module
validations_produce_results.py

available in the directory
validation_tests/reports
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Similar to the module for an individual test, this python module will do the
numerical simulations of all the given problems, plot results in png files and
save them in its corresponding directory, and finally type-set the complete re-
port. The complete automated report is saved in the validation_tests/reports
directory.

The simulation results can be analysed qualitatively and quantitatively.
Qualitative analysis can be done by investigating the plots of the results
whether they are physical or not, and whether the behaviour is the same
as we expected. Quantitative analysis can be conducted by checking the
numerical error.

We have also provided a python script run_auto_validation_tests.pyin
the validation_tests directory which will run a subset of the available
tests having sensible “correct” results to test against.

The main parameters in the validations are the Courant–Friedrichs-Lewy
(CFL) number and the flow algorithm. They are spelled cfl and alg re-
spectively in the python module
parameters

which is available in the
anuga.validation_tests

module. In the default setting, we set the CFL to be 1.0 and the flow algo-
rithm to be DE0 (second order in space and first order in time). The complete
available flow algorithms are as follow: 1_0, 1_5, 1_75, 2_0, 2_0_limited,
2_5, tsunami, yusuke, DE0, DE1, DE2.

They can be found in
\anuga_core\source\anuga\shallow_water\shallow_water_domain.py.

The report is organised as follows. We collect a number of tests against
analytical exact solutions in Chapter 2. Tests against other reference data
or solutions are given in Chapter 3. Tests against realistic case studies are
given in Chapter 4, but at present these are not included in this document
because they take too much time to run, although the code is provided the
source. We provide explanations on how to add new tests in the Appendix.
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Chapter 2

Tests against analytical exact
solutions

2.1 Dam break involving a dry area

The dam break problem involving a dry area was solved analytically by
Ritter [23] as well as Stoker [27, 28]. The analytical solution exhibits a
rarefaction fan as a parabolic curve. As water moves, it involves wetting
process over the dry area.

The initial condition is

u(x, 0) = 0, v(x, y) = 0, and h(x, 0) =

{
h1 if x < 0
0 if x > 0

(2.1)

where h1 > 0. The topography is a horizontal flat bed.
The analytical solution [23, 27, 28] at time t > 0 is

h(x) =


h1 if x ≤ −t

√
gh1

hR = 4
9g (
√
gh1 − x

2t)
2 if −t

√
gh1 < x ≤ 2t

√
gh1

0 if x ≥ 2t
√
gh1

(2.2)

which is the free surface and

u(x) =


0 if x ≤ −t

√
gh1

uR = 2
3(
√
gh1 + x

t ) if −t
√
gh1 < x ≤ 2t

√
gh1

0 if x ≥ 2t
√
gh1

(2.3)

which is the velocity.

2.1.1 Results

For our test, we consider h1 = 10 in (2.1). The following figures show the
stage, x-momentum, and x-velocity at several instants of time. We should
see excellent agreement between the analytical and numerical solutions. The
wet/dry interface is difficult to resolve and it usually produces large errors.
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Figure 2.1: Stage results

Figure 2.2: Xmomentum results
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Figure 2.3: Xvelocity results
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2.2 Dam break on wet areas

The dam break problem on wet areas was solved analytically by Stoker [27,
28]. The analytical solution exhibits a rarefaction and involves a shock.
Generally this problem is easier to solve numerically than the dry dam break
(the dam break on a dry area).

The initial condition is

u(x, 0) = 0, v(x, y) = 0, and h(x, 0) =

{
h1 if x < 0
h0 if x > 0

(2.4)

where h1 > h0 > 0. The topography is a horizontal flat bed.
The analytical solution [27, 28] to the wet dam break problem is

h(x) =


h1 if x ≤ −t

√
gh1

h3 = 4
9g (
√
gh1 − x

2t)
2 if −t

√
gh1 < x ≤ t(u2 −

√
gh2)

h2 = h0
2

(√
1 + 8ξ̇2

gh0
− 1

)
if t(u2 −

√
gh2) < x < tξ̇

h0 if x ≥ tξ̇
(2.5)

and

u(x) =


0 if x ≤ −t

√
gh1

u3 = 2
3(
√
gh1 + x

t ) if −t
√
gh1 < x ≤ t(u2 −

√
gh2)

u2 = ξ̇ − gh0
4ξ̇

(
1 +

√
1 + 8ξ̇2

gh0

)
if t(u2 −

√
gh2) < x < tξ̇

0 if x ≥ tξ̇
(2.6)

at any time t > 0, where ξ̇ is the shock speed constant given by

ξ̇ = 2
√
gh1 +

gh0

4ξ̇

(
1 +

√
1 +

8ξ̇2

gh0

)
−
(

2gh0

√
1 +

8ξ̇2

gh0
− 2gh0

) 1
2

. (2.7)

2.2.1 Results

For our test, we consider h1 = 10 and h0 = 1 in (2.4). The following figures
show the stage, x-momentum, and x-velocity at several instants of time.
We should see excellent agreement between the analytical and numerical
solutions.
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Figure 2.4: Stage results

Figure 2.5: Xmomentum results
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Figure 2.6: Xvelocity results
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2.3 Avalanche involving a dry area

An avalanche problem involving a dry area is solved using shallow water
approach. This problem is very similar to the dry dam break, but it is on
a sloping topography. The debris could be snow, sand, or even rock. The
simulation should show a rarefaction and wetting process, just like the dry
dam break problem. The analytical solution of this problem was derived
by Mungkasi and Roberts [18]. This shallow water approach to solve debris
avalanche problems was also implemented by a number of researchers, such
as Mangeney et al. [16] and Naaim et al. [21].

The initial condition is

u(x, 0) = 0, v(x, y) = 0, and h(x, 0) =

{
h1 if x < 0
0 if x > 0

(2.8)

where h1 > 0. The topography is a flat bed with positive slope.
The analytical solution [18] at time t > 0 is

h(x) =


0 if x ≤ −2c0t+ 1

2mt
2

hR = 1
9g

(
x
t + 2c0 − 1

2mt
)2

if −2c0t+ 1
2mt

2 ≤ x ≤ c0t+ 1
2mt

2

h0 if x ≥ c0t+ 1
2mt

2

(2.9)
which is the free surface and

u(x) =


0 if x ≤ −2c0t+ 1

2mt
2

uR = 2
3

(
x
t − c0 +mt

)
if −2c0t+ 1

2mt
2 ≤ x ≤ c0t+ 1

2mt
2

mt if x ≥ c0t+ 1
2mt

2

(2.10)
which is the velocity. Here m = −g tan θ+F , where tan θ is the slope of the
topography. Variable F is the Coulomb-type friction given by

F = g cos2 θ tan δ, (2.11)

in which tan δ is a given value of friction slope such that tan δ ≤ tan θ.

2.3.1 Results

For our test, we consider h0 = 20 in (2.8). The following figures show the
stage, x-momentum, and x-velocity at several instants of time. We should
see excellent agreement between the analytical and numerical solutions. The
wet/dry interface is difficult to resolve and it usually produces large errors,
similar to the dry dam break problem.
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Figure 2.7: Stage results

Figure 2.8: Xmomentum results
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Figure 2.9: Xvelocity results
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2.4 Avalanche involving a shock wave

We consider an avalanche involving a shock wave. This problem is similar
to dam break on wet areas, and so, it involves a shock. We consider a flat
topography with positive slope. Shallow water approach is used to solve the
problem. The analytical solution of this problem was derived by Mungkasi
and Roberts [19]. This shallow water approach was also implemented by a
number of researchers, such as Mangeney et al. [16] and Naaim et al. [21].
The simulation should show a rarefaction and a shock.

The initial condition is

u(x, 0) = 0, v(x, y) = 0, and h(x, 0) =

{
h1 if x < 0
h0 if x > 0

(2.12)

where h0 > h1 > 0. The topography is a flat bed with positive slope. Note
that when h1 = 0, the problem becomes avalanche involving a dry area [18].

The analytical solution [19] at time t > 0 is

h(x, t) =


h1 if x < σt+ 1

2mt
2 ,

h2 if σt+ 1
2mt

2 ≤ x < (u2 + c2)t+ 1
2mt

2 ,
1
9g

(
x
t + 2c0 − 1

2mt
)2

if (u2 + c2)t+ 1
2mt

2 ≤ x < c0t+ 1
2mt

2 ,

h0 if x ≥ c0t+ 1
2mt

2 ,

(2.13)
and

u(x, t) =


mt if x < σt+ 1

2mt
2 ,

u2 +mt if σt+ 1
2mt

2 ≤ x < (u2 + c2)t+ 1
2mt

2 ,
2
3

(
x
t − c0 +mt

)
if (u2 + c2)t+ 1

2mt
2 ≤ x < c0t+ 1

2mt
2 ,

mt if x ≥ c0t+ 1
2mt

2 ,
(2.14)

for time t > 0 . Here u2 , c2 , and σ are the solutions of the three simultaneous
equations

u2 = σ − c21
4σ

1 +

√
1 + 8

(
σ

c1

)2
 , (2.15)

c2 = c1

√√√√√1

2

√1 + 8

(
σ

c1

)2

− 1

, (2.16)

and
− 2c0 = u2 − 2c2. (2.17)

The value of h2 is calculated using relation c2 =
√
gh2 . Here m = −g tan θ+

F , where tan θ is the slope of the topography. Variable F is the Coulomb-
type friction given by

F = g cos2 θ tan δ, (2.18)

in which tan δ is a given value of friction slope such that tan δ ≤ tan θ.
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Figure 2.10: Stage results

2.4.1 Results

For our test, we consider h0 = 20 and h1 = 10 in (2.12). The following figures
show the stage, x-momentum, and x-velocity at several instants of time.
We should see excellent agreement between the analytical and numerical
solutions.
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Figure 2.11: Xmomentum results

Figure 2.12: Xvelocity results
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2.5 Carrier-Greenspan periodic solution

Periodic solutions for flows on a sloping beach were proposed by Carrier and
Greenspan [2]. The solutions have been widely used to test the performance
of numerical methods used to solve the shallow water equations [10, 20].

This test can be described in dimensional and dimensionless equations.
For our reference, please note that dimensional quantities shall be denoted
by starred variables, while dimensionless quantities by unstarred variables
for brevity of our analytical presentation. This notational convention is used
only in this test.

The problem is set up as follows. Consider a one dimensional domain
through the x∗-axis. Recall the shallow water equations

h∗t∗ + (h∗u∗)x∗ = 0 , (2.19)

(h∗u∗)t∗ +

(
h∗u∗2 +

1

2
gh∗2

)
x∗

= −gh∗z∗x∗ . (2.20)

Here, x∗ represents the one-dimensional domain, t∗ is the time variable,
u∗ = u∗(x∗, t∗) represents the velocity, z∗ = z∗(x∗) denotes the water bed
topography (elevation), h∗ = h∗(x∗, t∗) denotes the height (water depth),
that is, the distance from the free surface to the water bed topography, and
g is the acceleration due to gravity. Now, consider the situation on a sloping
beach. The topography changes linearly with x∗

z∗ = (h∗0/L
∗)x∗ − h∗0 , (2.21)

in which h∗0 is the vertical distance from the origin O to the topography
at any time, and L∗ is the horizontal distance from the origin O to the
topography when the water is still. This implies that when the water is
still: z∗ = −h∗ over the spatial domain, z∗ = −h∗0 at x∗ = 0 , and the
position of the shoreline is x∗ = L∗ . More detailed descriptions are given
by Mungkasi and Roberts [20].

The free surface or called stage is defined by w∗ := h∗ + z∗ . Scaling
the horizontal distance by L∗ , the vertical distance by h∗0 , the time by
L∗/

√
gh∗0 , and the velocity by

√
gh∗0 , the nonconservative dimensionless

shallow water equations can be expressed as

wt + [(w + 1− x)u]x = 0 , (2.22)

ut + uux + wx = 0 . (2.23)

For smooth solutions, equations (2.22) and (2.23) are equivalent to the con-
servative dimensionless shallow water wave equations

ht + (hu)x = 0 , (2.24)

18



(hu)t +

(
hu2 +

1

2
h2
)
x

= −hzx . (2.25)

Carrier and Greenspan showed that

w = −1

2
u2 +AJ0

(
4π
√
w + 1− x
T

)
cos

(
2π (u+ t)

T

)
, (2.26)

u = −
AJ1

(
4π
√
w+1−x
T

)
√
w + 1− x

sin

(
2π (u+ t)

T

)
(2.27)

satisfies the shallow water equations. This was verified by Johns [10] as
well as Mungkasi and Roberts [20]. Equations (2.26) and (2.27) are the
Carrier–Greenspan periodic solutions for flows on a sloping beach, which
are written in the dimensionless form. Obviously, this can be rescalled back
to the dimensional form.

Because this solution is periodic, the initial condition can be set by
substituting t = 0 into the analytical solution (2.26) and (2.27).

2.5.1 Results

We consider a spatial domain given by the interval [−50, 55050] . The dimen-
sional length is L∗ = 50, 000 , dimensional height h∗0 = 500 , and dimensional
period T ∗ = 900 . At x∗ = 0 the dimensional amplitude is ε∗ = 1.0 . After
four cycles, periodic motions are clear.

The following figures show the stage, x-momentum, and x-velocity at
several instants of time through a cross-section of the domain. Perturbation
at the zero point of the spatial domain is also shown. We should see excellent
agreement between the analytical and numerical solutions.
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Figure 2.13: Stage results

Figure 2.14: Xmomentum results
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Figure 2.15: Xvelocity results

Figure 2.16: Perturbation at the origin
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2.6 Carrier–Greenspan transient solution

A transient solution for flows on a sloping beach was proposed by Carrier
and Greenspan [2]. The water moves to the shore at an early time, then it
becomes still when time is large.

Consider the dimensionless shallow water equations, as presented in the
Carrier–Greenspan periodic solution.

The analytical solution is:

w = −u
2

2
+ εRe

[
1− 2

5/4− iλ
{(1− iλ)2 + σ2}3/2

+
3

2

(1− iλ)2

{(1− iλ)2 + σ2}5/2

]
,

(2.28)

u =
8ε

a
Im

[
1

{(1− iλ)2 + σ2}3/2
− 3

4

1− iλ
{(1− iλ)2 + σ2}5/2

]
, (2.29)

where

t =
1

2
aλ− u , c =

1

4
aσ , (2.30)

in which c =
√
gh is the wave propagation speed. Here σ ≥ 0 and we take

a = 1.5(1 + 0.9ε)1/2. Carrier and Greenspan [2] observed that the waves
do not break if ε is very small, namely ε ≤ 0.23. Setting σ = 0 into this
solution, we get the motion of the shoreline.

The initial condition is given by setting time t = 0 in this analytical
solution. Note that this analytical solution is defined in the dimensionless
space. To implement this in the numerical test, we just need to scale it back
to the dimensional space.

2.6.1 Results

We consider ε = 0.2. The following three figures show the stage, x-momentum,
and y-momentum at several instants in time. We should see excellent agree-
ment between the analytical and numerical solutions.
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Figure 2.17: Stage results

Figure 2.18: Xmomentum results
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Figure 2.19: Xvelocity results
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2.7 Deep Water Wave Propagation

This simulates the free propagation of a sinusoidal wave in deep water. The
initial condition is still water in a “large” box with uniform depth. The wave
is generated from the left boundary and propagates to the right. The depth
on the right boundary is set as time dependent function

h(t) = A sin
2πt

λ
(2.31)

with u = v = 0. Here A is the amplitude of the generating wave, t is time
variable, and λ is the wave length as well as the period of the generating
wave.

Analytically, the wave should travel through the domain without defor-
mation. Lower-order-accuracy algorithms may result in undue wave damp-
ening with the mesh size used in the current problem. This can have prac-
tical implications e.g. for tsunami propagation problems, and is usually
dealt with by using second-order accurate methods. Alternatively you can
refine the mesh until the dampening becomes insignificant, but this may be
computationally expensive in realistic problems.

This example can also illustrate difficulties with radiation-type boundary
conditions where the wave exits the domain (of course, for this problem, we
could do that by exploiting the analytical solution - but this is not possible
for general wave propagation problems). This will most obviously affect the
right edge of the domain, but its effects will ultimately be felt throughout.

2.7.1 Results

In this test, we consider A = 1 and λ = 300. Figure 2.20 shows the time-
evolution of the water elevation at three points in the domain. Ideally
these time series should show the wave propagating without deformation
or attenuation (i.e. the wave has the same shape, amplitude, period, mean
water level etc. at each point).

The corresponding momentums of Figure 2.20 are shown in Figures 2.21
and 2.22.
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Figure 2.20: Stage over time at 3 points in space

Figure 2.21: Xmomentum over time at 3 points in space
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Figure 2.22: Ymomentum over time at 3 points in space
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2.8 A MacDonald’s solution: transcritical flow with
a shock

This is a MacDonald’s steady flow test involving a shock in a short channel.
This test was used by Delestre et al. [6] in their SWASHES benchmark
library of shallow water analytical solutions. The original derivation of the
analytical solution was given by MacDonald et al. [14, 15]. MacDonald’s
analytical solution was derived using a backward framework, that is: given
the water depth, we construct the topography which satisfies the shallow
water equations.

When water is in a steady state, we have a fixed depth and velocity with
respect to time. Consider a one dimensional domain. Suppose that we are
given the depth h(x). The steady state conditions make the shallow water
equations to the single identity

zx =

(
q2

gh3
− 1

)
hx − Sf (2.32)

where q = uh is the momentum or water discharge and Sf is the symbol for
the force of bottom friction involving Manning’s coefficient n. We take

Sf = n2
q|q|
h10/3

. (2.33)

The topography is then determined by

z(x) = −
∫ L

x
zx dx (2.34)

in which L is the channel length.

2.8.1 Results

For our test, suppose that the channel length L = 100 and at steady state
the discharge q = 2. The initial condition is u = v = 0 and w = 2.87870797.
The boundary condition is enforced such that the upstream boundary has
q = 2 and the downstream boundary has h = 100. When water is steady,
suppose that a shock occurs at x = 662

3 . Following Delestre et al. [6], we
consider the water depth

h(x, y) =



(
4
g

)1/3 (
4
3 −

x
100

)
− 9x

1000

(
x
100 −

2
3

)
if 0 ≤ x < 662

3(
4
g

)1/3 [
a1
(
x
100 −

2
3

)4
+ a1

(
x
100 −

2
3

)3
−a2

(
x
100 −

2
3

)2
+ a3

(
x
100 −

2
3

)
+ a4

]
if 662

3 ≤ x ≤ 100

(2.35)
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Figure 2.23: Stage results

where a1 = 0.674202, a2 = 21.7112, a3 = 14.492, a4 = 1.4305, and n =
0.0328.

The following three figures show the stage, x-momentum, and x-velocity
when water is steady. We should see excellent agreement between the ana-
lytical and numerical solutions.
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Figure 2.24: Xmomentum results

Figure 2.25: Xvelocity results
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2.9 Thacker’s Planar Oscillations on a Parabolic
Basin

This test simulates planar oscillations of water in a parabolic basin. The an-
alytical solution was derived by Thacker [29], and is periodic. At any instant
in time, the free surface elevation is planar, and the velocity is constant (in
wet regions). The scenario includes regular wetting and drying, as the flow
oscillates back and forth in the basin. As well as testing the ability of the
code to do wetting and drying, it will highlight any numerical energy loss or
gain, and manifest as an increase or decrease in the magnitude of the flow
oscillations over long time periods (compared with the analytical solution).

Consider the topography

z(x) = D0

(x
L

)2
(2.36)

where D0 is the largest depth when water is still and L is the distance
between the centre of water surface and the shore when water is still. The
analytical solution is

u(x, t) = −Aω sin(ωt), (2.37)

w(x, t) = D0 +
2AD0

L2
cos(ωt)

(
x− A

2
cos(ωt)

)
. (2.38)

Here ω =
√
2gD0

L . The initial condition is set by taking t = 0 in the analytical
solution.

2.9.1 Results

For our test, we consider D0 = 4, L = 10, and A = 2. After running the
simulation for some time, we have Figures 2.26–2.28 showing the stage, x-
momentum, and x-velocity respectively. There should be a good agreement
between numerical and analytical solutions. Small velocity spikes may ap-
pear at the moving wet-dry edge in some ANUGA algorithms. As time
goes on, some small deviations may also appear. These are shown in Fig-
ures 2.29–2.31, which illustrate the stage, x-momentum, and x-velocity at
the centroid of the domain.
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Figure 2.26: Stage on a cross section of the basin at time t = 10.

Figure 2.27: Xmomentum on a cross section of the basin at time t = 10.
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Figure 2.28: Xvelocity on a cross section of the basin at time t = 10.

Figure 2.29: Stage over time in the centre of the parabolic basin.
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Figure 2.30: Xmomentum over time in the centre of the parabolic basin.

Figure 2.31: Xvelocity over time in the centre of the parabolic basin.
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2.10 Oscillations on a paraboloid basin

This test simulates water oscillations on a paraboloid basin. The analytical
solution was derived by Thacker [29], and is periodic. At any instant in
time, the free surface elevation is paraboloid, and the velocity is linear. The
scenario includes regular wetting and drying, as the flow oscillates up and
down in the basin. As well as testing the ability of the code to do wetting
and drying, it will highlight any numerical energy loss or gain, and manifest
as an increase or decrease in the magnitude of the flow oscillations over long
time periods (compared with the analytical solution). This test was also
implemented by Yoon and Cho [30] to investigate the performance of their
numerical method.

Consider the topography in two dimensions

z(x, y) = −D0

[
1−

( r
L

)2]
(2.39)

where r =
√
x2 + y2. Here D0 is the largest depth when water is still and

L is the distance between the centre of water surface and the shore when
water is still. The analytical solution is

u(x, y, t) =
ωrA sin (ωt)

2 [1−A cos(ωt)]
, (2.40)

w(x, y, t) = D0

[ √
(1−A2)

1−A cos(ωt)
− 1−

( r
L

)2 1−A2

[(1−A cos(ωt))2]− 1

]
.

(2.41)

Here ω = 2
√
2gD0

L and A =
L4−R4

0

L4+R4
0

and R0 is the horizontal distance between

the centre of water surface and the shore at the initial condition. The initial
condition is set by taking t = 0 in the analytical solution.

2.10.1 Results

For our test, we consider D0 = 1000, L = 2500, and R0 = 2000. After
running the simulation for some time, we have Figures 2.32–2.34 showing
the stage, x-momentum, and x-velocity respectively. There should be a
good agreement between numerical and analytical solutions, although wet-
dry artefacts may appear in the ’nearly-dry’ areas, where the numerical
method can cause the water to drain too slowly (similar to that reported in
[11] using a finite volume scheme with similarities to discontinuous elevation
algorithms in ANUGA).

As time goes on, some small deviations may appear. These are shown in
Figures 2.35–2.37, which illustrate the stage, x-momentum, and x-velocity
at the centroid of the domain.
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Figure 2.32: Stage on a cross section of the basin at time t = 50 .

Figure 2.33: Xmomentum on a cross section of the basin at time t = 50 .
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Figure 2.34: Xvelocity on a cross section of the basin at time t = 50 .

Figure 2.35: Stage over time in the centre of the paraboloid basin.
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Figure 2.36: Xmomentum over time in the centre of the paraboloid basin.

Figure 2.37: Xvelocity over time in the centre of the paraboloid basin.
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2.11 Simple wave runup

This scenario simulates a wave flowing up a planar beach. Following the
initial wave runup, eventually the water elevation should become constant,
and the velocities should approach zero. This test follows from the ANUGA
User Manual [24]. Instead of demonstrating how ANUGA simulates a water
flow test as given in the ANUGA User Manual [24], here we investigate
the behaviour of the wetting (and possibly the drying) process handled by
ANUGA.

2.11.1 Results

To do the investigation, we consider initial and boundary conditions different
from those given in the ANUGA User Manual [24] so that we have a large
dry region. Consider a rectangular domain with x ∈ [0, 1] and y ∈ [0, 0.03] .
The initial conditions are u = v = 0 and

z(x) = −x
2

(2.42)

with the stage at wet region is w = −0.45. The boundary condition on the
rightend of the domain is Dirichlet with stage w = −0.4 and discharges in
x and y directions are zero.

At an early runup, representatives of the results are as follows. Fig-
ure 2.38 shows the water surface at time t = 1 (in the cross-shore direction).
It is not constant as the water is flowing up the beach at this time. Fig-
ure 2.39 shows the corresponding x-velocity during the wave runup. The
velocities should be free from major spikes.

After a much longer time, representatives of the results are as follows.
Figure 2.40 shows the water surface at time 30s (in the cross-shore direction).
It should be nearly constant (= -0.1m) in the wet portions of the domain.
Figure 2.41 shows the corresponding velocity at time 30s. It should be
nearly zero (e.g. << 1 mm/s). This case has been used to illustrate wet-dry
artefacts in some versions of ANUGA.

2.11.2 Comment on wet-dry artefacts

Earlier ANUGA algorithms showed some wet-dry artefacts in this scenario,
which manifest as a high velocity at the wet/dry interface, and water creep-
ing up the slope (this was a feature of earlier ANUGA algorithms). If the
process is handled correctly in ANUGA, water should not “creep-up“ to the
left for a long distance (the discontinuous elevation + tsunami algorithms
should have no problem with this).
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Figure 2.38: Water surface during the wave runup at time t = 1.0 .

Figure 2.39: Xvelocity during the wave runup at time t = 1.0 .
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Figure 2.40: Water surface at time 30s after the wave runup. It should be
nearly constant in wet parts of the domain.

Figure 2.41: Xvelocity at time 30s after the wave runup. It should be nearly
zero.
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2.12 Wave runup over sinusoidal ridges

This scenario simulates a wave flowing up a beach with skewed sinusoidal
ridges. Following the initial wave runup, eventually the water elevation
should become constant, and the velocities should approach zero.

2.12.1 Results

Figure 2.42 shows the centroid velocities during the wave runup. The flow
should be concentrating in the channels near the shore, and be free from
major spikes.

Figure 2.43 shows the velocities profile at time 40 s. They should be
nearly zero (e.g. O(10−3) m/s). This case has been used to illustrate wet-
dry artefacts in some versions of ANUGA.
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Figure 2.42: Velocity during the wave runup. Point color corresponds to the
bed elevation

Figure 2.43: Velocity at time 20s after the wave runup. The flow speed
should be nearly zero. Point color corresponds to the bed elevation.
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2.13 Tsunami Runup Analytical Solution

This test case is ‘Benchmark Problem 1’ from the ‘Third International work-
shop on long-wave runup models, June 17-18 2004’. It models the runup of
an initial waveform on a linearly sloping beach. The analytical solution
was produced using the techniques of Carrier, Wu and Yeh [3]. The prob-
lem descriptions and solution were sourced from http://isec.nacse.org/

workshop/2004_cornell/bmark1.html

2.13.1 Results

Figures 2.44-2.45 compare the modelled and analytical stage and velocity
at various instances in time, while Figure 2.46 shows the time-evolution
of the shoreline position and velocity at the shoreline. For the numerical
model, the shoreline position and velocity are defined based on two depth
thresholds (see figure titles), as ANUGA does not explicitly track the wet-
dry interface. We expect to see good agreement between the analytical and
numerical solutions for both stage and velocity over most of the domain.
A discrepency near the shoreline can occur in some ANUGA algorithms,
particularly in the velocity.

2.13.2 Comment on algorithm-specific performance

At the time of writing (17/05/2013), the ‘tsunami’ algorithm has a small
phase-lag during the runup stage. This is attributed to the extra mass stor-
age in each numerical cell associated with that algorithm, which slightly
reduces the rate of inundation. It can be further reduced with mesh re-
finement. Regardless, the solution quality is quite comparable with results
using other solvers on similar sized meshes [4, 22].

The discontinuous elevation algorithms show different artefacts, related
to their tendency to have slow drainage in nearly-dry areas (so a very shallow
layer of water keeps flowing down-slope even when analytically, the slope
should have dried). This will be manifest most obviously in in velocity
aftefacts over the nearly-dry slope following draw-down. The amount of
water retained on the slope is small, so this is issue is not obvious in the stage
plots. However, it does complicate the definition of the wet-dry interface,
leading to potentially large discrepencies in the computed velocity at the
shoreline and the shoreline location.
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Figure 2.44: Water surface elevation at several instants in time
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Figure 2.45: Velocity at several instants in time
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Figure 2.46: Timeseries of shoreline position and velocity
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2.14 Lake at rest with an immersed bump

This is a simple test if the method is well-balanced. The initial condition is
a lake at rest with water depth 0.5. The topography is

z(x) =

{
0.2− 0.05 (x− 10)2 if 8 ≤ x ≤ 12 ,
0 otherwise,

(2.43)

The analytical solution is obviously a lake at rest, that is, w = 0.5 and
u = v = 0.

2.14.1 Results

Setting up the boundaries to be reflective, we should see excellent agree-
ment between the analytical and numerical solutions if the method is well-
balanced. Some oscillations may occur, but if the method is well-balanced,
they should be very close to the order of the machine precision. The follow-
ing three figures show the stage, x-momentum, and x-velocity after running
ANUGA for some time.
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Figure 2.47: Stage results

Figure 2.48: Xmomentum results
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Figure 2.49: Xvelocity results
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2.15 Lake at rest with a steep island

This is a test if the method is well-balanced. Furthermore, we test if the
wet/dry interface has been correctly treated for a steep island. This test is
taken from the work of Mungkasi and Roberts [17].

The initial condition is a lake at rest with water depth 4.5. The topog-
raphy is

z(x, y) =



−0.01(x− 200) + 4 if 0 ≤ x < 200
−0.02(x− 200) + 4 if 200 ≤ x < 300
−0.01(x− 300) + 2 if 300 ≤ x < 400
(−1/75)(x− 400) + 2 if 400 ≤ x < 550
(1/11250)(x− 550)(x− 550) if 550 ≤ x < 700
0.03(x− 700) if 700 ≤ x < 800
−0.03(x− 800) + 3 if 800 ≤ x < 900
6 if 900 ≤ x < 1000
(−1.0/20000)(x− 1000)(x− 1400) if 1000 ≤ x < 1400
0 if 1400 ≤ x < 1500
3 if 1500 ≤ x < 1700
−0.03(x− 1700) + 3 if 1700 ≤ x < 1800
(4.5/40000)(x− 1800)(x− 1800) + 2 otherwise,

(2.44)
The analytical solution is the lake at rest, that is, w = 4.5 and u = v = 0.

2.15.1 Results

Older versions of ANUGA might not handle a discontinuous island well,
but newer versions should be exact to numerical precision (including the
discontinuous-elevation and tsunami algorithms). The following three fig-
ures show the stage, x-momentum, and x-velocity respectively, after we run
the simulation for some time. We should see excellent agreement between
the analytical and numerical solutions if the method is well-balanced and
if the wet/dry interface has been correctly treated. Note the figure scales
- momenta will probably be plotted on a scale varying only a tiny range,
since the result is zero to numerical precision.
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Figure 2.50: Stage results

Figure 2.51: Xmomentum results
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Figure 2.52: Xvelocity results
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2.16 River at rest with varying width and topog-
raphy

This is a test if the method is well-balanced. Furthermore, we test if the
wet/dry interface has been correctly treated for steep river banks. This test
is taken from the work of Goutal and Maurel [9].

The initial condition is a river at rest with water depth 12.0. Boundary
conditions are solid wall. The width and topography of the river are defined
as piecewise linear interpolations of the data presented in Table 2.1. The
analytical solution is the river at rest, that is, w = 12.0 and u = v = 0.

2.16.1 Results

Old versions of ANUGA might not treat the wet/dry interface appropri-
ately, but the discontinuous-elevation and tsunami algorithms should do this
correctly. The following figures show the stage, x-momentum, and x-velocity
respectively, after we run the simulation for some time. The first three show
a slice in the x direction (down the river) and the last three figures show a
cross section across the river. We should see excellent agreement between
the analytical and numerical solutions if the method is well-balanced and
if the wet/dry interface has been correctly treated. Note the scale of the
figures (since in cases that are accurate to numerical precision, the figure
scale will only vary over a tiny range).
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Table 2.1: River width and topography (see Goutal and Maurel [9]).
x topography width

0 0 40
50 0 40
100 2.5 30
150 5 30
250 5 30
300 3 30
350 5 25
400 5 25
425 7.5 30
435 8 35
450 9 35
470 9 40
475 9 40
500 9.1 40
505 9 45
530 9 45
550 6 50
565 5.5 45
575 5.5 40
600 5 40
650 4 30
700 3 40
750 3 40
800 2.3 5
820 2 40
900 1.2 35
950 0.4 25
1000 0 40
1500 0 40
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Figure 2.53: Stage results down the river

Figure 2.54: Xmomentum results down the river
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Figure 2.55: Xvelocity results down the river

Figure 2.56: Stage results across the river
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Figure 2.57: Xmomentum results across the river

Figure 2.58: Xvelocity results accros the river
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2.17 Shallow flow down a mild slope

This case simulates very shallow flow running down a mild slope topography.
It represents an idealisation of the rainfall-runoff problem, which will often
involve very shallow flows down such a topography. This case has an ana-
lytical solution, and in particular, we consider the steady-uniform solution
with the values of bed slope and friction slope are the same.

Suppose that we are given a one dimensional domain. The steady state
conditions with a contant water depth everywhere make the shallow water
equations to the single identity

zx = −Sf , (2.45)

where zx is the bed slope, and Sf is the symbol for the force of bottom
friction. We take Manning’s friction

Sf = n2
q|q|
h10/3

(2.46)

where n is the Manning’s coefficient and q is the discharge uh. If q, n, and
zx are given, then the analytical solution for u and h is

u(x) =
[
−n−2q4/3zx

]3/10
, (2.47)

h(x) =
q

u
. (2.48)

2.17.1 Results

For our test, we consider a square dimensional domain with length and width
100. We take q = 0.2, n = 0.03, and zx = −0.1. The topography is

z(x, y) = −0.1x . (2.49)

The initial condition is u = v = 0 and

w(x, y, 0) = −0.1x+ 0.01 . (2.50)

Some simulation results are as follows. Figures 2.63 shows the steady
state depth in the downstream direction. There should be a good agreement
with the analytical solution, at least away from the boundaries.

Figures 2.65 shows the steady state depth across the slope around the line
x = 50m. There should be a good agreement with the analytical solution,
at least away from the boundaries.

Figures 2.66 and 2.67 show the steady state x- and y-velocities, along
a slice in the cross slope direction (near x = 50). The x-velocities should
agree well with the analytical solution, and the y-velocities should be zero.
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Figure 2.59: Depth in the downstream direction

Figure 2.60: Depth across the slope around x = 50m
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Figure 2.61: x-velocity along the cross-section x = 50 (i.e. a cross-section
with constant bed elevation)

Figure 2.62: y-velocity along the cross-section x = 50 (i.e. a cross-section
with constant bed elevation)
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2.18 Shallow flow down a mild slope with coarsely
resolved topography

This case simulates very shallow flow running down a mild slope, with
coarsely resolved topography, and a very low discharge. It represents a
numerically more challenging idealisation of the rainfall-runoff problem, as
compared to the case with higher discharge and resolution. This case has
an analytical solution, and in particular, we consider the steady-uniform
solution with the values of bed slope and friction slope are the same.

Suppose that we are given a one dimensional domain. The steady state
conditions with a contant water depth everywhere make the shallow water
equations to the single identity

zx = −Sf . (2.51)

Here q = uh is the momentum or water discharge and Sf is the symbol for
the force of bottom friction involving Manning’s coefficient n. We take

Sf = n2
q|q|
h10/3

. (2.52)

If q, n, and zx are given, then the analytical solution is

u(x) =
[
−n−2q4/3zx

]3/10
, (2.53)

h(x) =
q

u
. (2.54)

2.18.1 Results

For our test, we consider a square dimensional domain with length and width
100. We take q = 1/1000., n = 0.03, and zx = −0.1. The topography is

z(x, y) = −0.1x . (2.55)

The initial condition is u = v = 0 and

w(x, y, 0) = −0.1x+ 0.01 . (2.56)

Some simulation results are as follows. Figures 2.63 shows the steady
state depth in the downstream direction. There should be a good agreement
with the analytical solution in the middle of the domain (the boundaries will
not reach steady-uniform flow). Figures 2.66 and 2.67 show the steady state
x- and y-velocities, along a slice in the cross slope direction (near x = 50).
In the middle of the domain the x-velocities should agree well with the
analytical solution, and the y-velocities should be zero.
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Figure 2.63: Depth in the downstream direction

Figure 2.64: X velocity in the downstream direction
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Figure 2.65: Depth in the downstream direction

Figure 2.66: x-velocity along the cross-section x = 50 (i.e. a cross-section
with constant bed elevation)
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Figure 2.67: y-velocity along the cross-section x = 50 (i.e. a cross-section
with constant bed elevation)
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2.19 Subcritical flow without a shock over a bump

This is a subcritical flow over a bump. This test is adapted from Goutal
and Maurel [9]. No shock occurs in this scenario.

Consider a one dimensional domain [0, 25] with topography

z(x) =

{
0.2− 0.05 (x− 10)2 if 8 ≤ x ≤ 12 ,
0 otherwise ,

(2.57)

together with Dirichlet boundary conditions. Physically, the boundary con-
ditions mean that there is a source of flow upstream at the point x = 0−

and at the same time there exists a sink of flow downstream at the point
x = 25+ .

The analytical height is found by solving the Bernoulli equation. The
simplified Bernoulli equation is the following cubic equation

h3 +

(
z − q2

2gH2
−H

)
h2 +

q2

2g
= 0 , (2.58)

where H is the upstream height and q = uh is the discharge or x-momentum.
When the height h has been found, the velocity is computed as u = q/h .

2.19.1 Results

For our test we consider the initial condition

u(x, y, 0) = v(x, y, 0) = 0 , w(x, y, 0) = 0.2 , (2.59)

and the Dirichlet boundary conditions at x = 0− and 25+ to be

[w, hu, hv] = [2, 4.42, 0] . (2.60)

Representatives of the simulation results are given in the following three
figures. Even though we have small discrepancy in the numerical and ana-
lytical momenta, these numerical an analytical solutions should agree quite
well. Note the vertical scale of the plots (matplotlib may offset the vertical
scale, check top-left of figures).
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Figure 2.68: Stage results

Figure 2.69: Xmomentum results
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Figure 2.70: Xvelocity results
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2.20 Constant Subcritical flow

This is a very simple test of constant (subcritical) flow down a channel. The
constant state should be preserved.

2.20.1 Results

For our test we consider the initial condition

u(x, y, 0) = v(x, y, 0) = 0 , w(x, y, 0) = 1.5 , (2.61)

and the Dirichlet boundary conditions at x = 0− and 25+ to be

[w, hu, hv] = [2, 4.42, 0] . (2.62)

Representatives of the simulation results are given in the following three
figures. We should see a very accurate reproduction of the steady flow
w = 2 u = 2.21, q = 4.42 by 20secs.
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Figure 2.71: Stage results

Figure 2.72: Xmomentum results
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Figure 2.73: Xvelocity results
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2.21 Transcritical flow with a shock over a bump

This scenario simulates a transcritical flow over a bump with a shock. The
topography and the initial conditions are the same as those used in the
subcritical flow (See the description given in the report on the subcritical
flow test). However, to get a transcritical flow, the boundary conditions are
different from those used in the subcritical flow test. Here we refer to the
parameters used by Goutal and Maurel [9].

Referring to our description for the subcritical flow test, the analytical
height or depth h of the transcritical flow at smooth regions is found by solv-
ing the Bernoulli equation. The analytical solution for the shock position is
found by implementing three equations, namely, (a) the Bernoulli equation
at upstream (on the left of the shock), (b) the Bernoulli equation at down-
stream (on the right of the shock), and (c) the Rankine-Hugoniot relation.
The Rankine-Hugoniot relation for the steady flow can be expressed as

q2
(

1

h1
− 1

h2

)
+
g

2

(
h21 − h22

)
= 0 , (2.63)

where q is the discharge or momentum, h1 is the height upstream (on the left
of the shock), and h2 is the height downstream (on the right of the shock).
When the height h has been found, the velocity is computed as u = q/h .

2.21.1 Results

For our simulation, we consider Dirichlet boundary conditions at x = 0−

given by
[w, hu, hv] = [0.41373588752426715, 0.18, 0] , (2.64)

and at 25+ given by

[w, hu, hv] = [0.33, 0.18, 0] . (2.65)

With these conditions, representatives of the simulation results are shown
in the following three figures. They show the stage, x-momentum, and x-
velocity respectively. We should see good agreement between the analytical
and numerical solutions.
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Figure 2.74: Stage results

Figure 2.75: Xmomentum results
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Figure 2.76: Xvelocity results
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2.22 Transcritical flow without a shock over a bump

This scenario exhibits transcritical flow without a shock over a bump. This
test is adapted from Goutal and Maurel [9]. The topography and the initial
conditions are the same as those used in the subcritical flow as well as the
transcritical flow with a shock (See the description given in the report on
the subcritical flow and transcritical flow with a shock). The boundary
conditions are different from those used in the subcritical flow test. Here we
refer to the parameters used by Goutal and Maurel [9]. The analytical height
or depth h of the transcritical flow is calculated the Bernoulli equation. The
velocity is computed as u = q/h .

2.22.1 Results

Referring to Goutal and Maurel [9], we consider the initial condition

u(x, y, 0) = v(x, y, 0) = 0 , w(x, y, 0) = 0.66 , (2.66)

We enforce Dirichlet boundary conditions at x = 0− given by

[w, hu, hv] = [1.0144468506259066, 1.53, 0] , (2.67)

and at 25+ given by

[w, hu, hv] = [0.4057809296474606, 1.53, 0] . (2.68)

Representatives of the simulation results are given in the following three
figures. We should see excellent agreement between the analytical and nu-
merical solutions. Small discrepancy may occurs for the x-momentum. It
is not clear what makes this discrepancy. Numerical analysis may be con-
ducted further to investigate why this discrepancy occurs.
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Figure 2.77: Stage results

Figure 2.78: Xmomentum results
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Figure 2.79: Xvelocity results
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2.23 Supercritical flow without a shock over a bump

This is a supercritical flow over a bump. This test is adapted from Goutal
and Maurel [9]. No shock occurs in this scenario.

Consider a one dimensional domain [0, 25] with topography

z(x) =

{
0.2− 0.05 (x− 10)2 if 8 ≤ x ≤ 12 ,
0 otherwise ,

(2.69)

together with Dirichlet boundary conditions. Physically, the boundary con-
ditions mean that there is a source of flow upstream at the point x = 0−

and at the same time there exists a sink of flow downstream at the point
x = 25+ .

The analytical height is found by solving the Bernoulli equation. The
simplified Bernoulli equation is the following cubic equation

h3 +

(
z − q2

2gH2
−H

)
h2 +

q2

2g
= 0 , (2.70)

where H is the upstream height and q = uh is the discharge or x-momentum.
When the height h has been found, the velocity is computed as u = q/h .

2.23.1 Results

For our test we consider the initial condition

u(x, y, 0) = v(x, y, 0) = 0 , w(x, y, 0) = 2 , (2.71)

and the Dirichlet boundary conditions at x = 0− and 25+ to be

[w, hu, hv] = [0.5, 10., 0] . (2.72)

Representatives of the simulation results are given in the following three
figures. Even though we have small discrepancy in the numerical and ana-
lytical momenta, these numerical an analytical solutions should agree quite
well.
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Figure 2.80: Stage results

Figure 2.81: Xmomentum results
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Figure 2.82: Xvelocity results
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2.24 Trapezoidal channel steady uniform flow case

This scenario simulates steady, uniform flow in a trapezoidal channel. It
tests the ability of the model to compute the correct flow depth, and the
correct lateral distribution of flow velocity, and to conserve mass.

2.24.1 Results

Figure 2.83 shows the along-channel depth and velocity (in the deepest part
of the channel). Both should be nearly constant away from the boundaries,
and be close to the analytical solutions.

We do not expect perfect agreement, because the mesh is not very fine
in this example (triangle side length of around 1m, just enough to resolve
the banks). There will probably be some numerical diffusion in the cross-
channel velocity profiles, which will in turn cause errors in the mid-channel
velocity and free surface elevation. We deliberately choose to not use a finer
mesh, because in realistic problems, it is often not possible to resolve all
channels very well.

Figure 2.84 shows the cross-channel velocity profiles at a number of cross-
sections. Ideally it should agree with the analytical solution, however, this
may be difficult due to numerical diffusion in the cross-channel direction.
Irrespective, the velocity profile should be qualitatively correct – highest
velocities should be in the channel centre, with lower velocities towards the
banks.

Figure 2.85 show the hydrographs through various cross sections showing
the flows limiting to the expected inflow Q (For coarser grids there is a
discrepency between the expected and calculated limiting hydrograph due
to the error in back-calculating the hydrograph from ANUGA outputs -
although in ANUGAs internal computations the discharge is correct). It is
also noted that the transient flow is quite different for different grid sizes.
We theorize that the coarser grids produce a rougher bed which slows down
the flow.
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Figure 2.83: Depth and y-velocity in the middle of the channel, in the
downstream direction.
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Figure 2.84: y-velocity distribution over a number of cross-sections.
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Figure 2.85: Hydrographs over a number of cross-sections.
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Chapter 3

Tests against reference data
or solutions

3.1 The Yeh–Petroff dam break problem

Yeh and Petroff of the University of Washington conducted experimental
dam break with an obstruction column, as shown in Figure 3.1. The Yeh–
Petroff dam break problem was further simulated by Gomez-Gesteira and
Dalrymple [8] and Silvester and Cleary [26]. A similar problem was stud-
ied by Arnason et al. [1]. We shall compare our ANUGA solution to the
experimental data of Yeh and Petroff.

3.1.1 Results

We should see broad agreement between the experimental data and the nu-
merical solution. Some disagreement is expected because the flows in this
experimental situation show fairly rapid spatial and temporal variations,
which are to some extent outside the domain of the shallow water approxi-
mation.
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Figure 3.1: Schematic diagram of the inital condition and geometry of the
Yeh–Petroff dam break problem (source: Silvester and Cleary [26].)
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Figure 3.2: Stage results
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3.2 Okushiri Benchmark

We set up the Okushiri Island benchmark as published by the

The Third International Workshop on Long-Wave Runup Models

June 17-18 2004

Wrigley Marine Science Center

Catalina Island, California

http://isec.nacse.org/workshop/2004_cornell/

The validation data was downloaded and made available in this directory
for convenience but the original data is available at http://isec.nacse.

org/workshop/2004_cornell/bmark2.html where a detailed description of
the problem is also available.

Run create_okushiri.py to process the boundary condition and build
the mesh before running the script run_okushiri.py.

3.2.1 Results

ANUGA should produce results that match the stage values at a number
of gauge locations

Figure 3.3: Stage at boundary gauge
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Figure 3.4: Stage at gauge station 5

Figure 3.5: Stage at at gauge station 7
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Figure 3.6: Stage at at gauge station 9
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3.3 Lid-driven cavity flow

Lid-driven cavity flow is flow in a unit square containing a unit depth of
water with horizontal topography. The top (north) boundary has a unit
velocity and the other three boundaries are solid wall. The initial condition
is water at rest. This is a standard test for numerical methods used to solve
the two-dimensional Navier–Stokes equations. This is not a usual test for
shallow water models [5]. However, it may benefit to check the behaviour
of numerical solutions of ANUGA to this problem.

The analytical solution to this problem is not available, but a large num-
ber of researchers have proposed numerical solutions. Some of the literatures
amongst others are Cueto-Felgueroso et al. [5] and Erturk et al. [7].

3.3.1 Results

The following figures show numerical solutions of ANUGA to this lid-driven
cavity flow problem. We focus on the velocity and velocity fields. Note that
the current version of ANUGA is set up for inviscid fluid (water). That is,
the Reynolds number is infinity. An accurate result should show secondary
vortices around the corners for high Reynolds numbers.

91



Figure 3.7: Velocity at the centroids of computational elements at an instant
of time.

Figure 3.8: Velocity at the vertices of computational elements at an instant
of time.
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Figure 3.9: Velocity at the centroids of computational elements at the final
time step.
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Figure 3.10: Velocity at the vertices of computational elements at the final
time step.

Figure 3.11: Xvelocity at y = 0.5 .
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3.4 Flow over a weir

In this problem water runs up a broad sloping floodplain, which is split into
2 by a thin weir (riverwall). The landward side of the floodplain is initially
dry but becomes wet as the water overtops the weir. We use the change
in mass on the landward side of the weir to compute the flux over the weir
according to ANUGA, and compare with direct computation of the weir
equation.

ANUGA allows computation of flow over a weir using the riverwall
structure (supported for Discontinuous Elevation Algorithms only as of
01/07/2014). The default method adjusts the edge flux over the weir to
satisfy a basic weir relation with Villemonte’s submergence correction. How-
ever at high submergence ratios, or when the depth of flow over the weir
is large compared with the weir height, ANUGA smoothly reverts to the
shallow water solution (because the weir relations are not sensible in these
situations). This is required so that e.g. a weir of 1cm height covered by flow
of 1m is basically no different from the shallow water solution - weir relations
by themselves will not achieve this. See the documentation of riverwalls for
more information.

3.4.1 Results

The following figures show the discharge over the weir computed with ANUGA,
and with the simple weir equation with Villemonte’s submergence correction.
For reference we also show other weir equations. Before 1100s the discharge
is quite similar for all methods. There is still a small difference between
ANUGA and the simple-weir equation because the latter is computed only
using 2 water level gauges (rather than by integration as in ANUGA), and
because of the discretization of the model geometry.

At later times the water elevations on the landward and seaward sides
of the wall are very similar, and submergence relations play a greater role
in influencing the weir flow. The flow computed by ANUGA reduces much
more rapidly than do the other methods. This is due to the blending with
the shallow water solution in ANUGA at high submergence ratios (¿ s1).
The user can adjust this behaviour in ANUGA by changing the s1, s2, h1,
h2 parameters (see riverwall documentation). The Qfactor parameter can
also be adjusted to increase/decrease the ideal weir flow.

We have not found much information on how other models treat the
transition from weir to shallow water fluxes. However, according to the
HecRAS 4.1 Technical Reference manual, HecRas switches to the energy
equation when the submergence ratio is 0.95 (default), which corresponds
to our default choice of s2=0.95. Our default submergence ratio at which
blending begins is s1=0.9.
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Figure 3.12: Stage (above the riverwall crest) at 2 points either side of the
riverwall

Figure 3.13: Fluxes over the riverwall, computed with a range of methods.
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3.5 Bridges in HECRAS and ANUGA

This test compares a prismatic channel flow with a bridge in HECRAS and
ANUGA. A 10m wide, 1000m long channel (slope of 1/200, bankfull depth
of 1m, rectangular cross-section) flows through a floodplain (10m wide on
either side of the channel) (Figure 3.18). 500m downstream there is a bridge
with a 1.3m high rectangular opening over the channel, and a deck elevation
of -1m. In HECRAS the bridge is modelled using the enegy method, wheras
in ANUGA the boyd-box-culvert routines are used for the bridge opening,
and the shallow water equations are used for bridge overflow. Both models
have a uniform Manning’s n of 0.03.

A discharge timeseries is imposed upstream for both models, with the
discharge increasing from 1m3/s initially to 70m3/s at the end of the sim-
ulation. Details of the model setup can be seen in the code / input files in
this directory.

3.5.1 Results

Figure 3.17 show stage timeseries at various stations downstream in each
model. The ANUGA and HECRAS results are qualitatively similar. Just
upstream of the bridge (stations 525+), ANUGA shows a backwater ef-
fect earlier than HECRAS, while the final steady-state stage is somewhat
lower than in HECRAS. This is attributable to the different bridge models
used (energy equation for HECRAS vs culvert+shallow-water for ANUGA).
HECRAS includes several other bridge models (based on the momentum
equation or other methods), and these would also give different results.

Another minor point is that for the channelised flow, HECRAS computes
the friction slope in the channel using the hydraulic radius, which include
the ’bank-drag’ effect, whereas ANUGA does not. Hence, even away from
the bridge steady-state results can differ slightly.
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Figure 3.14: Screenshot showing the HECRAS model geometry schematiza-
tion

Figure 3.15: Stage at various points downstream in the channel
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3.6 Bridges in HECRAS and ANUGA using an
internal boundary operator

This test compares a prismatic channel flow with a bridge in HECRAS and
ANUGA. A 10m wide, 1000m long channel (slope of 1/200, bankfull depth
of 1m, rectangular cross-section) flows through a floodplain (10m wide on
either side of the channel) (Figure 3.18). 500m downstream there is a bridge
with a 1.3m high rectangular opening over the channel, and a deck elevation
of -1m. In HECRAS the bridge is modelled using the energy method, see the
associated HECRAS files for details. In ANUGA the bridge is modelled by
inserting the bridge deck (upper chord) into the topography, with an internal
boundary operator to describe the bridge underflow. The rating curves
for the bridge underflow (used to compute the bridge discharge from the
upstream and downstream stage) were derived for ANUGA from HECRAS
by raising the upper chord of the bridge in HECRAS (far about the flow)
and computing internal boundary tables, which were then copied into a csv
file for use by ANUGA. The bridge overflow in ANUGA is modelled with
the shallow water equations (although riverwalls could also be used to apply
weir type equations instead). Both models have a uniform Manning’s n
of 0.045, which prevents too much supercritical flow in HECRAS (and the
associated numerical supression of the inertial terms that HECRAS uses to
retain stability).

A discharge timeseries is imposed upstream for both models, with the
discharge increasing from 1m3/s initially to 70m3/s at the end of the sim-
ulation. Details of the model setup can be seen in the code / input files in
this directory.

3.6.1 Results

Figure 3.17 show stage timeseries at various stations downstream in each
model. The ANUGA and HECRAS results are qualitatively similar, but
differ in detail.

In early stages of the simulation when discharges are lower, ANUGA
shows stages slightly below HECRAS (particularly away from the bridge).
This reflects the fact that HECRAS models side-wall friction while ANUGA
does not, so there is more drag in the HECRAS model.

As the discharge increases, the models show more deviation around the
bridge and upstream, and ultimately approach different steady states. At
high flows, the main reason for this is that they use different methods to
model the bridge overflow, which begins when station 525 exceeds -1m.
ANUGA uses the shallow water equations, while HECRAS uses an energy
method. Even before this, the models show differences once the flow goes
overbank (above -2.4m at station 525). Because the ANUGA model here has
a fairly coarse mesh, numerical diffusion causes additional drag for overbank
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Figure 3.16: Screenshot showing the HECRAS model geometry schematiza-
tion

Figure 3.17: Stage at various points downstream in the channel
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flows.
Several additional factors will contribute to deviations between the mod-

els. ANUGA models cross-channel variations in the water surface elevation,
which is assumed constant in HECRAS. The under-bridge flux in ANUGA is
based on the water elevations in the central channel up-and-down stream of
the bridge, thus the 2D representation will have an effect on the under-bridge
flow. Further, since the ANUGA model here is fairly coarsely resolved, the
flow details near the bridge are noticably affected by the choice of flow al-
gorithm. The models also flux the momentum under the bridge in different
ways. ANUGA’s method is to compute the average momentum in each di-
rection along the upstream bridge inflow, and assume that this is advected
by the discharge (as computed from the internal boundary rating curves).
HECRAS’s method is based on the energy equation.
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3.7 Lateral weirs in HECRAS and ANUGA

This test compares riverwalls in ANGUA with default lateral structures in
HECRAS.

A HECRAS model was set up with 3 uniform parallel channels (‘left’,
‘middle’, ‘right’, orientations defined when looking downstream). All chan-
nels had lengths of 1000m, bed-slope 3/1000, manning’s n of 0.03, while
their widths were 10m, 20m, and 10m respectively (Figure 3.18). The cross-
sections were all nearly-flat (three-points with bank elevations 1cm above
the central bed elevation), and for all reaches the most upstream cross-
section (1000) had an elevation of 0m. These three channels were connected
with broad-crested lateral weirs (using HECRAS’s default lateral weir drag
coefficient of 1.1 in metric units). The ‘right’ and ‘middle’ channels were
connected with a 198m long weir with an elevation 0.5m above the bed, from
stations 799 to 601. The ‘left’ and ’middle’ channels were connected with a
198m long weir with an elevation 0.5m above the bed from stations 699 to
501.

Throughout the simulation the ‘left’ and ‘right’ channels were given a
discharge of 0.1m3/s (just enough to prevent them drying, which causes nu-
merical blow-up in in HECRAS). The ‘middle’ channel was given a discharge
timeseries, increasing from 1m3/s to 21m3/s over a few hours of simulated
time. The entire model is run for 24hours.

As the discharge in the central channel increases, water starts to overtop
the riverwalls and flows into the side channels. The loss/gain and final
equilibrium flow state in each channel is determined by the flow over the
riverwalls, which is itself a function of the stage in each river. Although both
riverwalls are 0.5m above the bed, the ‘right’ channel receives more water
than the ‘left’ channel because it has the most upstream connection to the
‘middle’ channel. Further downstream the ‘middle’ channel has already lost
a significant part of its discharge, so it flows less deeply and there is less flux
over the more downstream riverwall.

An analogous ANUGA model was set up with riverwalls connecting 3
channels. The ‘Qfactor’ for both riverwalls was set to (1.1/1.7'0.65) to make
the ANUGA riverwall drag coefficient equivalent to the default HECRAS
drag coefficient (the default Qfactor in ANUGA is 1). The same discharge
timeseries and elevations were used. The manning’s n values were slightly
increased to account for the fact that HECRAS uses side-wall friction in the
channels, whereas ANUGA doesn’t. The correction was derived by equating
the ANUGA and HECRAS friction slope terms assuming a final flow depth
of d ' 0.5m, and channel width of w ' 10m. Denoting nA as ANUGA’s
manning’s n and nH as HECRAS’s value (0.03), we have:

nA ' nH
d2/3

( dw
2d+w )2/3

' 0.032 (3.1)
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Figure 3.18: HECRAS model geometric schematization. The ‘right’ channel
appears on the left side of this figure, and the ‘left’ on the right.

where the denominator on the right hand side is the hydraulic radius. This
correction is not exact since the depths and widths actually vary, but despite
those second order effects it does improve the agreement between the 2
models.

The initial conditions in each model are slightly different but this is only
important in the first hour of simulation. HECRAS needs ’well-behaved’
initial conditions to maintain stability.

3.7.1 Results

Figures 3.19-3.21 show stage timeseries at various stations downstream in
each channel. The results are qualitatively similar, with stages typically
differing by a few cm. In the downstream parts of the left/right channels,
the stage is completely determined by the mass flux over the upstream weirs,
and so the agreement between HECRAS and ANUGA here shows that both
models are predicting a similar mass flux.

The main difference between the 2 models is in areas just upstream of
the weir (800 on the right channel, 700 on the left), where HECRAS predicts
a greater a backwater effect in the receiving channel than ANUGA. Further
investigation has shown this is because of differences in the transport of
momentum over the riverwall. HECRAS apparently only transfers mass
over the weir, whereas ANUGA transfers both mass and momentum. This
causes more stagnation at the upstream parts of the riverwall overflow in
HECRAS, since the water is transferred to the side channels without a
downstream component of momentum. We have done other ANUGA runs
where the momentum flux over the weir was forced to zero (by modifying
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Figure 3.19: Stage at various points downstream in the middle channel

ANUGA’s source code), and in that instance the models agree well in the
aforementioned areas as well.

Irrespective, the main point of this comparison is that both ANUGA
and HECRAS are giving similar results for this case study.
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Figure 3.20: Stage at various points downstream in the right channel

Figure 3.21: Stage at various points downstream in the left channel
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3.8 Tides in HECRAS and ANUGA

This test compares idealised tidal channel flow in HECRAS and ANUGA.
The tidal amplitude (0.4m) is a significant fraction of the channel depth
(' 1m), so nonlinear tidal deformation is significant.

A 20m wide, 1000m long straight channel with rectangular cross-section
flows through a floodplain (10m wide on either side of the channel). Up-
stream of 220m the bed elevation is constant (1m below the floodplain),
downstream of 100m it is 3m below the floodplain, and it varies linearly in
between. The floodplain has a constant elevation (1m). Manning’s n is 0.03.
The upstream boundary is reflective, while at the downstream boundary a
stage timeseries y(t) is imposed (where t is time in seconds):

y = 0.6 + 0.4 ∗ sin(2πt/(1800))
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3.9 Results

Figure 3.22 show stage timeseries at various stations downstream in each
model. For visual clarity the gauges are offset vertically. The ANUGA
and HECRAS results should be visually indistinguishable. There is a clear
deformation of the tide as it travels upstream, with the incoming tide having
a shorter duration than the outgoing tide at upstream stations, which is
typical for tides in shallow channels when overbank effects are not dominant.
In this example there is minor overbank inundation in parts of both models,
but it is just a few cm deep.

Note that this ANUGA model uses a coarse mesh with discontinuous
elevation to resolve the banks, so this example should not run with non-
discontinuous elevation flow algorithms.

107



Figure 3.22: Tidal levels in HECRAS and ANUGA
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3.10 Radial dam break on a dry bed

A radial dam break test problem involving a dry bed. Should show a rar-
efaction fan. Note that the reference solution is found from the 1D FVM
for SWE involving varying width and topography. See a paper of Roberts
and Wilson [25].

3.10.1 Results

We should see excellent agreement between the reference and numerical
solutions.
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Figure 3.23: Stage results

Figure 3.24: Radial momentum results
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Figure 3.25: Radial velocity results
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3.11 Radial dam break on a wet bed

A radial dam break test problem involving a wet bed. Should show a rar-
efaction fan and a shock. Note that the reference solution is found from the
1D FVM for SWE involving varying width and topography. See a paper of
Roberts and Wilson [25].

3.11.1 Results

We should see excellent agreement between the reference and numerical
solutions.
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Figure 3.26: Stage results

Figure 3.27: Radial momentum results
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Figure 3.28: Radial velocity results
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Chapter 4

Realistic large-scale cases

Code for a number of realistic applications is in the case studies directory,
however they are not included here by default, because they take a long time
to run.
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Appendix A

Adding New Tests

To setup a new validation test, create a test directory under one of the
validation directories. In that directory there should be the test code, a TEX
file results.tex and a python script produce results.py, which runs the
simulation and produces the outputs. Copy the format from one of the other
test directories.

In this TEX file, report.tex, add a line

\inputresults{../Directory/Name}
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A.1 Algorithm Parameters

Note that parameters can be communicated from the local_parameters.py
file in the validation_tests/reports directory. If there is no file local_parameters.py
then the parameters are taken from the anuga.validation_utilities.parameters.

In particular the values of alg (flow algorithm) and cfl (CFL Condition)
are passed as command options when calling produce_results.py in the
test directories.

Within ANUGA script you can obtain command line parameters via

args = anuga.get_args()

alg = args.alg

verbose = args.verbose

to obtain the values of alg(flow algorithm) and verbose(flag)
You can pass though the standard parameters as follows

from anuga.validation_utilities.parameters import alg

from anuga.validation_utilities.parameters import cfl
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A.2 Generic form of produce results.py

The produce results.py files in the test directories should have the fol-
lowing general form

import anuga

from anuga.validation_utilities import produce_report

args = anuga.get_args()

produce_report(’run_simulation.py’, args=args)
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