
tensap—A Python Tensor Approximation Package

Anthony Nouy∗ Erwan Grelier∗

July 29, 2020

Abstract

This article provides an introduction to tensap (Tensor Approximation Package),
which is a Python package for the approximation of functions and tensors, available
on GitHub at https://github.com/anthony-nouy/tensap, or through its GitHub
page https://anthony-nouy.github.io/tensap/. The package tensap features low-
rank tensors (including canonical, tensor train and tree-based tensor formats or tree
tensor networks), sparse tensors, polynomials, and allows the plug-in of other approx-
imation tools. It provides different approximation methods based on interpolation,
least-squares projection or statistical learning.

∗Centrale Nantes, Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629

1

https://github.com/anthony-nouy/tensap
https://anthony-nouy.github.io/tensap/

Contents

1 FullTensor 2
1.1 Creating a FullTensor . 2
1.2 Accessing the entries of a FullTensor . 3
1.3 Permuting the modes of a FullTensor . 3
1.4 Reshaping a FullTensor. 4
1.5 Norms and singular-values . 4
1.6 Operations with FullTensor . 5

1.6.1 Outer product. 5
1.6.2 Kronecker product. 5
1.6.3 Hadamard product. 5
1.6.4 Contracted product. 5
1.6.5 Dot product. 6
1.6.6 Contractions with matrices or vectors 6

2 Tensor formats 7
2.1 CanonicalTensor . 7
2.2 DiagonalTensor . 9
2.3 SparseTensor . 10
2.4 TreeBasedTensor and DimensionTree . 11

2.4.1 DimensionTree . 11
2.4.2 TreeBasedTensor . 13

2.5 Tensor truncation with Truncator . 16

3 Measures, bases and functions 17
3.1 RandomVariable . 17
3.2 RandomVector . 18
3.3 Polynomials . 18
3.4 FunctionalBasis . 20
3.5 FunctionalBases . 20
3.6 FunctionalBasisArray . 21
3.7 FunctionalTensor . 21
3.8 Tensorizer and TensorizedFunction . 21

4 Tools 22
4.1 MultiIndices . 22
4.2 TensorGrid, FullTensorGrid and SparseTensorGrid 22

2

5 Learning 23
5.1 (Functional)TensorPrincipalComponentAnalysis 23
5.2 LossFunction . 24
5.3 LinearModelLearning . 24
5.4 TensorLearning . 27
5.5 Example: character classification in tree-based tensor format. 28

Introduction

tensap (Tensor Approximation Package) is a Python package for the approximation of func-
tions and tensors, available on GitHub at https://github.com/anthony-nouy/tensap,
or through its GitHub page https://anthony-nouy.github.io/tensap/.

To install from PyPi, run pip install tensap. Alternatively, you can install tensap
directly from github by running
pip install git+git://github.com/anthony-nouy/tensap@master.

The package tensap features low-rank tensors (including canonical, tensor-train and
tree-based tensor formats or tree tensor networks), sparse tensors, polynomials, and allows
the plug-in of other approximation tools. It provides different approximation methods
based on interpolation, least-squares projection or statistical learning.

The package is shipped with tutorials showing its main applications. A documentation
is also available.

At minimum, tensap requires the packages numpy and scipy. The packages tensorflow
and sklearn are required for some applications.

In this document, all Python commands are written using a typewriter font. The
quantities in typewriter font are Python objects, whereas the quantities in math font
are mathematical objects. For better readability, we use the same letter for an object,
with different fonts whether we refer to its mathematical definition (X) or to its Python
implementation (X).

1 FullTensor

A FullTensor X represents an order d tensor X ∈ RN1×···×Nd , or multidimensional array
of size N1 × . . . × Nd. The entries of X are Xi1,...,id , with (i1, . . . , id) a tuple of indices,
where iν ∈ {0, . . . , Nν − 1} is related to the ν-th mode of the tensor.

We present in this section how to create a FullTensor using tensap, and several possible
operations with such an object. For an introduction to tensor calculus, we refer to the
monograph [6].

For examples of use, see the tutorial file tutorials\tensor algebra\tutorial FullTensor.py.

3

https://github.com/anthony-nouy/tensap
https://anthony-nouy.github.io/tensap/

1.1 Creating a FullTensor

Provided with an array data of shape [N_1, ..., N_d], the command X =

tensap.FullTensor(data) returns a tensor X ∈ RN1×···×Nd , with order X.order =

d and shape X.shape = (N_1, ..., N_d). The number of entries of X is given by
X.size = X.storage() =

∏d
i=1Ni. The number of nonzero entries of X is given by

X.sparse_storage().

It is also possible to generate a FullTensor with entries:

• equal to 0 with tensap.FullTensor.zeros([N_1, ..., N_d]),

• equal to 1 with tensap.FullTensor.ones([N_1, ..., N_d]),

• drawn randomly according to the uniform distribution on [0, 1] with
tensap.FullTensor.rand([N_1, ..., N_d]),

• drawn randomly according to the standard gaussian distribution with
tensap.FullTensor.randn([N_1, ..., N_d]),

• different from 0 only on the diagonal, provided in diag_data, with
tensap.FullTensor.diag(diag_data, d) (generating a tensor of order d
and shape [N, . . . , N], with N = len(diag_data)),

• generated using a provided generator with tensap.FullTensor.create(generator,

[N_1, ..., N_d]).

1.2 Accessing the entries of a FullTensor

The entries of a tensor X can be accessed with the method eval_at_indices:
X.eval_at_indices(ind) returns the entries of X indexed by the list ind containing the
indices to access in each dimension.

Extracting diagonal entries. For a tensor X ∈ RN,...,N , the command X.eval_diag()

returns the diagonal entries Xi,...,i, i = 1, . . . , N , of the tensor. The command
X.eval_diag(dims) returns the entries Xi,...,i, with i in ind.

Extracting a sub-tensor. A sub-tensor can be extracted from X with the method
sub_tensor: for an order-3 FullTensor X of size N1 × N2 × N3, X.sub_tensor([0,

1], ’:’, 2) returns a sub-tensor of size 2 × N2 × 1 containing the entries Xi1,i2,i3 with
i1 ∈ {0, 1}, 0 ≤ i2 ≤ N2 − 1 and i3 = 2.

4

1.3 Permuting the modes of a FullTensor

The methods transpose and itranspose permute the dimensions of a ten-
sor X, given a permutation dims of {1, . . . , d}. They are such that X =

X.transpose(dims).itranspose(dims).

1.4 Reshaping a FullTensor.

The command X.reshape(shape) reshapes a FullTensor using a column-major order (e.g.
used in Fortran, Matlab, R). It relies on the numpy’s reshape function with Fortran-like
index (argument order=’F’). For a tuple (i1, . . . , id), we define

i1, . . . , id = i1 +N1(i2−1 − 1) +N1N2(i3−1 − 1) + . . .+N1 . . . Nd−1(id − 1).

A tensor X is be identified with a vector vec(X) whose entries are vec(X)i1,...,id . This
vector can be obtained with the command X.reshape(N) with N=numpy.prod(X.shape).

α-Matricization. For α ⊂ {1, . . . , d} an its complementary subset αc in {1, . . . , d}, an
α-matricization of a tensor X is a matrix M of size (

∏
i∈αNi) × (

∏
i∈αc Ni), such that

Xi1,...,id = Miα,iαc
with iα = (iν)ν∈α. It can be obtained with X.matricize(alpha), which

returns a FullTensor or order 2. The matricization relies on the method reshape.

Orthogonalization. It is possible to obtain a representation of a tensor X such that its
α-matricization is an orthogonal matrix (i.e. with orthogonal columns) using the method
X.orth(alpha).

1.5 Norms and singular-values

Computing the Frobenius norm of a FullTensor. The command X.norm() returns
the Frobenius norm ‖X‖F of X, defined by

‖X‖2F =

N1∑
i1

· · ·
Nd∑
id

X2
i1,...,id

.

Computing the α-singular values and α-principal components of a FullTensor.
For a subset α ⊂ {1, . . . , d} and its complementary subset αc, the α-matricization M of
X admits a singular value decomposition

Miα,iαc =
∑
k

σkvkiαw
k
icα

where the σk are the singular values of M and the vk the corresponding left singular
vectors, or principal components of M . They are respectively called the α-singular

5

values and α-principal components of X. The α-singular values are obtained with
X.singular_values(). The α-principal components (and α-singular values) are
obtained with X.alpha_principal_components(alpha), which is equivalent to
X.matricize(alpha).principal_components().

1.6 Operations with FullTensor

1.6.1 Outer product.

The outer product X ◦ Y of two tensors X ∈ RN1×···×Nd and Y ∈ RN̂1×···×N̂d̂ is a tensor

Z ∈ RN1×...×Nd×N̂1×···×N̂d̂ of order d+ d̂ with entries

Zi1,...,id,j1,...,jd̂ = Xi1,...,idYj1,...,jd̂

It is provided by X.tensordot(Y, 0), similarly to numpy’s tensordot function.

1.6.2 Kronecker product.

The Kronecker product X ⊗Y of two tensors X and Y of the same order d = d̂ is a tensor
Z of size N1N̂1 × . . .×NdN̂d̂ with entries

Zi1j1,...,idjd = Xi1,...,idYj1,...,jd .

It is given by the command kron, which is similar to numpy’s kron function, but for
arbitrary tensors.

1.6.3 Hadamard product.

The Hadamard (elementwise) product X ~ Y of two tensors X and Y of the same order
and size is obtained through the command __mul__(X,Y), which returns a tensor Z with
entries

Zi1,...,id = Xi1,...,idYi1,...,id

1.6.4 Contracted product.

For I ⊂ {1, . . . , d} and J ⊂ {1, . . . , d̂} with #I = #J , Z = X.tensordot(Y, I, J)

performs the mode (I, J)-contracted product of X and Z which is a tensor Z of order
d+ d̂−#I −#J with entries

Z(iν)ν /∈I ,(jµ)µ/∈J =

Nν∑
iν=1
ν∈I

Nµ∑
jµ=1
µ∈J

∏
ν∈I

∏
µ∈J

δiν ,jµXi1,...,idYj1,...,jd̂

6

with δi,j the Kronecker delta, that is a contraction of tensors X and Y along dimensions I
of X and J of Y . For example, for order-4 tensors X and Y , Z = X.tensordot(Y, [0,1],

[1,2]) returns a tensor Z or order 4 such that

Zi3,i4,j1,j4 =
∑
i1,i2

Xi1,i2,i3,i4Yj1,i1,i2,j4 .

The method tensordot_eval_diag provides the diagonal (or entries with equal pairs of
indices) of the result of the method tensor_dot, but at a cost lower than when using
X.tensordot(Y, I, J).eval_diag().
For example, for order-4 tensors X and Y ,
X.tensordot_eval_diag(Y,[0,1],[1,2],[2,3],[0,3]) returns the diagonal of Z, i.e.
an order-one tensor M with entries

Mk = Zk,k,k,k =
∑
i1,i2

Xi1,i2,k,kYk,i1,i2,k

X.tensordot_eval_diag(Y,[0,1],[1,2],[2,3],[0,3],diag = True) returns a tensor
M of order 2 with entries

Mk1,k2 = Zk1,k2,k1,k2 =
∑
i1,i2

Xi1,i2,k1,k3Yk,i1,i2,k

X.tensordot_eval_diag(Y,[0,1],[1,2],[2],[0]) returns the diagonal of Z, i.e. a ten-
sor M of order 3 v with entries

Mk,i4,j4 = Zk,i4,k,j4 =
∑
i1,i2

Xi1,i2,k,i4Yk,i1,i2,j4

1.6.5 Dot product.

The dot product of two tensors X and Y with same shape [N1, . . . , Nd], defined by

(X,Y) =

Nν∑
iν=1

ν=1,...,d

Xi1,...,idYi1,...,id , (1)

can be obtained with X.dot(Y). It is equivalent to X.tensordot(Y, range(X.order),

range(Y.order)).

1.6.6 Contractions with matrices or vectors

Given a tensor X and a list of matrices M = [M1, ...,Md], the command Z =

X.tensor_matrix_product(M) returns an order-d tensor Z whose entries are

Zi1,...,id =

Nν∑
kν=1

ν=1,...,d

Xk1,...,kd

d∏
ν=1

Mν
iν ,kν

7

The same method exists for vectors instead of matrices: tensor_vector_product. Sim-
ilarly to tensordot_eval_diag, the method tensor_matrix_product_eval_diag evalu-
ates the diagonal of the result of tensor_matrix_product, with a lower cost.

2 Tensor formats

Here we present tensor formats available in tensap, which are structured formats of tensors
in RN1×...×Nd . For a detailed description of methods, see the description of the correspond-
ing methods for FullTensor in Section 1. For an introduction to tensor formats, we refer
to the monograph [6] and the survey [8].

2.1 CanonicalTensor

The entries of an order-d tensor X ∈ RN1×···×Nd in canonical format can be written

Xi1,...,id =
r∑

k=1

CkU
1
i1,k · · ·U

d
id,k

,

with r the canonical rank, and where the Uν = (Uνiν ,k)1≤iν≤Nν ,1≤k≤r are order-two tensors.

Creating a CanonicalTensor. To create a canonical tensor in tensap, one can use the
command tensap.CanonicalTensor(C, U), where C contains the (Ck)

d
k=1, and U is a list

containing the Uν , 1 ≤ ν ≤ d.
The storage complexity of such a tensor, obtained with X.storage(), is equal to r(1 +

N1 + · · ·+Nd).
It is also possible to generate a CanonicalTensor with entries

• equal to 0 with tensap.CanonicalTensor.zeros(r, [N_1, ..., N_d]),

• equal to 1 with tensap.CanonicalTensor.ones(r, [N_1, ..., N_d]),

• drawn randomly according to the uniform distribution on [0, 1] with
tensap.CanonicalTensor.rand(r, [N_1, ..., N_d]),

• drawn randomly according to the standard gaussian distribution with
tensap.CanonicalTensor.randn(r, [N_1, ..., N_d]),

• generated using a provided generator with tensap.CanonicalTensor.create

(generator, r, [N_1, ..., N_d]).

Converting a CanonicalTensor to a FullTensor. A CanonicalTensor X can be con-
verted to a FullTensor (introduced in Section 1) with the command X.full().

8

Converting a CanonicalTensor to a TreeBasedTensor. A CanonicalTensor X

can be converted to a TreeBasedTensor (introduced in Section 2.4) with the command
X.tree_based_tensor(tree, is_active_node), with tree a DimensionTree object,
and is_active_node a list or array of booleans indicating if each node of the tree is
active.

Accessing the diagonal of a CanonicalTensor. For a canonical tensor
X ∈ RN×...×N , the command X.eval_diag() returns the diagonal Xi,...,i, i = 1, . . . , N ,
of the tensor. The method eval_diag can also be used to evaluate the diagonal in
a subset of dimensions dims of the tensor with X.eval_diag(dims), which returns a
CanonicalTensor.

Computing the Frobenius norm of a CanonicalTensor. The command X.norm()

returns the Frobenius norm of X. The Frobenius norm of X is equal to the Frobenius
norm of its core C if X.is_orth is True.

Computing the derivative of CanonicalTensor with respect to one of its parameters.
Given an order-d canonical tensorX in RN×···×N , the command X.parameter_gradient_eval_diag(k),
for 1 ≤ k ≤ d, returns the derivative

∂Xi1,...,id

∂Uk

∣∣∣∣
i1=···=id=i

, i = 1, . . . , N.

The derivative of X with respect to its core C, that writes

∂Xi1,...,id

∂C

∣∣∣∣
i1=···=id=i

, i = 1, . . . , N,

is obtained with X.parameter_gradient_eval_diag(d+1).
The method parameter_gradient_eval_diag is used in the statistical learning algo-

rithms presented in Section 5.4.

Performing operations with CanonicalTensor. Some operations between tensors
are implemented for DiagonalTensor (see Section 1.6 for a detailed description of the
operations): the Kronecker product with kron, the contraction with matrices with
tensor_matrix_product, the evaluation of the diagonal of a contraction with matrices
with tensor_matrix_product_eval_diag, the dot product with dot.

Given a tensor X and a list of matrices M = [M1, ...,Md], the command Z =

X.tensor_matrix_product(M) returns an order-d tensor Z whose entries are

Zi1,...,id =
r∑

k=1

Nν∑
kν=1

ν=1,...,d

CkU
1
k1,k · · ·U

d
kd,k

d∏
ν=1

Mν
iν ,kν

9

The method tensor_matrix_product_eval_diag evaluates the diagonal of the result of
tensor_matrix_product.

The dot product of two canonical tensors X and Y with same shape [N1, . . . , Nd] can
be obtained with X.dot(Y).

2.2 DiagonalTensor

A diagonal tensor X ∈ RN1×···×Nd is a tensor whose entries Xi1,...,id are non-zero only if
i1 = · · · = id.

Creating a DiagonalTensor. To create a diagonal tensor in tensap, one can use the
command tensap.DiagonalTensor(D, d), where D (of length r) contains the diagonal of

the tensor, and d is the order of the tensor. The result if an order d tensor in Rr×...×r = Rrd .
The sparse storage complexity of such a tensor, obtained with X.sparse_storage(),

is equal to r = len(D). Its storage complexity, not taking into account the fact that only
the diagonal is non-zero, is equal to rd and obtained with X.storage().

It is also possible to generate a DiagonalTensor with entries

• equal to 0 with tensap.DiagonalTensor.zeros(r, d),

• equal to 1 with tensap.DiagonalTensor.ones(r, d),

• drawn randomly according to the uniform distribution on [0, 1] with
tensap.DiagonalTensor.rand(r, d),

• drawn randomly according to the standard gaussian distribution with
tensap.DiagonalTensor.randn(r, d),

• generated using a provided generator with tensap.DiagonalTensor.create

(generator, r, d).

Converting a DiagonalTensor to a FullTensor. A DiagonalTensor X can be con-
verted to a FullTensor (introduced in Section 1) with the command X.full().

Converting a DiagonalTensor to a SparseTensor. A DiagonalTensor X can be
converted to a SparseTensor (introduced in Section 2.3) with the command X.sparse().

Converting a DiagonalTensor to a TreeBasedTensor. A DiagonalTensor X can
be converted to a TreeBasedTensor (introduced in Section 2.4) with the command
X.tree_based_tensor(tree, is_active_node), with tree a DimensionTree object,
and is_active_node a list or array of booleans indicating if each node of the tree is
active.

10

Accessing the entries of a DiagonalTensor. The entries of the tensor X can be ac-
cessed with the method eval_at_indices: X.eval_at_indices(ind) returns the entries
of X indexed by the list ind containing the indices to access in each dimension.
A sub-tensor can be extracted from X with the method sub_tensor.

For a tensor X ∈ RN×...×N , the command X.eval_diag() returns the diagonal Xi,...,i,
i = 1, . . . , N , of the tensor. The method eval_diag can also be used to evaluate the
diagonal in some dimensions dims of the tensor with X.eval_diag(dims).

Computing the Frobenius norm of a DiagonalTensor. The command X.norm()

returns the Frobenius norm of X.

Performing operations with DiagonalTensor. Some operations between tensors
are implemented for DiagonalTensor (see Section 1.6 for a detailed description of the
operations): the outer product with tensordot, the evaluation of the diagonal (or
subtensors) of an outer product with tensordot_eval_diag, the Kronecker product
with kron, the contraction with matrices or vectors with tensor_matrix_product or
tensor_vector_product respectively, the evaluation of the diagonal of a contraction with
matrices with tensor_matrix_product_eval_diag, the dot product with dot.

2.3 SparseTensor

A sparse tensor X ∈ RN1×···×Nd is a tensor whose entries Xi1,...,id are non-zero only for
(i1, . . . , id) ∈ I, with I a set of multi-indices.

Creating a SparseTensor. To create a sparse tensor X in tensap, one can use the com-
mand tensap.SparseTensor(D, I, [N_1, ..., N_d]), where D contains the non-zero
entries of X, I is a tensap.MultiIndices containing the indices of its non-zero enties, and
where N1, . . . , Nd is its shape.

The sparse storage complexity of such a tensor, obtained with X.sparse_storage(),
is equal to card(I). Its storage complexity, not taking into account the sparsity, is equal
to N1 · · ·Nd and can be accessed with X.storage().

Converting a SparseTensor to a FullTensor. A SparseTensor X can be converted
to a FullTensor (introduced in Section 1) with the command X.full().

Converting a FullTensor to a SparseTensor. A FullTensor X can be converted to
a SparseTensor (introduced in Section 2.3) with the command X.sparse().

11

Accessing the entries of a SparseTensor. The entries of the tensor X can be accessed
with the method eval_at_indices: X.eval_at_indices(ind) returns the entries of X
indexed by the list ind containing the indices to access in each dimension.

A sub-tensor can be extracted from X with the method sub_tensor.
For a tensor X ∈ RN,...,N , the command X.eval_diag() returns the diagonal Xi,...,i,

i = 1, . . . , N , of the tensor. The method eval_diag can also be used to evaluate the
diagonal in some dimensions dims of the tensor with X.eval_diag(dims).

Reshaping a SparseTensor. The method reshape reshapes a SparseTensor using the
Fortran-like index order of numpy’s reshape function.

The methods transpose and itranspose permute the dimensions of a
tensor X, given a permutation dims of {1, . . . , d}. They are such that X =

X.transpose(dims).itranspose(dims).

Computing the Frobenius norm of a SparseTensor. The command X.norm() re-
turns the Frobenius norm of X.

Performing operations with SparseTensor. Some operations between tensors
are implemented for SparseTensor (see Section 1.6 for a detailed description of the
operations): the Kronecker product with kron, the contraction with matrices or vectors
with tensor_matrix_product or tensor_vector_product respectively, the evaluation of
the diagonal of a contraction with matrices with tensor_matrix_product_eval_diag,
the dot product with dot.

2.4 TreeBasedTensor and DimensionTree

We present in this section the DimensionTree and TreeBasedTensor objects. For examples
of use, see the tutorial file tutorials\tensor algebra\tutorial DimensionTree.py and
tutorials\tensor algebra\tutorial TreeBasedTensor.py.

2.4.1 DimensionTree

A dimension tree T is a collection of non-empty subsets of D = {1, . . . , d} which is such
that (i) all nodes α ∈ T are non-empty subsets of D, (ii) D is the root of T , (iii) every
node α ∈ T with #α ≥ 2 has at least two children and the set of children of α, denoted by
S(α), is a non-trivial partition of α, and (iv) every node α with #α = 1 has no child and
is called a leaf (see for example Figure 1).
We let depth(T) = maxα∈T level(α) be the depth of T , and L(T) be the set of leaves of T ,
which are such that S(α) = ∅ for all α ∈ L(T).

12

{1, 2, 3, 4}

{1} {2} {3} {4}

(a) A trivial tree.

{1, 2, 3, 4}

{1}

{2, 3, 4}

{2}

{3, 4}

{3} {4}

(b) A linear binary tree.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

(c) A balanced binary tree.

Figure 1: Examples of dimension partition trees over D = {1, . . . , 4}.

Creating a DimensionTree. A DimensionTree is characterized by its adjacency ma-
trix and the dimension associated with each leaf node: T = tensap.DimensionTree(dims,

adjacency_matrix). The adjacency matrix of a dimension tree T can be accessed with
T.adjacency_matrix. The dimension associated with each leaf node can be accessed with
T.dim2ind.

Denoting by order the number of leaf nodes, it is possible to create

• a trivial tree with tensap.DimensionTree.trivial(order) (Figure 1a),

• a linear tree with tensap.DimensionTree.linear(order) (Figure 1b),

• a balanced tree with tensap.DimensionTree.balanced(order)(Figure 1c),

• a random tree with tensap.DimensionTree.random(order, arity), with arity

the arity of the tree, equal to the maximum number of children per node (randomly
selected in an interval if provided).

Finally, a dimension tree can be created by extracting a sub-tree from an existing tree T
with T.sub_dimension_tree(root) where root is the node in T that will become the root
node of the extracted tree.

Displaying a DimensionTree. A DimensionTree can be displayed with the command
T.plot(). The dimension associated with each leaf node can be plotted on the tree with
T.plot_dims(). Finally, the tree can be plotted with some quantity displayed at each
node with T.plot_with_labels_at_nodes(labels).

Accessing properties of the tree. The number of nodes of a dimension tree T is given
by T.nb_nodes.

13

The parent of α, denoted by P (α), can be obtained with T.parent(alpha),
and its ascendants A(α) and descendants D(α) by T.ascendants(alpha) and
T.descendants(alpha), respectively. The children of α are given by T.children(alpha).
The command T.child_number(alpha) returns iγα, for α ∈ T \ {D} and γ = P (α), which
is such that α is the iγα-th child of γ. For instance, in the tree of Figure 1b, the node
α = {3, 4} is the second child of γ = {2, 3, 4}.

The level of a node α is denoted by level(α). The levels are defined such that level(D) =
0 and level(β) = level(α) + 1 for β ∈ S(α). The nodes of T with level l are returned by
T.nodes_with_level(l).

The leaf nodes α ∈ L(T) are such that T.is_leaf[alpha-1] is True.

2.4.2 TreeBasedTensor

Given a dimension tree T , a TreeBasedTensor X is a tensor in tree-based format (see [3, 6]).
It represents an order d tensor X ∈ RN1×···×Nd in the set of tensors with α-ranks bounded
by some integer rα, α ∈ T . Such a tensor admits a representation

Xi1,...,id =
∑

1≤kβ≤rβ
β∈T\{D}

∏
α∈T\L(T)

Cα(kβ)β∈S(α),kα

∏
α∈L(T)

Cαiα,kα ,

with Cα, α ∈ T , some tensors that parameterize the representation of X. When T is a
binary tree, the corresponding format is the so-called hierarchical Tucker (HT) format.
The particular case of a linear binary tree is the tensor train Tucker format.

The Tucker format corresponds to a trivial tree T = {{1}, . . . , {d}, {1, . . . , d}} and
admits the representation

Xi1,...,id =

r1∑
k1=1

. . .

rd∑
kd=1

C1,...,d
k1,...,kd

C1
i1,k1 . . . C

d
id,kd

.

A degenerate tree-based format is defined as the set of tensors with α-ranks bounded
by some integer rα, for all α in a subset A of T . The set A corresponds to active nodes,
which should contain all interior nodes T \L(T). A TreeBasedTensor X with active nodes
A admits a representation.

Xi1,...,id =
∑

1≤kβ≤rβ
β∈A\{D}

∏
α∈A\L(T)

Cα(kβ)β∈S(α),kα

∏
α∈L(T)∩A

Cαiα,kα ,

with Cα, α ∈ A, some tensors that parameterize the representation of X.
The tensor train format is a degenerate tree-based format with a linear tree T and all

leaf nodes inactive except the first one, that means A = {{1}, {1, 2}, . . . , {1, . . . , d}}. A

14

tensor X in tensor train format admits a representation

Xi1,...,id =

r1∑
k1=1

. . .

rd−1∑
kd−1=1

C1
1,i1,k1C

2
k1,i2,k2 . . . C

d−1
kd−2,id−1,kd−1

Cdkd−1,id,1

with tensor Cν and rank rν associated with the node α = {1, . . . , ν}.

For a more detailed presentation of tree-based formats (possibly degenerate) and more
examples, see [9, Section 4].

If the rank rD associated with the root node is different from 1, a TreeBasedTensor X

represents a tensor of order d + 1 with entries Xi1,...,id,kD , 1 ≤ kD ≤ rD. I can be used to
defined vector-valued functional tensors (see Section 3.7).

Creating a TreeBasedTensor.
A TreeBasedTensor is created with the command X = tensap.TreeBasedTensor(C,

T), with C the list of FullTensor objects representing the Cα, α ∈ T , and T a
DimensionTree. If some entries of the list C corresponding to leaf nodes are empty, it
creates a degenerate tensor format, with T \A corresponding to the empty entries of C.

It is possible to create a TreeBasedTensor in tensor-train format with the command
tensap.TreeBasedTensor.tensor_train(C), with C a list containing the tensors
C1, . . . , Cd.

Given a DimensionTree T, it is also possible to generate a TreeBasedTensor with
entries

• equal to 0 with tensap.TreeBasedTensor.zeros(T, r, s, I),

• equal to 1 with tensap.TreeBasedTensor.ones(T, r, s, I),

• drawn randomly according to the uniform distribution on [0, 1] with
tensap.TreeBasedTensor.rand(T, r, s, I),

• drawn randomly according to the standard gaussian distribution with
tensap.TreeBasedTensor.randn(T, r, s, I),

• generated using a provided generator with tensap.TreeBasedTensor.create

(generator, T, r, s, I),

where r is a list containing the α-ranks, α ∈ T , or ’random’, s is a list containing the
sizes N1, . . . , Nd, or ’random’, and I is a list of booleans indicating if the node α is active,
α ∈ T , or ’random’.

15

Storage complexity. The storage complexity of X is given by X.size = X.storage()

and returns the number of entries in tensors Cα, α ∈ A.
The storage complexity of X taking into account the sparsity in the Cα, α ∈ T , is given by
X.sparse_storage(). It returns the number of non-zero entries in tensors Cα, α ∈ A.
The storage complexity of X taking into account the sparsity only in the leaf nodes is given
by X.sparse_leaves_storage().

Displaying a TreeBasedTensor. A graphical representation of a TreeBasedTensor X

can be obtained with the command X.plot(). Labels can be added to the nodes of the
tree, as well as a title, with X.plot(labels, title).

Converting a TreeBasedTensor to a FullTensor. A TreeBasedTensor X can be
converted to a FullTensor (introduced in Section 1) with the command X.full().

Converting a FullTensor to a TreeBasedTensor. A FullTensor X can be converted
to a TreeBasedTensor with the command X.tree_based_tensor(). The associated di-
mension tree is a trivial tree with active nodes.

Accessing the entries of a TreeBasedTensor. The entries of the tensor X can be ac-
cessed with the method eval_at_indices: X.eval_at_indices(ind) returns the entries
of X indexed by the list ind containing the indices to access in each dimension.

A sub-tensor can be extracted from X with the method sub_tensor (see Section 1.2)
For a tensor X ∈ RN,...,N , the command X.eval_diag() returns the diagonal Xi,...,i,

i = 1, . . . , N , of the tensor. The method eval_diag can also be used to evaluate the
diagonal in some dimensions dims of the tensor with X.eval_diag(dims).

Obtaining an orthonormal representation of a TreeBasedTensor. The com-
mand X.orth() returns a representation of X where all the core tensors except the root
core represent orthonormal bases of principal subspaces.

The command X.orth_at_node(alpha) returns a representation of X where all the
core tensors except the one of node α represent orthonormal bases of principal subspaces.
The core tensor Cα of the node α is such that the tensor writes

Xiα,iαc =
∑
k

∑
l

Cαk,lul(iα)wk(iαc),

where the ul are orthonormal tensors and the wk are orthonormal tensors. This orthonor-
mality of the representation can be checked by computing the Gram matrices of the bases
of minimal subspaces associated with the nodes of the tree with X.gramians().

16

Modifying the tree structure of a TreeBasedTensor. It is possible to modify the
tree of a TreeBasedTensor X by permuting two of its nodes α and β given a relative
tolerance tol with X.permute_nodes([alpha, beta], tol).

The leaves of the tree can also be permuted with the command X.permute_leaves(perm,

tol), where perm is a permutation of (1, . . . , d).
The method optimize_dimension_tree tries random permutations of nodes to mini-

mize the storage complexity of a tree-based tensor X: X.optimize_dimension_tree(tol,
n) tries n random permutations and returns a TreeBasedTensor Y which is such that
Y.storage() is less or equal than X.storage(). The nodes to permute are drawn ac-
cording to probability measures favoring high decreases of the ranks while maintaining a
permutation cost as low as possible (see [5, Section 4.2.1]).

The similar method optimize_leaves_permutations focuses on the permutation of
the leaf nodes to try to reduce the storage complexity of a TreeBasedTensor.

Computing the Frobenius norm of a TreeBasedTensor. The command X.norm()

returns the Frobenius norm of X.

Computing the α-singular values of a TreeBasedTensor. For all α ∈ T , the α-
singular values of X can be obtained with X.singular_values().

The method rank uses the method singular_values to compute the α-ranks, α ∈ T ,
of a TreeBasedTensor.

Computing the derivative of TreeBasedTensor with respect to one of its parameters.
For an order-d tree-based tensor X in RN×···×N , X.parameter_gradient_eval_diag(alpha),
for α ∈ T , returns the derivative

∂Xi1,...,id

∂Cα

∣∣∣∣
i1=···=id=i

, i = 1, . . . , N.

The method parameter_gradient_eval_diag is used in the statistical learning algo-
rithms presented in Section 5.4.

Performing operations with TreeBasedTensor. Some operations between tensors
are implemented for TreeBasedTensor (see Section 1.6 for a detailed description of the
operations): the Kronecker product with kron, the contraction with matrices or vectors
with tensor_matrix_product or tensor_vector_product respectively, the evaluation of
the diagonal of a contraction with matrices with tensor_matrix_product_eval_diag, the
dot product with dot.

Z = X.tensor_matrix_product(M) tensor_vector_product tensor_matrix_product_eval_diag

X.kron(Y) X.dot(Y)

17

2.5 Tensor truncation with Truncator

The object Truncator embeds several methods of truncation of tensors in different formats.
Given a tolerance tol and a maximum rank or tuple of ranks r, a Truncator object can be
created with t = tensap.Truncator(tol, r). The thresholding type (’hard’ or ’soft’)
can also be specified as a third argument.

For examples of use, see the tutorial file tutorials\tensor algebra\tutorial tensor truncation.py.

Truncation. The generic method truncate calls one of the methods presented below,
based on the type and order of its input, to obtain a truncation of the provided tensor
satisfying the relative prevision and maximal rank requirements.

For an order 2 tensor, the method svd is called. For a tensor of order greater than 2,
the method hosvd is called for a FullTensor, and hsvd for a TreeBasedTensor.

Truncated singular value decomposition. The method svd computes the truncated
singular value decomposition of an order 2 tensor. The input tensor can be a
numpy.ndarray, a tensorflow.Tensor, a FullTensor or a CanonicalTensor, in which
case the method trunc_svd is called, or a TreeBasedTensor, in which case the method
hsvd is called.

The method trunc_svd computes the truncated singular value decomposition of a
matrix, with a given relative precision in Schatten p-norm (with a specified value for p)
and given maximal rank. The returned truncation is a CanonicalTensor.

Truncated higher-order singular value decomposition. A truncated higher-order
singular value decomposition of a numpy.ndarray, a FullTensor or a TreeBasedTensor

can be computed with the method hosvd. The output is either a CanonicalTensor for an
order 2 tensor, or a TreeBasedTensor with a trivial tree for a tensor of order greater than
2.

Truncation in tree-based tensor format. The method hsvd computes, given a
TreeBasedTensor or a FullTensor with a tree and a set of active nodes, a truncation in
tree-based tensor format.

Truncation in tensor train format. The method ttsvd, given a FullTensor, calls
the method hsvd with a linear tree and all the leaf nodes inactive except the first one,
resulting in a truncation in tensor-train format.

18

3 Measures, bases and functions

3.1 RandomVariable

A random variable X can be created by calling its name: for instance, X =

tensap.UniformRandomVariable(a, b) creates a random variable with a uniform
distribution on the interval [a, b]. The random variables currently implemented in tensap
are:

• tensap.DiscreteRandomVariable(v, p): a random variable with discrete values v
and associated probabilities p,

• tensap.UniformRandomVariable(a, b): a uniform random variable on [a, b],

• tensap.NormalRandomVariable(m, s): a normal random variable with mean m and
standard deviation s,

• tensap.EmpiricalRandomVariable(S): a random variable created from a sample S
using kernel density estimation with Scott’s rule of thumb to determine the band-
width.

A new random variable can easily be implemented in tensap by making its class inheriting
from RandomVariable and implementing the few methods necessary for its creation.

Once a random variable X is created, one can for instance generate n random numbers
according to its distribution with X.random(n), create the orthonormal polynomials asso-
ciated with its measure with X.orthonormal_polynomials() (as presented in Section 3.3),
or evaluate its probability density function (X.pdf(x)), cumulative distribution function
(X.cdf(x)) or inverse cumulative distribution function (X.icdf(x)).

3.2 RandomVector

A random vector X if defined in tensap by a list of RandomVariable objects and a Copula,
characterizing the dependencies between the random variables. Currently, only the inde-
pendent copula IndependentCopula is implemented.

Given a list of RandomVariable random_variables and a Copula C, a random vector
can be created with X = tensap.RandomVector(random_variables, copula=C).

Once a random vector X is created, one can for instance generate n random numbers
according to its distribution with X.random(n), create the orthonormal polynomials asso-
ciated with its measure with X.orthonormal_polynomials() (as presented in Section 3.3),
or evaluate its probability density function (X.pdf(x)) or cumulative distribution function
(X.cdf(x)).

19

3.3 Polynomials

Families of univariate polynomials (pi)i≥0 are represented in tensap with classes
inheriting from UnivariatePolynomials. The i-th polynomial pi represented by
a UnivariatePolynomials object P can be evaluated with P.polyval(x, i), as
well as its first order derivative (P.d_polyval(x, i)) and its n-th order derivative
(P.dn_polyval(x, n, i)).

Given a measure µ, the moments
∫
pi1(x)...pik(x)dµ(x) for (i1, ..., ik) ∈ Nk can be

obtained with P.moment(I, mu), with I a n-by-k array representing n tuples (i1, ..., ik).
P.moment(I, X) with X a random variable considers for µ the probability distribution of
X.

CanonicalPolynomials. The family of canonical polynomials is implemented in the class
CanonicalPolynomials. It is such that its i-th polynomial is pi(x) = xi.

OrthonormalPolynomials. Orthonormal polynomials are families of polynomials (pi)i≥0

that satisfy ∫
pi(x)pj(x)dµ(x) = δij

with δij the Kronecker delta, and with µ some measure.
In tensap, the orthonormal polynomials pi, i ≥ 0, are defined using the three-term

recurrence relation

p̃−1(x) = 0, p̃0(x) = 1,

p̃i+1(x) = (x− ai)p̃i(x)− bip̃i−1(x), i ≥ 0,

pi(x) =
p̃i(x)

ni
, i ≥ 0

with ai and bi the recurrence coefficients, and ni the norm of p̃i, defined by

ai =

∫
p̃i(x)xp̃i(x)dµ(x)∫
pi(x)p̃i(x)dµ(x)

, bi =
p̃i(x)p̃i(x)dµ(x)∫
p̃i−1(x)p̃i−1(x)dµ(x)

, ni =

√∫
p̃i(x)p̃i(x)dµ(x).

Implementing a new family of orthonormal polynomials in tensap is easy: one only needs
to create a class with a method providing the recurrence coefficients ai, bi and the norms
ni, ∀i ≥ 0.

Are currently implemented in tensap:

• DiscretePolynomials: discrete polynomials orthonormal with respect to the mea-
sure of a DiscreteRandomVariable;

20

• LegendrePolynomials: polynomials defined on [−1, 1] and orthonormal with respect
to the uniform measure on [−1, 1] with density 1

21[−1,1](x);

• HermitePolynomials: polynomials defined on R and orthonormal with respect to
the standard gaussian measure with density exp(−x2/2)/

√
2π;

• EmpiricalPolynomials: polynomials orthonormal with respect to the measure of an
EmpiricalRandomVariable.

If mu is a LebesgueMeasure on [−1, 1], mu.orthonormal_polynomials() re-
turns a LegendrePolynomials with suitably normalized coefficients. If mu is a
LebesgueMeasure on [a, b] different from [−1, 1], mu.orthonormal_polynomials()

returns a ShiftedOrthonormalPolynomials.

If X is a DiscreteRandomVariable, a UniformRandomVariable, a NormalRandomVariable,
or a EmpiricalRandomVariable, the corresponding family of orthonormal polynomials can
be created with the command X.orthonormal_polynomials(). If X does not correspond to
a default measure but can be obtained as the push-forward measure of a default measure
by an affine transformation (e.g. a uniform measure on [a, b] 6= [−1, 1], or a gaussian
measure with mean a and standard deviation σ with (a, σ) 6= (0, 1).), the returned object
is a ShiftedOrthonormalPolynomials.

3.4 FunctionalBasis

Bases of functions can be implemented in tensap by inheriting from FunctionalBasis.
The basis functions of a FunctionalBasis object H can be evaluated with H.eval(x), as
well as their i-th order derivative with H.eval_derivative(i, x).

We present below some specific bases implemented in tensap. New bases can easily be
implemented by making their class inherit from FunctionalBasis.

PolynomialFunctionalBasis. The command tensap.PolynomialFunctionalBasis

(basis, indices), with basis a UnivariatePolynomials and indices a list, returns
the basis of polynomials (pi)i∈I with I given by indices.

UserDefinedFunctionalBasis. Given a list of functions fun, taking each as inputs d
variables, and a Measure mu, the command tensap.UserDefinedFunctionalBases(fun,

mu, d) returns a basis whose functions are the ones given in fun, with a domain equipped
with the measure mu.

21

FullTensorProductFunctionalBasis. A FullTensorProductFunctionalBasis object
represents a basis of multivariate functions {φ1

i1
(x1) · · ·φdid(xd)}i1∈I1,...,id∈Id . It is obtained

with the command tensap.FullTensorProductFunctionalBasis(bases), where bases is
a list of FunctionalBasis or a FunctionalBases, containing the different bases {φνiν}iν∈Iν ,
ν = 1, . . . , d.

SparseTensorProductFunctionalBasis. A SparseTensorProductFunctionalBasis

object represents a basis of multivariate functions {φ1
i1

(x1) · · ·φdid(xd)}(i1,...,id)∈Λ,

with Λ ⊂ I1 × · · · × Id a set of multi-indices. It is obtained with the command
tensap.SparseTensorProductFunctionalBasis(bases, indices), where bases is a
list of FunctionalBasis or a FunctionalBases, containing the different bases {φνiν}iν∈Iν ,
ν = 1, . . . , d, and indices is a MultiIndices representing the set of multi-indices Λ.

3.5 FunctionalBases

The command tensap.FunctionalBases(bases), with bases a list of FunctionalBasis,
returns an object representing a collections of bases. To obtain a collection of d identical
bases, one can use tensap.FunctionalBases.duplicate(basis, d).

Similarly to FunctionalBasis, the basis functions of a FunctionalBases object
H can be evaluated with H.eval(x), as well as their i-th order derivative with
H.eval_derivative(i, x).

3.6 FunctionalBasisArray

Given a basis of functions {φi}i∈I , a FunctionalBasisArray object represents a function
f that writes

f(x) =
∑
i∈I

aiφi(x),

with some coefficients ai, i ∈ I, and can be created with the command f =

tensap.FunctionalBasisArray(a, basis, shape), with shape the output shape of f .
A FunctionalBasisArray is a Function. It can be evaluated with the command

f.eval(x), and one can obtain its derivatives with f.eval_derivative(n, x).

3.7 FunctionalTensor

Given d bases of functions {φνiν}iν∈Iν , ν = 1, . . . , d, and a tensor a ∈ RI1×···×Id , a
FunctionalTensor object represents a function f that writes

f(x) =
∑
i1∈I1

· · ·
∑
id∈Id

ai1,...,idφ
1
i1(x1) · · ·φdid(xd).

The tensor a can be in different tensor formats (FullTensor, TreeBasedTensor, ...).

22

A FunctionalTensor is a Function. It can be evaluated with the command f.eval(x),
and one can obtain its derivatives with f.eval_derivative(n, x).

3.8 Tensorizer and TensorizedFunction

For an introduction to tensorization of functions, see [1, 2].

We consider functions defined on the interval I = [0, 1). For a given b ∈ {2, 3, . . . , }
and d ∈ N, an element x ∈ I can be identified with the tuple (i1, . . . , id, y), such that

x = tb,d(i1, . . . , id, y) =
d∑

k=1

ikb
−k + b−dy (2)

with ik ∈ Ib = {0, . . . , b − 1}, k = 1, . . . , d, and y = bdx − bbdxc ∈ [0, 1). The tuple
(i1, . . . , id) is the representation in base b of bbdxc. This defines a bijective map tb,d from
{0, . . . , b− 1}d × [0, 1) to [0, 1).

Such a mapping is represented in tensap by the object Tensorizer: t =

tensap.Tensorizer(b, d). For a given x in [0, 1), on obtains the corresponding tuple
(i1, ..., id, y) with the command = t.map(x). For a given tuple (i1, ..., id, y), on obtains
the corresponding x with t.inverse_map([i_1, ..., i_d,y]).

This identification is generalized to functions of D variables with t =

tensap.Tensorizer(b, d, D).
The map tb,d allows to define a tensorization map Tb,d, which associates to a univariate

function F defined on [0, 1) the multivariate function f = F ◦ tb,d defined on Idb × I, such
that

f(i1, . . . , id, y) = F (tb,d(i1, . . . , id, y)).

Such a function is represented in tensap by a TensorizedFunction, and can be created
with f = tensap.TensorizedFunction(fun, t), with fun a function or Function and
t a Tensorizer. The TensorizedFunction f is a function of d + 1 variables that can be
evaluated with f.eval(x), with x a list or numpy.ndarray with d+ 1 columns.

See the tutorial file tutorials\functions\tutorial TensorizedFunction.py.

4 Tools

4.1 MultiIndices

A multi-index is a tuple (i1, . . . , id) ∈ Nd0. A set I ⊂ Nd0 of multi-indices is represented with
an object MultiIndices.

To create a multi-index set I, we use the command tensap.MultiIndices(I) with I

a numpy array of size #I × d.

23

A product set I = I1×. . .×Id can be obtained with tensap.MultiIndices.product_set([I1,...,Id]).
The set of multi-indices

I = {i ∈ Nd0 : ‖i‖`p ≤ m}

can be obtained with tensap.MultiIndices.with_bounded_norm(d, p, m)

The set of multi-indices

I = {i ∈ Nd0 : iν ≤ mν , 1 ≤ ν ≤ d}

can be obtained with tensap.MultiIndices.bounded_by(d, p, m). If m is of length 1,
it uses mν = m for all ν.

For obtaining the margin or reduced margin of an multi-index set I, we can use
For other operations of MultiIndices, see the tutorial file tutorials\tools\tutorial MultiIndices.py.

4.2 TensorGrid, FullTensorGrid and SparseTensorGrid

Tensor product grids or sparse grids are represented with classes FullTensorGrid and
SparseTensorGrid, that inherit from TensorGrid.

See the tutorial file tutorials\functions\tutorial functions bases grids.py.

5 Learning

We present in this section some objects implemented in tensap for learning functions or
tensors.

5.1 (Functional)TensorPrincipalComponentAnalysis

The objects TensorPrincipalComponentAnalysis (resp. FunctionalTensorPrincipalComponentAnalysis)
implements approximation methods for algebraic (resp. functional) tensors based on princi-
pal component analysis, using an adaptive sampling of the entries of the tensor (or the func-
tion). See [9] for a description of the algorithms, and for examples of use, see the tutorial
files tutorials\approximation\tutorial TensorPrincipalComponentAnalysis.py and
tutorials\approximation\tutorial FunctionalTensorPrincipalComponentAnalysis.py.

The difference between the two objects if that TensorPrincipalComponentAnalysis’
methods take as first input a function returning components of the algebraic tensor to
learn, whereas the methods of FunctionalTensorPrincipalComponentAnalysis take as
first input the functional tensor to learn.

Both objects are parameterized by the attributes:

24

• pca_sampling_factor: a factor to determine the number of samples N for the esti-
mation of the principal components (1 by default): if the precision is prescribed, N =
pca_sampling_factor×Nα, if the rank is prescribed, N = pca_sampling_factor×
t;

• pca_adaptive_sampling: a boolean indicating if adaptive sampling is used to de-
termine the principal components with prescribed precision;

• tol: an array containing the prescribed relative precision; set tol = inf for pre-
scribing the rank;

• max_rank: an array containing the maximum alpha-ranks (the length depends on the
format). If len(max_rank) == 1, uses the same value for all alpha; setting max_rank

= inf prescribes the precision.

Furthermore, a FunctionalTensorPrincipalComponentAnalysis is parameterized by the
attributes:

• bases: the functional bases used for the projection of the function;

• grid: the FullTensorGrid used for the projection of the function on the functional
bases;

• projection_type: the type of projection, the default being ’interpolation’.

Both objects implement four main methods:

• hopca: returns the set of {ν}-principal components of an order d tensor, for all
ν ∈ {1, . . . , d};

• tucker_approximation: returns an approximation of a tensor of order d or a function
of d variables in Tucker format;

• tree_based_approximation: provided with a tree and a list of active nodes, returns
an approximation of a tensor of order d or a function of d variables in tree-based
tensor format;

• tt_approximation: returns an approximation of a tensor of order d or a function of
d variables in tensor-train format.

5.2 LossFunction

In tensap, a loss function is an object inheriting from LossFunction. Given a function
fun and a sample as a list used to evaluate the loss function, a LossFunction object ` can
be evaluated with l.eval(fun, sample). The risk associated with fun can be evaluated

25

using the sample with l.risk_estimation(fun, sample). Finally, the test error and
relative test error (if defined) can be evaluated with l.test_error(fun, sample) and
l.relative_test_error(fun, sample), respectively.

Currently, three loss functions are implemented in tensap:

• SquareLossFunction: `(g, (x, y)) = (y − g(x))2, used for least-squares regression
in supervised learning, to construct an approximation of a random variable Y as a
function of a random vector X (a predictive model);

• DensityL2LossFunction: `(g, x) = ‖g‖2 − 2g(x), used for least-squares density es-
timation, to approximate the distribution of a random variable X from samples of
X;

• CustomLossFunction: defined by the user as any function defining a loss. If
the loss is defined using tensorflow operations, then the empirical risk can
be minimized using tensorflow’s automatic differentiation capability with a
LinearModelLearningCustomLoss object, presented in the next section.

5.3 LinearModelLearning

Objects inheriting from LinearModelLearning implement the empirical risk minimization
associated with a linear model that writes

g(x) =
∑
i∈I

aiφi(x),

with {φi}i∈I a given basis (or a set of features) and (ai)i∈I some coefficients, and a loss
function, introduced in the previous section.

In order to perform empirical risk minimization, a LinearModelLearning object s must
be provided with a training sample in s.training_sample. In supervised learning, for the
approximation of a random variable Y as a function of X, the training sample is a list [x,
y], with y represents n samples {yk}nk=1 of Y and x the n corresponding samples {xk}nk=1

of X. In density estimation, the training sample is an array x containing samples {xk}nk=1

from the distribution to estimate.
One must also provide a basis (in s.basis) or evaluations of the basis on the training

set (in s.basis_eval, in which case the x are not mandatory in s.training_sample).
The latter option allows for providing features φi(xk) associated with samples xk, without
providing the feature maps φi.

One can also provide the LinearModelLearning s with a test sample in s.test_data

to compute a test error.

Currently in tensap, three different LinearModelLearning objects are implemented:

26

• LinearModelLearningSquareLoss, to minimize the risk associated with a
SquareLossFunction;

• LinearModelLearningDensityL2, to minimize the risk associated with a
DensityL2LossFunction;

• LinearModelLearningCustomLoss, to minimize the risk associated with a
CustomLossFunction.

LinearModelLearningSquareLoss. A LinearModelLearningSquareLoss object s

implements three ways of solving the empirical risk minimization associated with a
SquareLossFunction:

• by default, s.solve() solves the ordinary least-squares problem

min
(ai)i∈I

1

n

n∑
k=1

(yk −
∑
i∈I

aiφi(xk))
2;

• with the attribute s.regularization = True, s.solve() solves the regularized
problem

min
(ai)i∈I

1

n

n∑
k=1

(yk −
∑
i∈I

aiφi(xk))
2 + λ‖a‖p

with λ a regularization hyper-parameter, selected with a cross-validation estimate of
the error and p specified by s.regularization_type which can be ’l0’ (p = 0),
’l1’ (p = 1) or ’l2’ (p = 2);

• let us suppose that we have a collection of candidate sparsity patterns Kλ, λ ∈ Λ,
for the parameter a: with the attribute s.basis_adaptation = True, s.solve()
solves, for all λ ∈ Λ, the problem

min
(ai)i∈I

1

n

n∑
k=1

(yk −
∑
i∈I

aiφi(xk))
2 subject to support(a) ⊂ Kλ,

where support(a) = {k ∈ K : ak 6= 0}, and selects the optimal sparsity pattern using
a cross-validation estimate of the error.

LinearModelLearningDensityL2. A LinearModelLearningDensityL2 object s

implements three ways of solving the empirical risk minimization associated with a
DensityL2LossFunction:

27

• by default, s.solve() solves the minimization problem

min
(ai)i∈I

‖
∑
i∈I

aiφi‖2L2 −
2

n

n∑
k=1

∑
i∈I

aiφi(xk);

• with the attribute s.regularization = True, s.solve() solves the constrained
problem

min
(ai)i∈I

‖
∑
i∈I

aiφi‖2L2 −
2

n

n∑
k=1

∑
i∈I

aiφi(xk) subject to support(a) ⊂ Kλ,

with Kλ, λ ∈ Λ, a sequence of sets of indices that introduce the coefficients solution
of the minimization problem without regularization in decreasing order of magnitude.
The optimal sparsity pattern is determined using a cross-validation estimate of the
error;

• let us suppose that we have a collection of candidate patterns Kλ, λ ∈ Λ, for the
parameter a: with the attribute s.basis_adaptation = True, s.solve() solves,
for all λ ∈ Λ, the problem

min
(ai)i∈I

‖
∑
i∈I

aiφi‖2 −
2

n

n∑
k=1

∑
i∈I

aiφi(xk) subject to support(a) ⊂ Kλ,

and selects the optimal sparsity pattern using a cross-validation estimate of the error.

LinearModelLearningCustomLoss. A LinearModelLearningCustomLoss object
s implements a way of solving the empirical risk minimization associated with a
CustomLossFunction using tensorflow’s automatic differentiation capabilities.

By default, the optimizer used is keras’ Adam algorithm, which is a “stochastic gra-
dient descent method that is based on adaptive estimation of first-order and second-order
moments” (per tensorflow’s documentation).

The algorithm requires a starting point, provided in s.initial_guess, and several
options can be set:

• s.options[’max_iter’] sets the maximum number of iterations used in the opti-
mization algorithm,

• s.options[’stagnation’] sets the stopping tolerance on the stagnation between
two iterates,

• for the Adam algorithm (and other minimization algorithms provided by tensor-
flow/keras), the learning rate can be provided in s.optimizer.learning_rate.

28

5.4 TensorLearning

The package tensap implements algorithms to perform statistical learning with canonical
and tree-based tensor formats. See [4, 5, 7] for a detailed presentation of algorithms and
related theory.

For examples, see the tutorial files tutorials\approximation\tutorial tensor learning CanonicalTensorLearning.py,
tutorials\approximation\tutorial tensor learning TreeBasedTensorLearning.py,
tutorials\approximation\tutorial tensor learning TreeBasedTensorDensityLearning.py,
tutorials\approximation\tutorial tensor learning tensorized function learning.py.

These algorithms are implemented in the core object TensorLearning, common to all
the tensor formats, so that implementing such a learning algorithm for a new tensor format
is simple. In tensap are currently implemented CanonicalTensorLearning for the learning
in canonical tensor format and TreeBasedTensorLearning for the learning in tree-based
tensor format.

Two algorithms are proposed: the standard one, which minimizes an empirical risk
over the set of tensors in a given format thanks to an alternating minimization over the
parameters of the tensors, and the adaptive one, which returns a sequence of empirical
risk minimizers with adapted rank (for the canonical and tree-based tensor formats) and
adapted tree (for the tree-based tensor format).

In order to perform empirical risk minimization, a TensorLearning object s must be
provided with a training sample in s.training_sample. In supervised learning, for the
approximation of a random variable Y as a function of X, the training sample is a list
[x, y], with y represents n samples {yk}nk=1 of Y and x the n corresponding samples
{xk = (xk,1, . . . , xk,d)}nk=1 of X. In density estimation, the training sample is an array x

containing samples {xk = (xk,1, . . . , xk,d)}nk=1 from the distribution to estimate.
One must also provide bases (in s.bases) or evaluations of the bases on the training set

(in s.bases_eval, in which case the x are not mandatory in s.training_sample). The
latter option allows for providing features φνi (xν,k), 1 ≤ ν ≤ d, associated with samples
xk = (xk,1, . . . , xk,d), without providing the feature maps φνi .

One can also provide the TensorLearning s with a test sample in s.test_data to
compute a test error.

Rank adaptation. (See [4, Section 4.1]) The rank adaptation is enabled by setting
s.rank_adaptation to True.

For tensors in canonical format, the algorithm returns a sequence of rank-r
approximations, with r = 1, . . . , rmax, rmax being given by s.rank_adaptation_options

[’max_iterations’].
For tensors in tree-based format, the algorithm returns a sequence of tensors with non-

decreasing tree-based rank, obtained by increasing, at each iterations, the ranks associated
with a subset of nodes of the tree T . The number of nodes in this subset is influenced by a
parameter s.rank_adaptation_options[’theta’] in [0, 1], which is such that the larger

29

it is, the more ranks are increased at each iteration. The default value of 0.8.

Tree adaptation. (See [4, Section 4.2]) For tree-based tensor formats, the tree can
be adapted at each iteration using the algorithm mentioned in Section 2.4, by setting
s.tree_adaptation to True. The tolerance for the tree adaptation is provided by
s.tree_adaptation_options[’tolerance’] and the maximal number of tried trees by
s.tree_adaptation_options[’max_iterations’].

Model selection. (See [7]) At the end of the adaptive procedure, a model can be se-
lected by setting s.model_selection to True, using either a test error (specified by
s.model_selection_options[’type’] = ’test_error’) or a cross-validation estimate
of the error (specified by s.model_selection_options[’type’] = ’cv_error’).

5.5 Example: character classification in tree-based tensor format.

We present below a part of the tutorial file tutorial\tensor\learning\digits\recognition.py
shipped with the package tensap. Its aim is to create a classifier in tree-based tensor
format, able to recognize hand written digits from 0 to 9.

The output of the algorithm is displayed below the Python script, as well as in Figure
2, which shows the confusion matrix on the test sample as well as a visual comparison on
some test samples. We see that, using a training sample of size 1617, it returns a classifier
that obtains a score of 98.89% of correct classification on a test sample of size 180.

Tutorial file tutorial tensor learning digits recognition.py

1 from sklearn import datasets , metrics

2 import random

3 import numpy as np

4 import tensorflow as tf

5 import time

6 import matplotlib.pyplot as plt

7 import tensap

8
9 # %% Data import and preparation

10 DIGITS = datasets.load_digits ()

11 DATA = DIGITS.images.reshape ((len(DIGITS.images), -1))

12 DATA = DATA / np.max(DATA) # Scaling of the data

13
14 # %% Patch reshape of the data: the patches are consecutive entries

↪→ of the data

15 PS = [4, 4] # Patch size

16 DATA = np.array([np.concatenate(

17 [np.ravel(np.reshape(DATA[k, :], [8]*2)[PS[0]*i:PS[0]*i+PS[0],

30

18 PS[1]*j:PS[1]*j+PS [1]])

↪→ for

19 i in range(int(8/PS[0])) for j in range(int(8/PS[1]))]) for

20 k in range(DATA.shape [0])])

21 DIM = int(int(DATA.shape [1]/np.prod(PS)))

22
23 # %% Probability measure

24 print(’Dimension %i’ % DIM)

25 X = tensap.RandomVector(tensap.DiscreteRandomVariable(np.unique(DATA

↪→)), DIM)

26
27 # %% Training and test samples

28 P_TRAIN = 0.9 # Proportion of the sample used for the training

29
30 N = DATA.shape [0]

31 TRAIN = random.sample(range(N), int(np.round(P_TRAIN*N)))

32 TEST = np.setdiff1d(range(N), TRAIN)

33 X_TRAIN = DATA[TRAIN , :]

34 X_TEST = DATA[TEST , :]

35 Y_TRAIN = DIGITS.target[TRAIN]

36 Y_TEST = DIGITS.target[TEST]

37
38 # One hot encoding (vector -valued function)

39 Y_TRAIN = tf.one_hot(Y_TRAIN.astype(int), 10, dtype=tf.float64)

40 Y_TEST = tf.one_hot(Y_TEST.astype(int), 10, dtype=tf.float64)

41
42 # %% Approximation bases: 1, cos and sin for each pixel of the patch

43 FUN = [lambda x: np.ones((np.shape(x)[0], 1))]

44 for i in range(np.prod(PS)):

45 FUN.append(lambda x, j=i: np.cos(np.pi / 2*x[:, j]))

46 FUN.append(lambda x, j=i: np.sin(np.pi / 2*x[:, j]))

47
48 BASES = [tensap.UserDefinedFunctionalBasis(FUN , X.random_variables

↪→ [0],

49 np.prod(PS)) for _ in

↪→ range(DIM)]

50 BASES = tensap.FunctionalBases(BASES)

51
52 # %% Loss function: cross -entropy custom loss function

53 LOSS = tensap.CustomLossFunction(

54 lambda y_true , y_pred: tf.nn.

↪→ sigmoid_cross_entropy_with_logits(

55 logits=y_pred , labels=y_true))

56
57
58 def error_function(y_pred , sample):

31

59 ’’’

60 Return the error associated with a set of predictions using a

↪→ sample , equal

61 to the number of misclassifications divided by the number of

↪→ samples.

62
63 Parameters

64 ----------

65 y_pred : numpy.ndarray

66 The predictions.

67 sample : list

68 The sample used to compute the error. sample [0] contains the

↪→ inputs ,

69 and sample [1] the corresponding outputs.

70
71 Returns

72 -------

73 int

74 The error.

75
76 ’’’

77 try:

78 y_pred = y_pred(sample [0])

79 except Exception:

80 pass

81 return np.count_nonzero(np.argmax(y_pred , 1) - np.argmax(sample

↪→ [1], 1)) / \

82 sample [1].numpy().shape [0]

83
84
85 LOSS.error_function = error_function

86
87 # %% Learning in tree-based tensor format

88 TREE = tensap.DimensionTree.balanced(DIM)

89 IS_ACTIVE_NODE = np.full(TREE.nb_nodes , True)

90 SOLVER = tensap.TreeBasedTensorLearning(TREE , IS_ACTIVE_NODE , LOSS)

91
92 SOLVER.tolerance[’on_stagnation ’] = 1e-10

93 SOLVER.initialization_type = ’random ’

94 SOLVER.bases = BASES

95 SOLVER.training_data = [X_TRAIN , Y_TRAIN]

96 SOLVER.test_error = True

97 SOLVER.test_data = [X_TEST , Y_TEST]

98
99 SOLVER.rank_adaptation = True

100 SOLVER.rank_adaptation_options[’max_iterations ’] = 15

32

101 SOLVER.model_selection = True

102 SOLVER.display = True

103
104 SOLVER.alternating_minimization_parameters[’display ’] = False

105 SOLVER.alternating_minimization_parameters[’max_iterations ’] = 10

106 SOLVER.alternating_minimization_parameters[’stagnation ’] = 1e-10

107
108 # Options dedicated to the LinearModelCustomLoss object

109 SOLVER.linear_model_learning.options[’max_iterations ’] = 10

110 SOLVER.linear_model_learning.options[’stagnation ’] = 1e-10

111 SOLVER.linear_model_learning.optimizer.learning_rate = 1e3

112
113 SOLVER.rank_adaptation_options[’early_stopping ’] = True

114 SOLVER.rank_adaptation_options[’early_stopping_factor ’] = 10

115
116 T0 = time.time()

117 F, OUTPUT = SOLVER.solve()

118 T1 = time.time()

119 print(T1-T0)

120
121 # %% Display of the results

122 F_X_TEST = np.argmax(F(X_TEST), 1)

123 Y_TEST_NP = np.argmax(Y_TEST.numpy (), 1)

124
125 print(’\nAccuracy = %2.5e\n’ % (1 - np.count_nonzero(F_X_TEST -

↪→ Y_TEST_NP) /

126 Y_TEST_NP.shape [0]))

127
128 IMAGES_AND_PREDICTIONS = list(zip(DIGITS.images[TEST], F_X_TEST))

129 for i in np.arange(1, 19):

130 plt.subplot(3, 6, i)

131 plt.imshow(IMAGES_AND_PREDICTIONS[i][0],

132 cmap=plt.cm.gray_r , interpolation=’nearest ’)

133 plt.axis(’off’)

134 plt.title(’Pred.: %i’ % IMAGES_AND_PREDICTIONS[i][1])

135
136 print(’Classification report :\n%s\n’

137 % (metrics.classification_report(Y_TEST_NP , F_X_TEST)))

138 MATRIX = metrics.confusion_matrix(Y_TEST_NP , F_X_TEST)

139 plt.matshow(MATRIX)

140 plt.title(’Confusion Matrix ’)

141 plt.show()

142 print(’Confusion matrix :\n%s’ % MATRIX)

Output of the algorithm

33

1 Dimension 4

2
3 The implemented learning algorithms are designed for orthonormal

↪→ bases. These algorithms work with non-orthonormal bases , but

↪→ without some guarantees on their results.

4
5
6 Rank adaptation , iteration 0:

7 Enriched nodes: []

8 Ranks = [10, 1, 1, 1, 1, 1, 1]

9 Storage complexity = 144

10 Test error = 9.38889e-01

11
12 Rank adaptation , iteration 1:

13 Enriched nodes: [2, 4, 3, 5, 6, 7]

14 Ranks = [10, 2, 2, 2, 2, 2, 2]

15 Storage complexity = 320

16 Test error = 8.44444e-01

17
18 Rank adaptation , iteration 2:

19 Enriched nodes: [2, 3, 4, 5, 7]

20 Ranks = [10, 3, 3, 3, 3, 2, 3]

21 Storage complexity = 498

22 Test error = 7.00000e-01

23
24 Rank adaptation , iteration 3:

25 Enriched nodes: [2, 3, 4, 6, 7]

26 Ranks = [10, 4, 4, 4, 3, 3, 4]

27 Storage complexity = 718

28 Test error = 5.61111e-01

29
30 Rank adaptation , iteration 4:

31 Enriched nodes: [2, 5, 3]

32 Ranks = [10, 5, 5, 4, 4, 3, 4]

33 Storage complexity = 885

34 Test error = 1.22222e-01

35
36 Rank adaptation , iteration 5:

37 Enriched nodes: [2, 3, 4, 5, 6, 7]

38 Ranks = [10, 6, 6, 5, 5, 4, 5]

39 Storage complexity = 1257

40 Test error = 5.55556e-02

41
42 Rank adaptation , iteration 6:

43 Enriched nodes: [2, 3, 5, 6]

44 Ranks = [10, 7, 7, 5, 6, 5, 5]

34

45 Storage complexity = 1568

46 Test error = 2.22222e-02

47
48 Rank adaptation , iteration 7:

49 Enriched nodes: [2, 3]

50 Ranks = [10, 8, 8, 5, 6, 5, 5]

51 Storage complexity = 1773

52 Test error = 3.33333e-02

53
54 Rank adaptation , iteration 8:

55 Enriched nodes: [3, 7, 2, 6]

56 Ranks = [10, 9, 9, 5, 6, 6, 6]

57 Storage complexity = 2163

58 Test error = 2.22222e-02

59
60 Rank adaptation , iteration 9:

61 Enriched nodes: [4, 5]

62 Ranks = [10, 9, 9, 6, 7, 6, 6]

63 Storage complexity = 2337

64 Test error = 2.22222e-02

65
66 Rank adaptation , iteration 10:

67 Enriched nodes: [3, 4, 2, 6]

68 Ranks = [10, 10, 10, 7, 7, 7, 6]

69 Storage complexity = 2801

70 Test error = 1.66667e-02

71
72 Rank adaptation , iteration 11:

73 Enriched nodes: [2, 3, 5]

74 Ranks = [10, 11, 11, 7, 8, 7, 6]

75 Storage complexity = 3212

76 Test error = 2.22222e-02

77
78 Rank adaptation , iteration 12:

79 Enriched nodes: [2, 4, 6, 7, 3]

80 Ranks = [10, 12, 12, 8, 8, 8, 7]

81 Storage complexity = 3903

82 Test error = 1.66667e-02

83
84 Rank adaptation , iteration 13:

85 Enriched nodes: [2, 3, 4, 6, 7]

86 Ranks = [10, 13, 13, 9, 8, 9, 8]

87 Storage complexity = 4684

88 Test error = 1.66667e-02

89
90 Rank adaptation , iteration 14:

35

91 Enriched nodes: [5]

92 Ranks = [10, 13, 13, 9, 9, 9, 8]

93 Storage complexity = 4834

94 Test error = 1.11111e-02

95
96 Model selection using the test error: model #14 selected

97 Ranks = [10, 13, 13, 9, 9, 9, 8], test error = 1.11111e-02

98 615.6790609359741

99
100 Accuracy = 9.88889e-01

101
102 Classification report:

103 precision recall f1-score support

104
105 0 1.00 1.00 1.00 23

106 1 1.00 0.96 0.98 23

107 2 1.00 1.00 1.00 19

108 3 1.00 1.00 1.00 18

109 4 1.00 1.00 1.00 22

110 5 0.93 1.00 0.96 13

111 6 1.00 0.94 0.97 17

112 7 1.00 1.00 1.00 15

113 8 0.95 1.00 0.97 18

114 9 1.00 1.00 1.00 12

115
116 accuracy 0.99 180

117 macro avg 0.99 0.99 0.99 180

118 weighted avg 0.99 0.99 0.99 180

119
120
121 Confusion matrix:

122 [[23 0 0 0 0 0 0 0 0 0]

123 [0 22 0 0 0 0 0 0 1 0]

124 [0 0 19 0 0 0 0 0 0 0]

125 [0 0 0 18 0 0 0 0 0 0]

126 [0 0 0 0 22 0 0 0 0 0]

127 [0 0 0 0 0 13 0 0 0 0]

128 [0 0 0 0 0 1 16 0 0 0]

129 [0 0 0 0 0 0 0 15 0 0]

130 [0 0 0 0 0 0 0 0 18 0]

131 [0 0 0 0 0 0 0 0 0 12]]

36

(a) Confusion matrix on the test sam-
ple.

(b) Comparison on some test samples: the prediction as-
sociated with each test sample image is displayed on top.

Figure 2: Obtained results for the classification tutorial.

References

[1] M. Ali and A. Nouy. Approximation with tensor networks. part I: Approximation
spaces. ArXiv, abs/2007.00118, 2020.

[2] M. Ali and A. Nouy. Approximation with tensor networks. part II: Approximation
rates for smoothness classes. ArXiv, abs/2007.00128, 2020.

[3] A. Falcó, W. Hackbusch, and A. Nouy. Tree-based tensor formats. SeMA Journal, Oct
2018.

[4] E. Grelier, A. Nouy, and M. Chevreuil. Learning with tree-based tensor formats. arXiv
e-prints, page arXiv:1811.04455, November 2018.

[5] E. Grelier, A. Nouy, and R. Lebrun. Learning high-dimensional probability distributions
using tree tensor networks. arXiv preprint arXiv:1912.07913, 2019.

[6] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus, volume 56. Springer
Nature, 2019.

[7] B. Michel and A. Nouy. Learning with tree tensor networks: complexity estimates and
model selection. arXiv e-prints, page arXiv:2007.01165, July 2020.

[8] A. Nouy. Low-Rank Methods for High-Dimensional Approximation and Model Order
Reduction, chapter 4. SIAM, Philadelphia, PA, 2017.

37

[9] A. Nouy. Higher-order principal component analysis for the approximation of tensors
in tree-based low-rank formats. ArXiv e-prints, 2017.

38

	FullTensor
	Creating a FullTensor
	Accessing the entries of a FullTensor
	Permuting the modes of a FullTensor
	Reshaping a FullTensor.
	Norms and singular-values
	Operations with FullTensor
	Outer product.
	Kronecker product.
	Hadamard product.
	Contracted product.
	Dot product.
	Contractions with matrices or vectors

	Tensor formats
	CanonicalTensor
	DiagonalTensor
	SparseTensor
	TreeBasedTensor and DimensionTree
	DimensionTree
	TreeBasedTensor

	Tensor truncation with Truncator

	Measures, bases and functions
	RandomVariable
	RandomVector
	Polynomials
	FunctionalBasis
	FunctionalBases
	FunctionalBasisArray
	FunctionalTensor
	Tensorizer and TensorizedFunction

	Tools
	MultiIndices
	TensorGrid, FullTensorGrid and SparseTensorGrid

	Learning
	(Functional)TensorPrincipalComponentAnalysis
	LossFunction
	LinearModelLearning
	TensorLearning
	Example: character classification in tree-based tensor format.

