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In situations in which deformations are not infinitesimally1 small, linear elastic analyses
may not capture the true structural response. For large-strain problems, results of finite2

deformation analysis is significantly more accurate than linear, infinitesimal deformation
analysis. Incorporating the details of finite deformation, the analysis may also be applied to
a buckling analysis of the structural system.

In the derivation of the linear elastic stiffness matrix for frame elements, the potential energy
function includes strain energy due to bending, axial and shear deformation effects. Axial
effects are decoupled from shear and bending effects in the resulting linear elastic stiffness
matrices.3 In finite deformation analysis, on the other hand, the potential energy function
includes additional terms, which accounts for the interaction between the axial load effects
on the frame element and the lateral deformation of the frame element. These effects are
often called “P −∆ effects”.

We will separate the potential energy function U into an elastic part UE (which contains
the infinitesimal strain energy) and a geometric part, UG (which includes the interaction of
lateral deformations and axial loads). The linear elastic strain energy results in the same
frame element stiffness matrices kE that we have found previously. So, this document focuses
only on the geometric component of the potential energy function. From this geometric part
of the potential energy, we will derive the geometric stiffness matrix kG.

As in the finite deformation analysis of trusses, we need to know the deformation of the
structure in order to find the internal axial loads, but we need to know the internal axial
loads to determine the geometric stiffness matrix and the deformations. This “chicken-and-
egg” problem can be solved with the same type of Newton-Raphson iteration approach which
we used previously for finite deformation analysis of trusses.

1 infinitesimal means arbitrarily close to zero, as in infinitesimal calculus.
2 finite means neither infinite nor infinitesimal, as in a finite distance.
3The rows and columns corresponding to axial effects (1st and 4th) have non-zero elements only in the

1st and 4th columns and rows. Also, the rows and columns corresponding to bending and shear effects have
non-zero elements only in the 2nd, 3rd, 5th, and 6th columns and rows.
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1 Deformed shape of a frame element in bending

To start with, we need to introduce the deformed shape of a frame element. The deformed
shape of a frame element, h(x), subjected to end-forces, q, is a cubic polynomial. A cubic
polynomial may be written in a power-polynomial form:

h(x) = a0 + a1 · x+ a2 · x2 + a3 · x3. (1)

Likewise, the slope of the beam, h′(x) may be expressed

h′(x) = a1 + 2a2 · x+ 3a3 · x2. (2)
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Figure 1. The deformed shape of a beam, h(x) is assumed to be a cubic function of x.

The four polynomial coefficients, a0, · · · , a3, are found by matching h(0), h′(0), h(L) and
h′(L) to the specified end displacements and rotations of the beam. Assuming small rotations,
tan θ ≈ θ, and neglecting shear deformation effects,

h(0) = u2 → a0 = u2

h′(0) = u3 → a1 = u3

h(L) = u5 → a0 + a1L+ a2L
2 + a3L

3 = u5

h′(L) = u6 → a1 + 2a2L+ 3a3L
2 = u6

These four equations with four unknowns (a0, · · · , a3) have the solution

a0 = u2 (3)
a1 = u3 (4)
a2 = 3(u5 − u2)/L2 − (2u3 + u6)/L (5)
a3 = −2(u5 − u2)/L3 + (u3 + u6)/L2. (6)
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You should be able to confirm this solution for the polynomial coefficients. Note that the
cubic deformation function h(x) may also be written as a weighted sum of cubic polynomials.

h(x) = u2 · b2(x) + u3 · b3(x) + u5 · b5(x) + u6 · b6(x), (7)

The “weights” ui are simply the set of local element displacements and the functions bi(x)
are each cubic functions in x. These cubic shape functions represent beam deformations
due to a unit applied displacement in the corresponding coordinate (only). Neglecting shear
deformation effects, the frame element shape functions are the Hermite polynomials,

b2(x) = 1− 3 (x/L)2 + 2 (x/L)3 b2(0) = 1 b′2(0) = 0 b2(L) = 0 b′2(L) = 0
b3(x) = x (1− x/L)2 b3(0) = 0 b′3(0) = 1 b3(L) = 0 b′3(L) = 0
b5(x) = 3 (x/L)2 − 2 (x/L)3 b5(0) = 0 b′5(0) = 0 b5(L) = 1 b′5(L) = 0
b6(x) = (x/L)2 (x/L− 1) b6(0) = 0 b′6(0) = 0 b6(L) = 0 b′6(L) = 1

Equations (1) and (7) are two different ways of expressing exactly the same equation, h(x).
The finite element method makes use of polynomials in the form of equation (7). To complete
the picture, for axial deformations, (which contribute to transverse deformations only through
the axial load in the geometric stiffness matrix),

b1(x) = (1− x/L)
b4(x) = (x/L) .

You should confirm that with the given definitions of bi(x), and the coefficients ai, that
equations (1) and (7) are equivalent.

We now relate this polynomial for the assumed deformation shape to a potential energy
function. Recall the internal elastic strain energy of a beam due to bending effects,

UB = 1
2

∫ L

0

M2(x)
EI

dx. (8)

Since the curvature of the beam is M(x)/(EI) and assuming infinitesimal deformation, h′′(x)
is practically the same as the curvature, and

UB = 1
2

∫ L

0
M(x)h′′(x) dx (9)

= 1
2 EI

∫ L

0
h′′(x) · h′′(x) dx . (10)

Equation (8) is an expression of the strain energy in terms of the internal bending moment;
equation (9) is an expression of the strain energy in terms of the internal bending moment
and the assumed cubic deformation function; and equation (10) is an expression of the strain
energy in terms of the assumed cubic deformation function only. In the finite element method
it is common to express the potential energy using forms like equation (10). If the internal
bending moment M(x) does indeed generate the assumed deformation function h(x) then all
three forms of the elastic strain energy are exactly equivalent and completely interchangeable.
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Power polynomial basis Hermite polynomial basis
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2 Finite deformation effects in transversely-displaced frame elements

Frame elements carrying large axial loads or undergoing large displacements have nonlinear
behavior arising from the internal moments that are the product of the axial loads P and
the displacements transverse to the loads, ∆. This kind of nonlinearity is sometimes called
the “P∆” effect.

For frame elements with transverse rotation h′(x), but without displacement along the local
axial coordinate, x, the frame element undergoes axial deformation u′(x). Figure 2 shows
how transverse rotation h′(x) relate to axial deformation u′(x) when there is no displacement
along the local element axial coordinate. These are related using the Pythagorean theorem:

(dx)2 = (dx− du)2 + (dh)2

(dx)2 = (dx)2 − 2(du)(dx) + (du)2 + (dh)2

2(du)(dx) = (du)2 + (dh)2

du

dx
= 1

2

(
du

dx

)2

+ 1
2

(
dh

dx

)2

For frame elements in which axial strain is much less than transverse rotations, which is always
the case in elastic frame elements made from common structural materials, (u′)2 � (h′)2 and
u′(x) ≈ (1/2)(h′(x))2. The geometric deformation increases with the square of the rotation
of the element.

dx
dx

dx

N(x)

N(x)

du

h’(x)

dh

du

du

dx

du x

h
(x

) h
(x

) 
+

 d
h

Figure 2. Axial end displacements due to transverse displacements, without axial deformation.

To determine the strain energy associated with axial forces N(x) and geometric deformation
u′(x) = (1/2)(h′(x))2, recall that the work of a constant force F moving through a displace-
ment d, is simply Fd. Since N(x) does not increase linearly with h(x), the associated internal
strain energy of a force N(x) distributed along the length of a frame element and geometric
deformation u′(x) = (1/2)(h′(x))2 associated with transverse displacements h(x)

UG =
∫ L

0
N(x)du(x)

dx
dx = 1

2

∫ L

0
N(x)

(
dh(x)
dx

)2

dx. (11)
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3 Geometric stiffness of frame elements

The previous section shows that the potential energy due to axial loads, N(x) and transverse
displacements, h(x), is

UG = 1
2

∫ L

0
N(x)

(
dh

dx

)2

dx . (12)

If the axial load N(x) is constant over the length of the beam, N(x) = T , and

UG = 1
2 T

∫ L

0
(h′(x))2

dx . (13)

Substituting the beam shape functions, equation (7), and carrying out the integral leads to
the potential energy function in terms of transverse end displacements, u2 and u5, and end
rotations, u3 and u6,

UG = T
30L (−Lu3u6 − 3u5Lu3 − 3u5Lu6 + 3u2Lu3 + 3u2Lu6

+18u2
5 − 36u5u2 + 18u2

2 + 2L2u2
3 + 2L2u2

6) . (14)

Invoking Castigliano’s theorem, the partial derivative of the potential energy function with
respect to a displacement coordinate is the force in the direction of that displacement coor-
dinate. The end forces due to geometric stiffness effects can then be found as follows:

q2 = ∂UG

∂u2
= T

30L(36u2 + 3Lu3 − 36u5 + 3Lu6)

q3 = ∂UG

∂u3
= T

30L(3Lu2 + 4L2u3 − 3Lu5 − L2u6)

q5 = ∂UG

∂u5
= T

30L(−36u2 − 3Lu3 + 36u5 − 3Lu6)

q6 = ∂UG

∂u6
= T

30L(3Lu2 − L2u3 − 3Lu5 + 4L2u6).

Writing these expressions in matrix form, we arrive at the geometric stiffness matrix for a
frame element:



q1
q2
q3
q4
q5
q6


= T

L



0 0 0 0 0 0
0 6

5
L
10 0 −6

5
L
10

0 L
10

2L2

15 0 − L
10 −L2

30
0 0 0 0 0 0
0 −6

5 − L
10 0 6

5 − L
10

0 L
10 −L2

30 0 − L
10 −

2L2

15





u1
u2
u3
u4
u5
u6


, (15)
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where the tension in the beam is given by T = EA(u4 − u1)/L. The geometric stiffness
matrix for a 2D (planar) frame element in local coordinates is:

kG = T

L



0 0 0 0 0 0
0 6

5
L
10 0 −6

5
L
10

0 L
10

2L2

15 0 −L
10

−L2

30
0 0 0 0 0 0
0 −6

5
−L
10 0 6

5
−L
10

0 L
10

−L2

30 0 −L
10

2L2

15


. (16)

The coordinate transformation process is identical to the process carried out before for the
elastic element stiffness matrix. The coordinate transformation matrix, T, is

T =



c s 0 0 0 0
−s c 0 0 0 0

0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0
0 0 0 0 0 1


, (17)

where s and c are the sine and cosine of the counter-clockwise angle from global element
coordinate number 1 to the frame element. Here we are making the approximation that
the deformed inclination of the frame element is approximately the same as the original
inclination of the frame element. The element stiffness matrix in global coordinates is found
by applying the coordinate transformation matrix.

KG = TT kG T = T

L



6
5s

2 −6
5 sc

−L
10 s

−6
5 s

2 6
5sc

−L
10 s

−6
5 sc

6
5c

2 L
10c

6
5sc

−6
5 c

2 L
10c

−L
10 s

L
10c

2L2

15
L
10s

−L
10 c

−L2

30
−6
5 s

2 6
5sc

L
10s

6
5s

2 −6
5 sc

L
10s

6
5sc

−6
5 c

2 −L
10 c

−6
5 sc

6
5c

2 −L
10 c

−L
10 s

L
10c

−L2

30
L
10s

−L
10 c

2L2

15


(18)

It is not hard to confirm this expression for KG, and you should feel encouraged to do so.
The assembly of the structural stiffness matrix Ks with elastic and geometric effects proceeds
exactly as with the elastic stiffness matrix.
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4 Derivation of stiffness coefficients directly from the strain energy function

It is common to derive the coefficients of a stiffness matrix directly from the strain energy
function. Note that the i, j component of the stiffness matrix is

kij = ∂

∂uj
qi = kji = ∂

∂ui
qj ,

and that the ith component of the end force, qi, is

qi = ∂

∂ui
U .

Therefore, the stiffness coefficients may be written

kij = ∂2 U

∂ui ∂uj
.

If the stiffness matrix to be determined is for bending effects only, then, as seen before,

U = UB = 1
2 EI

∫ L

0
h′′(x) · h′′(x) dx .

Now, since integration and differentiation are both linear operations, it does not matter which
is done first, integration or differentiation. Therefore, the stiffness coefficient may be written,

kEij
= 1

2 EI
∫ L

0

∂h′′(x)
∂ui

· ∂h
′′(x)
∂uj

dx .

The elastic stiffness matrix incorporating bending effects only may be determined directly
from this expression. Likewise, the geometric stiffness matrix may be determined directly
from

kGij
= 1

2 T
∫ L

0

∂h′(x)
∂ui

· ∂h
′(x)
∂uj

dx .

The coefficients for the elastic stiffness matrix and the geometric stiffness matrix for frame
elements in three dimensions are derived using this method in the remaining sections of this
document.
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5 Cubic shape functions for beams including shear deformations

Consider the twelve local coordinates of a three dimensional frame element. The transverse

Figure 3. The twelve local coordinates of a three-dimensional frame element.

displacements in the local x − y plane, hy(x), of an elastic beam may be separated into a
shear-related component, hs(x) and a bending-related component hb(x),

hy(x) = hs(x) + hb(x). (19)

The shear force at the end of the beam in the local y direction, q2 may be found in terms of
the beam end-displacements in the local y direction and the end-rotations about the local z
axis,

q2 = k22 u2 + k26 u6 + k28 u8 + k2 12 u12 .

The effective shear strain is simply

h′s(x) = − q2

GAsy
= − 1

GAsy
(k22 u2 + k26 u6 + k28 u8 + k2 12 u12) . (20)

The internal bending moment, Mz(x), due to the effects of the end displacements and end
rotations is simply

Mz(x) = q2 x− q6,

and the curvature is approximately

h′′b (x) = 1
EIz

[ (k22 u2 + k26 u6 + k28 u8 + k2 12 u12) x
−(k62 u2 + k66 u6 + k68 u8 + k6 12 u12) ]. (21)
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in which small angles are assumed. By computing the potential energy function for shear
and bending deformations,

U = 1
2EIz

∫ L

0
(h′′b (x))2 dx+ 1

2GAsy
∫ L

0
(h′s(x))2 dx,

and taking the partial derivatives of the potential energy function with respect to the dis-
placements coordinates u2, u6, u8 and u12, rows 2, 6, 8, and 12 of the elastic stiffness matrix
may be computed.

The shape of the deformed beam may therefore by found by integrating equations (20) and
(21) to obtain hs(x) and hb(x) and by solving for the constants of integration using the end
conditions. So doing,

h′y(x) = h′s(x) + h′b(x) = − 1
GAsy

q2 + 1
EIz

(1
2q2x

2 − q6x+ C1

)
.

Inserting the end condition h′y(0) = u6 the constant of integration, C1, is EIzu6. Integrating
again,

hy(x) = hs(x) + hb(x) = − 1
GAsy

q2x+ 1
EIz

(1
6q2x

3 − 1
2q6x

2
)

+ u6x+ C2.

Inserting the boundary condition h(0) = u2, and noting that 1/(GAsy) = ΦyL
2/(12EIz), the

deformed shape of the beam becomes

hy(x) = 1
EIz

(1
6q2 x

3 − 1
2q6 x

2 − 1
12ΦyL

2q2 x
)

+ u6 x+ u2 .

The transverse deformation shape function for a beam with bending and shear deformation
in the x− y plane.

hy(x) = 1
L3

1
1+Φy

{ [2x3 − 3Lx2 − ΦyL
2x+ L3(1 + Φy)] u2 +

[Lx3 − L2(2 + Φy/2)x2 + L3(1 + Φy/2)x] u6 +
[−2x3 + 3Lx2 + ΦyL

2x] u8 +
[Lx3 − L2(1− Φy/2)x2 − ΦyL

3x/2] u12 } . (22)

For bending and shear deformations in the x−z plane, the shape function may be found using
an analogous method, while respecting the right-hand coordinate system. The transverse
deflection, hz(x) will consist of shear and bending components,

hz(x) = hs(x) + hb(x) .

The end-shear force and the end-bending moment arise for end displacements in the local z
direction and end moments about the local y axis,

q3 = k33 u3 + k35 u5 + k39 u9 + k3 11 u11 ,
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and
q5 = k53 u3 + k55 u5 + k59 u9 + k5 11 u11 .

The effective shear strain is

h′s(x) = − q3

GAsz
= − 1

GAsz
( k33 u3 + k35 u5 + k39 u9 + k3 11 u11 ),

and the bending curvature is approximately

h′′b (x) = 1
EIy

(q3 x+ q5)
= 1

EIy
[ (k33 u3 + k35 u5 + k39 u9 + k3 11 u11) x
+(k53 u3 + k55 u5 + k59 u9 + k5 11 u11) ],

where small angles are again assumed. Integrating h′′b (x) and combining with h′s(x),

h′z(x) = − 1
GAsz

q3 + 1
EIy

(1
2q3 x

2 + q5 x+ C1

)
.

Inserting the end condition, h′z(0) = −u5 gives C1 = −EIyu5. Integrating again,

hz(x) = − 1
GAsz

q3 x+ 1
EIy

(1
6q3 x

3 + 1
2q5 x

2
)
− u5 x+ C2 .

Now inserting the end condition hz(0) = u3 gives C2 = u3 and noting that 1/(GAsz) =
ΦzL

2/(12EIy) the deformed shape may be written

hz(x) = 1
EIy

(1
6q3 x

3 + 1
2q5 x

2 − 1
12ΦzL

2q3 x
)
− u5 x+ u3 .

Finally, the shape function for a frame element bending and shear in the local x− z plane is

hz(x) = 1
L3

1
1+Φz

{ [2x3 − 3Lx2 − ΦzL
2x+ L3(1 + Φz)] u3 +

[−Lx3 + L2(2 + Φz/2)x2 − L3(1 + Φz/2)x] u5 +
[−2x3 + 3Lx2 + ΦzL

2x] u9 +
[−Lx3 + L2(1− Φz/2)x2 + ΦzL

3x/2] u11 } . (23)

Note that this expression is equivalent to equation (22) except for the fact that Φz replaces
Φy and that the signs of the u5 and u6 shape functions are reversed, as are the signs of the
u11 and u12 shape functions. This is consistent with the right-hand coordinate system.

For axial displacements, the shape function is the same as for a truss,

hx(x) =
(

1− x

L

)
u1 + x

L
u7 . (24)

Likewise, for torsional displacements, the shape function is analogous to the axial displace-
ment shape function

hθx(x) =
(

1− x

L

)
u4 + x

L
u10 . (25)
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6 The 3D elastic stiffness matrix for frame elements including shear and bending
effects

Differentiating and integrating the shape functions derived above, the three-dimensional elas-
tic stiffness matrix for frame elements in local coordinates including bending and shear de-
formation effects is:

kE =



EA
L

0 0 0 0 0
0 12EIz

L3(1+Φy) 0 0 0 6EIz

L2(1+Φy)
0 0 12EIy

L3(1+Φz) 0 −6EIy

L2(1+Φz) 0
0 0 0 GJ

L
0 0

0 0 −6EIy

L2(1+Φz) 0 (4+Φz)EIy

L(1+Φz) 0
0 6EIz

L2(1+Φy) 0 0 0 (4+Φy)EIz

L(1+Φy)
−EA
L

0 0 0 0 0
0 −12EIz

L3(1+Φy) 0 0 0 −6EIz

L2(1+Φy)
0 0 −12EIy

L3(1+Φz) 0 6EIy

L2(1+Φz) 0
0 0 0 −GJ

L
0 0

0 0 −6EIy

L2(1+Φz) 0 (2−Φz)EIy

L(1+Φz) 0
0 6EIz

L2(1+Φy) 0 0 0 (2−Φy)EIz

L(1+Φy)

−EA
L

0 0 0 0 0
0 −12EIz

L3(1+Φy) 0 0 0 6EIz

L2(1+Φy)
0 0 −12EIy

L3(1+Φz) 0 −6EIy

L2(1+Φz) 0
0 0 0 −GJ

L
0 0

0 0 6EIy

L2(1+Φz) 0 (2−Φz)EIy

L(1+Φz) 0
0 −6EIz

L2(1+Φy) 0 0 0 (2−Φy)EIz

L(1+Φy)
EA
L

0 0 0 0 0
0 12EIz

L3(1+Φy) 0 0 0 −6EIz

L2(1+Φy)
0 0 12EIy

L3(1+Φz) 0 6EIy

L2(1+Φz) 0
0 0 0 GJ

L
0 0

0 0 6EIy

L2(1+Φz) 0 (4+Φz)EIy

L(1+Φz) 0
0 −6EIz

L2(1+Φy) 0 0 0 (4+Φy)EIz

L(1+Φy)



,

where
Φy = 12EIz

GAsyL2 , and Φz = 12EIy
GAszL2 .
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7 Formulation of the geometric stiffness matrix from the cubic shape functions

For the elements of the geometric stiffness matrix in rows 2,6,8, and 12, the potential energy
function is

UGy = 1
2 T

∫ L

0
h′y(x) h′y(x) dx ,

where hy(x) is given by equation (22). Likewise, for rows 3,5,9, and 11, the potential energy
function is

UGz = 1
2 T

∫ L

0
h′z(x) h′z(x) dx ,

where hz(x) is given by equation (23). For rows 1 and 7, the potential energy function is

UGx = 1
2 T

∫ L

0
h′x(x) h′x(x) dx ,

where hx(x) is given by equation (24).

8 Torsion

In the torsion of non-circular sections, torsional displacements result in axial deformation
(warping) of the cross-section. In such cases, the work of the axial tension, T , moving
through the warping displacements provides the potential energy function for rows 4 and 10,

UGθ = 1
2 T

Jx
Ax

∫ L

0
h′θx(x) h′θx(x) dx ,

where hθx(x) is given by equation (25) and Jx is the torsional moment of inertia.

The geometric stiffness coefficients may then be found by forming the Hessian of the appro-
priate potential energy function,

kGij
= ∂2 UG

∂ui ∂uj
.
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9 The 3D geometric stiffness matrix for frame elements including shear and
bending effects

Differentiating and integrating the shape functions as described above, the three-dimensional
geometric stiffness matrix for frame elements in local coordinates including axial, bending,
shear and torsional warping effects is:

kG = T
L



0 0 0 0 0 0
0 6/5+2Φy+Φy

2

(1+Φy)2 0 0 0 L/10
(1+Φy)2

0 0 6/5+2Φz+Φz
2

(1+Φz)2 0 −L/10
(1+Φz)2 0

0 0 0 Jx
Ax

0 0
0 0 −L/10

(1+Φz)2 0 2L2/15+L2Φz/6+L2Φz
2/12

(1+Φz)2 0
0 L/10

(1+Φy)2 0 0 0 2L2/15+L2Φy/6+L2Φy
2/12

(1+Φy)2

−0 0 0 0 0 0
0 −6/5−2Φy−Φy

2

(1+Φy)2 0 0 0 −L/10
(1+Φy)2

0 0 −6/5−2Φz−Φz
2

(1+Φz)2 0 L/10
(1+Φz)2 0

0 0 0 − Jx
Ax

0 0
0 0 −L/10

(1+Φz)2 0 −L2/30−L2Φz/6−L2Φz
2/12

(1+Φz)2 0
0 L/10

(1+Φy)2 0 0 0 −L2/30−L2Φy/6−L2Φy
2/12

(1+Φy)2

−0 0 0 0 0 0
0 −6/5−2Φy−Φy

2

(1+Φy)2 0 0 0 L/10
(1+Φy)2

0 0 −6/5−2Φz−Φz
2

(1+Φz)2 0 −L/10
(1+Φz)2 0

0 0 0 − Jx
Ax

0 0
0 0 L/10

(1+Φz)2 0 −L2/30−L2Φz/6−L2Φz
2/12

(1+Φz)2 0
0 −L/10

(1+Φy)2 0 0 0 −L2/30−L2Φy/6−L2Φy
2/12

(1+Φy)2

0 0 0 0 0 0
0 6/5+2Φy+Φy

2

(1+Φy)2 0 0 0 −L/10
(1+Φy)2

0 0 6/5+2Φz+Φz
2

(1+Φz)2 0 L/10
(1+Φz)2 0

0 0 0 Jx
Ax

0 0
0 0 L/10

(1+Φz)2 0 2L2/15+L2Φz/6+L2Φz
2/12

(1+Φz)2 0
0 −L/10

(1+Φy)2 0 0 0 2L2/15+L2Φy/6+L2Φy
2/12

(1+Φy)2



,

where
T = EA(u7 − u1)/L ,

Φy = 12EIz
GAsyL2 and Φz = 12EIy

GAszL2 .
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