

B&R Coding GuidelineB&R Coding GuidelineB&R Coding GuidelineB&R Coding Guideline

 2 B&R Coding Guideline

Prerequisites

Software: Automation Studio

Hardware: none

 B&R Coding Guideline 3

Table of Contents

1. INTRODUCTION 4

2. B&R CODING GUIDELINES 5

2.1 Before You Code 6

2.2 Naming Conventions 6

2.3 Code Format 10

2.4 Programming Techniques 13

2.5 Testing 15

2.6 Documentation 16

Introduction

 4 B&R Coding Guideline

1. INTRODUCTION

This document is about generating application software in the field of
automation. If you are (or are going to be) a programmer of machines or
plants, please ask yourself a few questions:

• Is software generation more than just coding, coding, coding?

• How can I improve the quality of the software I produce?

• By the way, what is software quality?

• What about costs to fix defects in software?

• How do I create well structured software?

• Is there a way to analyze, describe and discuss machine logic in a
formal and exact way?

• How can I write better source code?

• How should I test and document the code I create?

The section “B&R Coding Guidelines” presented the B&R Coding Guidelines
for automation application software which should guide the user in
developing a programming style to produce, test and document high
quality source code.

 B&R Coding Guidelines

 B&R Coding Guideline 5

2. B&R CODING GUIDELINES

Computer programming is an engineering discipline (software engineering)
and as usual in engineering there is an absolute truth … whether a program
does work or it does not work.

But computer programming also is an art (see the famous book 'The Art of
Computer Programming' by Donald E. Knuth which has been named
among the best twelve scientific monographs of the century) as sometimes
it is more a question of aesthetics how a program does it's job and if the
code looks appealing. Without question programming is a creative process.

Software production costs money - and - earns you money. It is the B&R
philosophy to produce high quality products, and software is no exception
here. So let's produce high quality software code!

Attributes of high quality code are (among others):

• clean architecture and design

• easy to read and understand

• easy to maintain

• re-usable

• well commented

• bug free

This document should assist you in improving your code quality. If you
follow the guidelines outlined here your code should be of reasonable
quality.

You are working in a team so please be considerate of your colleagues,
who maybe won't appreciate dealing with those quick'n’dirty completely
undocumented routines you hacked at 2:00 am Saturday night.

In the end you (the author) are responsible for the code you create. Do it
well and then be proud of what you have created and achieved!

B&R Coding Guidelines

 6 B&R Coding Guideline

2.1 Before You Code

The foundations of any good software are a clean architecture and design.
Take your time in the conception phase and work on the design until you
are happy with your software concept.

Before you actually code please mind the concepts and methods discussed
in sections of this document.

2.2 Naming Conventions

Good variable and data type names are a key element of program
readability. All names should be descriptive and easy to read. Use either
underscores or capital letters (don’t mix them) in composite names to
enhance readability, like

actPressure = actForce / pistonArea;
cmdCount++;

or

act_pressure = act_force / piston_area;
cmd_count++;

An identifier may contain letters and numbers and must start with a letter.
You cannot use reserved keywords as identifiers. A complete list of
reserved key words for each programming language can be found in the
Automation Studio online help.

2.2.1 Language

If no different specification is given by the customer it is strongly
recommended to code and comment in English for trouble-free
international usage of software. Within B&R this recommendation is
compulsory.

 B&R Coding Guidelines

 B&R Coding Guideline 7

2.2.2 User Data Types (Structures)

User data types start with an upper case letter and end with the postfix

‘_type’ , in between lower and upper case letters may be mixed.

TYPE
 Recipe_type: STRUCT
 base: UINT;
 binder: UINT;
 additive: USINT;
 END_STRUCT;
 MachineParams_type: STRUCT
 speed: REAL;
 pressure: REAL;
 temperature: INT;
 pRecipe: REFERENCE TO Recipe_type;
 END_STRUCT;
END_TYPE

2.2.3 Constants

Constants are all upper case. Use underscores ‘_’ to enhance readability.

VAR CONSTANT
 STEP_CONDITIONING: USINT := 23; (* [-] *)
 HEATING_TIME_OUT: UINT := 5000; (* [s] *)
 MAX_PRESSURE: REAL := 6.7e+006; (* [Pa]*)
END_VAR

These rules also apply to constants defined by the #define pre-processor

directive and the enum statement in C source code. Please note that

declarations via the #define directive and enum statement are local to the
scope of your C code!

B&R Coding Guidelines

 8 B&R Coding Guideline

2.2.4 Local Variables

Local variables start with a lower case letter. Upper case-letters (or under-
scores ‘_’) are only used to enhance readability.

VAR
 machineStep: USINT; (* [-] *)
 actPressure: REAL; (* [bar] *)
 avgTemperature: INT; (* [0.1°C] *)
END_VAR

VAR
 machine_step: USINT; (* [-] *)
 act_pressure: REAL; (* [bar] *)
 avg_temperature: INT; (* [0.1°C] *)
END_VAR

In the following, only examples without underscores are included. If you
prefer naming with underscores you will be able to figure it out.

2.2.5 Global Variables

Global variables start with the pre-fix ‘g’ followed by an upper-case letter or
‘_’:

VAR
 gHeaterOn: BOOL;
 gActCmd: Cmd_typ;
 gCmdCount: UINT;
END_VAR

This convention is reserved for global variables - do not use it for non-
global variables.

 B&R Coding Guidelines

 B&R Coding Guideline 9

2.2.6 Pointers

Local pointers start with the pre-fix ‘p’ followed by an upper-case letter or
‘_’. Global pointers start with the pre-fix ‘gp’ followed by an upper-case
letter or ‘_’:

VAR
 pActRecipe: REFERENCE TO Recipe_type;
END_VAR

VAR
 gpActRecipe: UDINT;
END_VAR

The above convention is reserved for pointers - do not use it for other
variables.

Global pointers have the data type ‘UDINT’ because IEC doesn’t support
pointers to generic data types. Cast the global pointer to a generic local
pointer to access structure members:

pActRecipe = (Recipe_type*)gpActRecipe;
actSpeed = pActRecipe->speed;

2.2.7 Hardware-Connected Variables

Variables assigned to hardware I/O points start with a pre-fix defining the
I/O point type:

Prefix Type

di digital input

do digital output

ai analog input

ao analog output

The pre-fix is followed by an upper-case letter or ‘_’:

VAR
 diEmergencyOff: BOOL;
 doSolidStateOn: BOOL;
 aiActTemp: INT; (* [0.1°C] *)
 aoValvePos: INT; (* 0=closed, 32767=open *)
END_VAR

This convention is reserved for HW connected variables - do not use it for
other variables.

B&R Coding Guidelines

 10 B&R Coding Guideline

2.2.8 C-local Variables

Variables defined in C source code are not visible outside their definition
scope – you cannot see them e.g. in a Watch or Trace window.

Recipe_type* pPrevRecipe = 0;
USINT cmdCount = 0;
REAL actSpeed = 0; /* [m/s] */

If not declared ‘static’ they are allocated from stack each time the C

routine is executed (and therefore non-remanent) and are not initialized! It
is therefore wise to initialize them in the declaration (as done above).

2.2.9 Instances of Function Blocks

Instances of function blocks should be named to contain the name of the
function block:

VAR
 valveSwitchTON: TON_type;
 solidStateTOF: TOF_type;
 pressureLCPID: LCPID_type;
END_VAR

2.3 Code Format

Visual layout of the code should accurately represent the logical structure
of a computer program. Thus visual information acquisition of the human
brain can support the reader in code understanding.

2.3.1 Indentation

Proper indentation is a key element for the readability of a code and is a
must in all programs!

The whole idea behind indentation is to clearly visualize where a block of
control starts and ends.

A large indentation size (6 or 8 characters) makes the code structure easier
to see, while a smaller indentation size (2 or 4 characters) saves space on
the right hand side of your screen.

We suggest an indentation size of 4 characters. If you have good reasons
choose another indentation size that you prefer and stick to it.

 B&R Coding Guidelines

 B&R Coding Guideline 11

2.3.2 File Header

Every file must have a header, which includes:

• Information about author and copyright

• Short description (summary comments) with a focus on purpose of
the code, input and output variables, global effects of the routine,
limitations and interface assumptions

• Timing behavior and memory requirements (if critical)

• Revision number, history and date (in an international unmistakable
format, e.g. 04-March-2005 instead of 04-03-05 or 03/04/05)

A template header is automatically included when you create a program in
Automation Studio™.

Revision number format is Vxx.yy, where xx is incremented with every
major code update (e.g. when new features are added or incompatibilities
to the previous version are introduced) and yy is incremented with minor
improvements and bug fixes.

2.3.3 Placing Braces

There are a lot of brace placement strategies around. The preferred method
is putting each brace on a line by itself combined with proper indentation:

if (inst.request > 0)
{
 inst.ok2jump = 1;
 inst.status = 0;
}
else
{
 inst.ok2jump = 0;
 inst.status = 5;
}

UINT CheckStatus(REAL xDeviation, REAL yDeviation)
{
 function body
}

If this doesn’t look visually appealing to you, choose another consistent
style, e.g. as suggested by Kernighan and Ritchie:

if (inst.request > 0) {
 inst.ok2jump = 1;
 inst.status = 0;
}
else {
 inst.ok2jump = 0;
 inst.status = 5;
}

B&R Coding Guidelines

 12 B&R Coding Guideline

2.3.4 Spaces

For readability reasons add a space before and after each operator:

xAxisPos = x0 + deltaX;
if (machineState == STATE_RUN)
 ...

with exception of:

. member selection operator

-> member selection operator

[] subscription operator

() function call and function declaration operator

(type) unary casting operator

++ pre- and post increment operator

-- pre- and post decrement operator

! unary negation operator

~ unary one’s complement

If the assignment operator ‘=’ is placed directly behind the variable, a

search (or search and replace) in the editor for e.g. ‘someVariable=’ will

only find assignments to this variable in the code. If this is important for
you, format assignments this way:

 xAxisPos= x0 + deltaX;

We recommend placing the reference ‘&’ and dereference operators ‘*’

near the type in declarations:

void GetCtrlParams(REAL deadTime, REAL dXmax, Param s_type*
pCtrlParams)

2.3.5 Visual Alignment

Visual alignment of elements that belong together reinforces the visual
binding of these elements:

stPar.X0 = pIntern->X0;
stPar.deltaX = stPar.dir * abs(inst.options.deltaX) ;
stPar.t1set = 0; /* [ms] */
stPar.t2set = 0;

 B&R Coding Guidelines

 B&R Coding Guideline 13

2.4 Programming Techniques

2.4.1 GOTO statement

You should not use the GOTO statement because it will prevent you from
clearly structuring your code.

Should you feel tempted to include a GOTO into your code think of Edsger
W. Dijkstra’s famous classic paper ‘Go To Statement Considered Harmful’
published in 1968 (http://www.acm.org/classics/oct95/):

“For a number of years I have been familiar with the observation that the

quality of programmers is a decreasing function of the density of GOTO
statements in the programs they produce.”

We have nothing to add to Dijkstra.

2.4.2 Usage of Standard Algorithms

If you need to include a standard algorithm (e.g. for ring buffers, sorting,
searching, etc.) don’t implement it yourself. Most likely your
implementation will not be bug free without some time invested in testing
and debugging.

The better way is to copy it in electronic form from a trusted source (e.g.
CDs that come with standard text books).

2.4.3 Usage of IEC Data Types

For consistency and target independent code, use the IEC data types in C
source code. They are automatically defined with the following statement:

#include <bur\plctypes.h>

2.4.4 Handling Hardware-Connected (I/0) Variables

It is a good idea to copy (and scale or negate if desired) hardware-
connected variables to/from data structures of your software modules in a
special task which does just that and nothing else.

You can easily disable this task and disconnect all I/Os for testing
purposes. As another benefit you will only have to make minor changes at
one single place in the code if external sensor or actor logic changes
(which happens quite frequently).

B&R Coding Guidelines

 14 B&R Coding Guideline

2.4.5 Dynamic Memory Management

Please take care when using dynamically allocated memory. Access to
memory which you have not properly allocated leads to errors which are
really hard to discover!

Don’t allocate and free memory frequently in cyclic code because it will
lead to memory fragmentation. As a consequence the system will
sometimes run out of memory.

2.4.6 Communication between Software Modules

Inter-module communication has to be implemented with global data
structures. Therefore it needs to be designed with special care. Please
mind appropriate naming of your communication data structures.

2.4.7 Compiler Warnings

Compiler warnings may indicate some unexpected program behavior. Be
sure to understand the warning message and correct your code to avoid
the warning. If this is not possible or not intended, document the warning
at the corresponding line of code.

2.4.8 Determining Array Size

If you need to determine the size of an array (e.g. if you need to check the
last array element or need to loop over all elements) use the sizeof
function:

for (i = 0; i < (sizeof(array)/sizeof(array[0])); i ++)
{
 loop body
}

2.4.9 Data Alignment

When defining user-defined data types you should note data alignment: in
general the compiler has to add empty storage (typically 1 – 3 bytes)
between structure members to place (or ‘align’) the members to specific
(e.g. even) memory addresses for memory access.

The actual compiled data size is then larger than the sum of individual
member sizes. You can easily check the compiled size with the sizeof
function. It may be different for different target hardware architectures.

If you have to write platform-independent code take data alignment into
consideration (especially when using data modules). You may place
unused alignment bytes into your data structure by yourself to force
identical data layout on all your target hardware:

 B&R Coding Guidelines

 B&R Coding Guideline 15

TYPE
 Cutter_type: STRUCT
 speed: REAL; (* 4 bytes *)
 cmdcount: USINT; (* 1 byte *)
 reserve1: USINT; (* alignment *)
 xPosition: UINT; (* 2 bytes *)
 yPosition: UINT; (* 2 bytes *)
 reserve2: USINT; (* alignment *)
 reserve3: USINT; (* alignment *)
 cutterTON: TON_type; (* align like 4 byte t ype *)
 END_STRUCT;

Please see the Automation Studio online help for details about compiler
data alignment.

2.5 Testing

Software testing is a crucial issue for software quality issue. It ensures that
the behavior of the code is compliant to the specifications.

Usually the first task in testing is the definition of test cases on the basis of
software specification. Testing of special situations and functionalities
(special and corner cases) requires special care, e.g. what happens if an
incorrect value is passed to a function (‘An effective way to test code is to
exercise it at its natural boundaries.’ – Brian Kernighan, one of the creators
of the C language).

If you are working in a project team consider testing your code mutually
(the code you create is tested by one of your colleagues as an independent
tester and vice versa).

Automation Studio™ provides excellent features for software testing:
watching, tracing and forcing of variables. These diagnostic methods are
extensively discussed in B&R Training Module ‘Automation Studio
Diagnostics’.

2.5.1 Unit Testing

The goal of unit testing is to show that isolated individual parts (libraries,
modules, functions, …) are correct.

2.5.2 Integration Testing

In integration testing, individual software modules are combined and tested
as a group to verify if they properly work together.

B&R Coding Guidelines

 16 B&R Coding Guideline

2.5.3 System Testing

System testing is conducted on a complete, integrated system to evaluate
the system’s compliance with its specified requirements (IEEE Standard
Computer Dictionary). System testing is typically performed at machine or
plant commissioning.

2.5.4 Usability Testing

Usability testing measures how well people can handle the machine or
plant you have programmed. Usability testing typically focuses on the HMI.

2.6 Documentation

Documenting the software you have created is an important task. On the
one hand it supports the users in working with all the functionalities you
have provided for him and on the other hand it provides valuable
information for other programmers who have to fix a bug or implement
some additional functionality into your code.

Documentation on a software project typically consists of information both
inside the source-code listings (the code itself and ‘comments’) and outside
them (typically in the form of separate documents).

2.6.1 Comments

Documentation at code level is always aimed at other developers and not
at users.

The main contribution to code-level documentation isn’t comments, but
good programming style: good code is its own best documentation.

However, in every program some comments are necessary to explain
things about the code that the code can’t say about itself (e.g. high-level
and low-level organization of programs).

Types of comments:

• Summary comments: should give an overview and a summary of the
program at the beginning of the code (like a preface)

• Intent comments (comments on the code’s intent): should explain
the purpose of a section of code and operate more at the level of the
problem than at the level of the solution (explaining the why more
than the how).

• Marker comments: should mark locations where you suspect a bug
may exist or where code improvements are planned. They are useful
in the development phase and should not appear in completed code.

 B&R Coding Guidelines

 B&R Coding Guideline 17

What you should document:

• Data types (structures)

• Variable declarations (including physical units if applicable)

• Major steps of your routines

• Limitations of your routines

• Global effects of routines

• Interface assumptions

• Timing issues and memory requirements (if critical)

• Revision history

What not to comment:

• Do not use comments to explain things that are obvious to
programmers!

• If your code is too difficult to be understood by others rewrite it!

Remember to keep comments up to date when changing the code!

2.6.2 External Documentation

There are two types of external documentation:

• User documentation: contains all information relevant to users of the
software (HMI pages, alarms, errors, etc.)

• Developer documentation: contains information for software
programmers (description of software design, flow charts, interfaces,
etc.)

2.6.3 Documentation Standards

The American National Standards Institute (ANSI) provides ANSI/ANS 10.3-
1995 standard for documentation of engineering and scientific computer
software at their website http://www.ansi.org for purchase.

The military standard MIL-STD-498 defines software development and
documentation standards and is is approved for use by all departments
and agencies of the department of defense of the USA
(http://www.pogner.demon.co.uk/mil_498/).

Both standards do not focus on industrial automation application software
but may provide some valuable general information.

This is version V1.40 [19/07/05] of the B&R Coding Guidelines.

B&R Coding Guidelines

 18 B&R Coding Guideline

Notes:

 B&R Coding Guidelines

 B&R Coding Guideline 19

Notes:

B&R Coding Guidelines

 20 B&R Coding Guideline

Hinteres Deckblatt (auf durch 4 Teilbarer Seitenzahl)

Kontakt (Headquarter)

Weblink

Internationalität

Copyright – Bestellnummer

B
&
R
C
o
d
in
g
G
u
id
e
li
n
e
-E
N
G
.d
o
c

0
9
0
7

©
2
0
0
7
b
y
 B
&
R
.
A
ll
 r
ig
h
ts
 r
e
s
e
rv
e
d
.

A
ll
 r
e
g
is
te
re
d
 t
ra
d
e
m
a
rk
s
 p
re
se
n
te
d
 a
re
 t
h
e
 p
ro
p
e
rt
y
 o
f
th
e
ir
 r
e
s
p
e
c
ti
v
e

c
o
m
p
a
n
y
.
W
e
 r
e
s
e
rv
e
 t
h
e
 r
ig
h
t
to
 m
a
ke
 t
e
c
h
n
ic
a
l
c
h
a
n
g
e
s
.

