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Abstract

Microbial evolution is governed by the interactions between many dif-
ferent organisational levels and timescales. Metabolic function, regulatory
interactions and ecosystem interactions together determine the reproduc-
tive potential, and survival, of individuals. In addition, the direction of
evolution is influenced by selection for robustness and evolvability. To-
gether these levels form the substrate of evolution, ultimately shaping the
the eco-evolutionary dynamics of microbes. To study the interactions be-
tween levels of selection on evolution and ecology we need to study so
called non-supervised models. These models define low level entities and
process at a fairly fine level of detail, allowing higher level patterns and
functionality to emerge from from interactions at the lower levels

by are capable of bringing about the interplay between multiple biolog-
ical structures, levels of selection, and timescales in evolving populations.

We developed Virtual Microbes to study long term eco-evolutionary
dynamics of microbes. Virtual microbes exchange metabolites with their
environment, and evolve to synthesise building blocks for cell growth.
They express genes (transporters, enzymes, and transcription factors)
from a spatially structured genome, which evolves by large and small
scale mutations.



Introduction

All diversity and complexity of biological organisms has arisen “from so a simple
a beginning”. Evolution is the single most powerful explanation for understand-
ing all this complexity and diversity in our biosphere. Species we observe today
have evolved many complex organisational levels, e.g. genes, genomes, individ-
uals, groups, ecosystems etc. How these levels evolved, and how they in turn in
u- ence the evolutionary processes, is a challenge we face today. Earlier research
has shown that this interplay between levels of organisation can lead to counter-
intuitive changes in the direction of selection [refs on reversal of selection levels;
volvox, early death]. New levels of organisation and selection can emerge from
ecosystems interactions, which can in turn lead to the interlocking of ecological
and evolutionary time scales. [van der laan...]. Moreover, evolution both shapes
and is shaped by all the aforementioned levels and timescales in biology, which
may manifest as the evolution of evolvability [ref evolvability, ref crombach].
These features of biological systems make it exceedingly challenging to study
evolutionary dynamics at both short and long timescales.

Important insights have come from bioinformatic approaches that recon-
struct phylogeny and ancestral gene contents. Intriguingly, these studies show a
two-faced appearance of genome evolution. On the one hand we observe strong
genome size dynamics, where lineage specific gene family gains and losses drive
innovation and diversification [ref Francino 2005, ref Anantharaman 2007, ref
Ames 2010, ref Koonin 2002], while on the other hand highly regular scaling
laws of genomic features appear to persist across domains of life [Koonin, 2011].
Inspired by these observations we previously developed the Virtual Cell model
[Cuypers and Hogeweg, 2012] to study emergent patterns in genome evolution.
In this in silico model, cells adapt to a continually changing environment by
regulating their internal homeostasis of a single resource and its downstream
energy carrier molecule. Virtual Cells evolve through gene level point mutations
as well as genome level duplications and deletion of stretches of neighbouring
genes. Within this simple, yet plausible set of biological functions, we demon-
strated generic evolutionary patterns such as genome inflation and streamlining
[Cuypers and Hogeweg, 2012], fixation of whole genome duplications [Cuypers
and Hogeweg, 2014], and the biased retention of duplicated Transcription Fac-
tors (TFs) [Cuypers and Hogeweg, 2014]. This previous work demonstrates the
exploratory power of what we call non-supervised modelling, i.e. implement-
ing the basic processes that play an important role in a biological system, and
studying the evolutionary patterns as well as the structure and behaviour of the
evolved organisms.

The Virtual Cell model does however have a number of limitations if we
wish to study the emergence and implications of diversity. For example, why
are some species able to utilize many different resources, while others species
share or partition available resources? When and why does a cross-feeding in-
teraction between species emerge? Do functionally similar species or ecosystems
evolve if we redo evolution under the same environmental resource conditions?
How does prior evolution towards many or fluctuating resources influence adap-
tation to a single constant resource and vice versa? Because the Virtual Cell
only includes a single resource, and does not include cell-cell and environmental



interactions, we need to extend the model.

Here we introduce the Virtual Microbe, a model that builds upon the struc-
ture of the Virtual Cell model in order to study the aforementioned topics in a
similar non-supervised way. In this model, Virtual Microbes (VMicrobes) grow
and die naturally by metabolising a multitude of resources according to the
rules of predefined artificial chemistry. The microbes furthermore have a strong
interplay with their spacial environment by means of passive diffusion or active
transport across the membrane, and lysing of dead cells.

Results and discussion

Model overview

Virtual Microbes (VMicrobes) is an individual based model that integrates
metabolism, gene regulation and mutation with ecological interactions through
reproductive competition and metabolite exchange. VMicrobes compete for re-
sources and the opportunity to reproduce in a limited space. They shape their
local environment by actively transporting and converting metabolites as well
as by passive metabolite diffusion over their membranes. The local buildup
and depletion of metabolites is dissipated through diffusion along environmen-
tal concentration gradients.

Reproductive success of VMicrobes depends on their ability to grow and
divide (Figure 1A). To do so, VMicrobes are required to synthesise essential
building blocks and energy. Typically, building blocks nor energy metabolites
appear natively in the environment, compelling VMicrobes to synthesise them
from environmentally available precursors by expressing appropriate metabolic
pathways. Building blocks (indicated as the purple metabolite in Figure 1) are
consumed for cell growth and for protein expression. Energy is necessary for
active transport and for the catalysis of various anabolic reactions. By actively
taking up and exporting metabolites and by leaking metabolites through their
membranes, VMicrobes alter their environment, leading to indirect interactions
(Figure 1B). One reason for VMicrobes to actively export metabolites is the
effect of a toxic buildup of internal metabolite concentrations.

Upon cell death, VMicrobes also release metabolites into the environment.

The genes required to synthesise building blocks and energy metabolites,
are organised in a structured genome (Figure 1C) that can undergo large-scale
indels, as well as point mutations. Besides transporters and metabolic enzymes,
these structured genomes also encode transcription factors (TF's), that can bind
to the upstream operator sequences of genes, therewith regulating expression
(as indicated in Figure 1C). This regulatory effect can furthermore be enhanced
or suppressed by binding to a ligand molecule. Multiple TFs with varying bind-
ing motifs may bind to the operator, each exerting their own effect, which is a
function of the inherent binding strength, the particular regulatory effect and
concentration of the TF.

The complete set of enzymatic and transport reactions that are possible
during a simulation (Figure 1D) are determined at the time of initialisation
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Figure 1: Overview of the VirtualMicrobe.

A) VMicrobes live on a grid, and compete for empty space by growing and dividing. Cells below a
certain volume do not (yet) compete.

B) By taking up resources, exporting waste products, and lysing into the environment, VMicrobes
have a strong interplay with their environment.

C) Genes of VMicrobes are encoded as a “pearl-on-a-string”-genome, resulting in the expression of
transporter proteins, enzymatic proteins and transcription factors. Using these proteins, the
VMicrobes have to synthesize the necessary compounds to express proteins and increase the cell
volume. Transcription factors can modulate gene expression by binding operator sequences and
sensing metabolite concentrations.

D) At the start of the simulation, the set of all possible reactions is either procedurally generated,
or user defined. The VMicrobes do not necessarily express all these reactions, but can discover
proteins to catalyse any of these reactions.
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Figure 2: Simulation phases of Virtual Microbes.
After initialisation, the simulation process runs through a sequence of 4 phases. It runs for a
specified number of update steps, or until the population goes extinct.



(see methods section Metabolic universe construction). This “metabolic
universe” is either constructed according to flexible parametrisation options or
constructed by the user. Furthermore, enzyme promiscuity can be incorporated
by letting enzymes act on sets of metabolites instead of particular metabolites
(see methods section Metabolism). After these reactions are defined, the simu-
lation will initiate with VMicrobes that have the minimal genes to start growing,
and start simulating.

The simulation process runs for a specified number of update steps, or until
the population goes extinct. Each update step consists of 4 sequential computa-
tional phases (displayed in Figure 2). In the first phase the environmental and
internal microbial dynamics defined by sets of ordinary differential equations
(ODEs) are run in parallel, interleaved with spatial diffusion of metabolites,
for a fixed amount of time. The second phase starts after molecular dynamics
are temporarily paused. Microbes die randomly with a probability that is the
base death rate increased with a penalty incurred from toxic levels of internal
metabolites, and are cleared from the grid after spilling their internal metabo-
lite contents. In the third phase, Vmicrobes that have reached a minimum
division volume compete to reproduce in empty spaces, with their competitive
strength depending on accumulated growth product. Reproducing cells divide
their volume equally between parent and offspring and offspring undergo muta-
tions before being placed on the grid. In the fourth, final phase environmental
changes may be applied, including varying metabolite influx rates and microbe
spatial diffusion or complete mixing.

The complete sets of metabolic species and the enzymatic and transport
reactions that are possible during a simulation are determined at the time of
initialization according to flexible parametrization options. An important pa-
rameter is the number of Molecule Classes that exist in the metabolic universe of
the simulation. Molecule Classes group metabolites into similarly behaving, re-
lated molecular species. More specifically, substrates and products of enzymatic
and transport reactions are defined at the level of Molecule Classes. Genes en-
coding a particular metabolic reaction can thus catalyse a set of reactions where
metabolic species within the same Molecule Class can replace each other within
the reaction scheme. The rationale for this structure of the model is that we can
represent substrate promiscuity of enzymes and allows to study its role in the
evolution of gene dosage and divergence. This promiscuity also holds for TFs
regarding their ligand molecules. Proteins can evolve their specificity for any
of the species within a Molecule Class through mutations of species specific K
parameters. Finally, if a Molecule Class consists of multiple species then a set
of enzymatic reactions exist to convert the species in the MC into each other.
These reactions resemble the addition or removal of small chemical groups, to
yield closely related molecular species.

Methods

This section describes the construction of the metabolic universe and the spatial
grid and the initialisation of Vmicrobes. and detailed life history in terms of
competition, reproduction, death and mutations. The source code of the model



is available for download at https://bitbucket.org/thocu/virtualmicrobes,
including instructions for installation and running a simple evolutionary simu-
lation.

Environment

The environment is constructed according to a set of parameters that specify
the properties of the metabolic universe and the spatially explicit environment
in which Vmicrobes evolve. A high flexibility in the experimental setup poses
some challenges to finding relevant, viable conditions for Vmicrobe evolution.
As in real organisms, their biological functions are strongly connected and hence
create various dependencies between parameter values. A straightforward ex-
ample of this is the interaction between biomass production rate, resource influx
and death rate of microbes, that must be adjusted to prevent rapid population
extinction. For the model to generate interesting eco-evolutionary dynamics
parameters need some degree of tuning.

metabolic universe construction The metabolic universe is the a priori set
of all molecular species and the reactions between them. Individual Virtual Mi-
crobes can perform subsets of these reactions if the express associated enzymes
in the presence of the substrates of the reactions. What follows is a description
of the parameters and rules that are used to construct the metabolic universe
for a specific simulation. First, the number of resource Molecule Classes and the
number (fixed or drawn within a range) of molecule species per class is chosen.
Separate energy MCs are defined that are used as energy currency in several
cellular functions. Each MC is assigned an energetic value that will be used
to prevent spontaneous mass creation (even though reactions are not strictly
mass balanced). Next, the reactions over the set of MCs are defined. Molecules
in non-energy MCs can be transported over the cell membrane when energy is
spent. In addition, all molecules within a single resource MC can be converted
into each other, consuming energy. A set of catabolic reactions is constructed
as follows: a resource MC is chosen at random as the substrate and then a
combination of reaction products is chosen from resource MCs and energy MCs
that have a combined energetic value less then or equal to that of the chosen
substrate. Additional constraints can be set on the number of MCs that can
be produced per reaction and on the maximum yield in energy molecules so
that breaking up a large molecule will require a sequence of enzymatic steps in
which energy is produced gradually. When repeating the procedure to create
the specified number of catabolic reactions, a maximum pathway convergence
parameter limits the number of occurrences of any MC in the rhs of reactions.
In similar fashion anabolic reactions are generated by finding substrate combi-
nations that match the energetic value of a larger reaction product. Anabolic
reaction can include energy MCs as substrates. The rules detailed above are
designed to facilitate the random generation of viable environments that also
allow for interesting evolution of Vmicrobe metabolism.

Spatial structure The environment is structured as a grid of equivoluminous
sites that can contain up to a maximum amount of individuals (default is 1).
Boundary conditions can be specified separately for the horizontal and verti-
cal sides to be either fixed or wrapped as well as the presence of (permeable)



parameter

description

simulation values

fraction-influx
nr-resource-classes
nr-energy-classes
mol-per-res-class
mol-per-ene-class
res-energy-range
ene-energy-range
nr-cat-reactions
nr-ana-reactions

cat-path-convergence
ana-path-convergence

nr-building-blocks
diffusion-constant
fluctuate-frequency
influx-range

small-mol-degradation

neighbourhoods

the fraction of metabolites with positive influx
number of resource Molecule Classes

number of energy Molecule Classes

number of species per resource Molecule Class
number of species per energy Molecule Class

range of energy values of resource molecules

range of energy values of energy molecules

(desired) number of catabolic reactions

(desired) number of anabolic reactions

max times metabolite is product in catabolic reaction
max times metabolite is product in anabolic reaction
number of metabolites designated as building blocks
spatial diffusion constant of metabolites

(average) time interval for influx rate changes

range of possible influx rates

degradation rate of molecules

grid neighbourhoods for different interaction modes

== =00

0.05

fixed or 200
1QUniform(=5,-2)
1073
compete:Moore9

HGT:Neumannl3
cell-shrink-rate
nr-building-blocks

constant rate of cell shrinking/ volume maintenance
number of designated building block metabolites

Table 1: Important initialization parameters and default values

barriers to Vmicrobes or metabolites throughout the grid. In addition, sub-
environments can be superimposed on the grid to simulate multiple habitats
with different metabolite composition and influx rates. Influx rates may vary
between metabolite species and over time. When an influx range is specified
influx fluctuates stochastically and takes new values ipe, = bV (%) Influx
for energy molecules and Vmicrobe building block metabolites is 0 by default
as these are assumed to be exclusively produced in intracellular enzymatic re-
actions. Metabolites degrade at a constant rate and diffuse on the spatial grid
as well as over cell membranes, resulting in concentration gradients.

Most often, Vmicrobes interact with their local neighbours. For different
modes of interaction it is possible to have interaction neighbourhoods with dif-
ferent shapes. For example, the default neighbourhood for reproductive compe-
tition is Moore9 while HGT event may occur within the larger von Neumann13
neighbourhood. Vmicrobes can diffuse to neighbouring grid points as well as
being randomly redistributed over the grid at some regular interval, although
both procedures come at the computational cost of redefining the local system of
ODEs. At the start of a simulation a newly initialized population of Vmicrobes
is placed randomly on the grid. Vmicrobe genome initialization is described in
the next section.

Genome initialization

Vmicrobes can grow to reach their minimum division volume by producing
designated building block metabolites or by acquiring them, via active or passive
transport, from the environment. Part of the production has to be spent on
maintenance of the cell volume, requiring Vmicrobes to maintain a minimum
level of production to prevent them from shrinking below the minimum cell
size. To achieve this, they need adapt their metabolism both to the intrinsic
environmental resource conditions and the changing metabolic activity of their
competitors.

Vmicrobes encode proteins on one or more chromosomes with a spatial (lin-
ear or circular) layout. Each protein coding gene has its own promoter and



operator site. Operator binding sites are encoded as bit strings that can be
recognized by TFs with a matching binding motif. Genomes are initialized with
a specified number of TF's, metabolic and transport genes. In order to initialize
individuals with a viable metabolism, metabolic genes are selected according to
these stochastic rules:

1. Enzymes that can produce the building blocks and energy metabolites are
added first

2. Any further enzymatic steps should connect their product metabolites to
the existing downstream metabolic network

3. Transport reaction are first selected that match metabolites with positive
environmental influx rates

4. Further transporters are prioritized for connecting to internal metabolism

5. TFs are selected to have ligands that are part of the internal metabolism
of the cell

Genes are initialized with randomized kinetic parameters and added to the
genome in random spatial order. Once Vmicrobes are initialized and placed on
the grid, the population starts evolving by simulating the life histories of all
individuals in parallel.

Life history

As described above, the growing or shrinking of Vmicrobe cell volume, deter-
mines whether they may divide or die from lack of nutrients. Additional causes
of death are the buildup of toxic metabolite concentrations and natural death.

production Vmicrobes convert building blocks to a production value P by a
simple function

ar _ [[m-a-pP
meB
, with B the set of building block metabolites defined for the individual and d
a low degradation rate on the production value. Different species may require
different sets of essential building blocks for growth. As well as being consumed
for cell growth and maintenance and protein production, P determines strength
with which individuals compete to reproduce.

cell volume growth We assume that if Vmicrobes grow without being able
to divide due to lack of space, they approach a maximum cell size V., and
that there is a continuous turnover d of the cell volume at steady state. Volume
then changes as

%:g'v'%'Pscaled_d'V
where Pgeqieq is the current production value of the cell, scaled by the time
adjusted population wide production rate P, as:

PS
Ps + Pp,p°

in which s is a constant determining the shape of the scaling function.

Pscaled =



toxicity and death All life forms must maintain internal molecule concen-
trations within permissible bounds for their survival. To address this premise,
we define a toxic effect function for virtual microbes. Metabolites can become
toxic to microbes when the internal concentrations reach a toxicity threshold.
A cumulative toxic effect is computed over the current life time 7 of a Vmicrobe
as .
Ctox = Z f(mvt)dt

men /=0

for all internal molecules M, with

flm,t) = max(0, m

)

the toxic effect function for the concentration of molecule m at time t with
toxicity threshold tox,,. This toxic effect increases the death rate d of microbes
starting at the intrinsic death rate r

tox,,

e
d=—"" . (1—=r)+r
s+ €tox
where s scales the toxic effect. Vmicrobes that survive after an update cycle

retain the toxic level they accumulated so far.

reproduction Reproduction can happen in empty spaces on the grid. Com-
petition is local between neighbouring Vmicrobes. Reproduction is determined
by fitness proportional selection where fitness is given by production value.
The roulette wheel includes a no-event term, representing the chance of no re-
production event happening. Because many different factors of the particular
environment determine the theoretical maximum production value that can be
reached it becomes highly impractical to determine the size of the no-event a
priori. Moreover, because the average production in the population typically
increases several orders of magnitude during the course of evolution, a fixed
no-event would soon be rendered inconsequential. We therefore determine it
dynamically, using a sliding time window on the population median production.
The value of the no-event term is then determined as the maximum of the slid-
ing window and the currently stored value. This has the effect that selection
pressure will remain relatively constant over large evolutionary increases in the
population production, and can be compared to evolution under chemostat con-
ditions. It is important to note, however, that heterogeneous spatial conditions
can result in very different growth conditions for Vmicrobes at different grid
locations.

mutation When a Vmicrobe is selected to reproduce, it divides and the off-
spring inherits a copy of the parent’s genome. The genome is subject to various
types of mutations. Chromosomes can undergo fission, fusion, deletion and du-
plication. Also, stretches of genes can be inverted, deleted or duplicated, or
trans-located to a different chromosome. A random genome position is chosen
start a stretch mutation and stretch lengths are exponentially distributed. At
a single gene level, all evolvable parameters can be independently mutated to
new values (see Table 2). A new value of a continuous parameter is drawn as

Unew = mam(min(v . bUniform(l,u)’ 'Umaz)7 vmm)

10



Parameter

Gene Types

value range in simulation

Promoter Strength
K-bind-substrates
K-bind-energy
K-bind-ligand
K-bind-operator
V-max
effect-bound
effect-apo

ligand

exporting
sense-external
binding-motif

Enzyme, Transporter, TF

Enzyme, Transporter
Transporter

TF

TF

Enzyme, Transporter

Transporter
TF
TF

M € MoleculeClasses
[True,False]

[True,False]

bit flip at random position

operator-sequence Enzyme, Transporter, TF  bit flip at random position

Table 2: parameter mutational ranges

, where b, [, and u determine mutational effect and wv,,;, and v,,;, are the
upper and lower bound of parameter values. Operator and TF binding motif
sequences are mutated by flipping a bit in randomly chosen positions. TFs can
mutate to recognize a different MC as ligand. Finally rare mutations can cause
a TF to change between sensing internal and external ligand concentrations,
and transporters to change their directions of transport.

Metabolism

Metabolic enzymes catalyse reactions of the general form
Ry+Ri+... — FPy+...

converting reactant MCs {R;, ...} to products {P;,...}. The rate of catalysis,
v is calculated with standard Michaelis-Menten kinetics as

 eenl®)
[{rer([B] + Kr)

where [£] is the concentration of the enzyme catalysing the reaction and R the
set of all reactant MCs.

The general forms of the equation describe reactions between MCs. Each
MC consists of a set of chemically related molecule species, each named with
an index (e.g. A is the first species in the A MC). To model the promiscuous
activity of enzymes that catalyse the general reaction between MCs, we generate
a set of equations for all the catalysed reactions between species. This is done
by mapping species in the n!” reactant MC on the lhs by their index to species
at the same index in the n*" product MC on the rhs, if it exists. Thus we get
the following reactions for molecules species:

UV = Umaze * [8]

where index 4 ranges over the minimum number of species in the A and C' MCs
and j ranges over the minimum number of species in the B and D MCs. Any
species with a higher index in a reactant or product MC will not react or be
produced, respectively. If the number of reactant MCs in the rhs is not equal
to that in the lhs, any unmatched MCs will have reactions for all their species.
Thus, for reactions of with the following form

Ai+Bj—>Ci

11



where the number of substrate terms is higher than the number of product terms
4 ranges over all the species in MC B. This also holds for reactions of the form

Ai—>Ci+Dj

but now reactions exist for all the species in D.

Each of the parallel reactions can have different efficiencies, owing to the
different specificities K, for each reactant species encoded by enzymes. An evo-
lutionary process may optimize enzyme affinities for a subset of species in each
reactant Molecule Class, giving rise to a specialized enzyme. Because all affini-
ties evolve independently, it would be possible for multiple parallel reactions to
evolve to high reaction rates. To retain the property of a maximum enzyme
efficiency we rescale the rates of all parallel reactions if the sum of their rates
exceeds the enzyme encoded maximum catalysis rate (vmazg )-

transport Transporters 7 catalyse the transport of substrate S over the cell

membrane by consuming energy molecules E. Transport rate is given by

o 5] - [E]
v = vmerr [TV (67T Rg) (B + K)

where K's are Michaelis-Menten constants of the substrate binding to the trans-
porter. Depending on the direction of transport (importing or exporting) S is
either the external or the internal concentration of the substrate.

For transporters we assume that any species in the energy Molecule Class
can be consumed to import any species of the substrate Molecule Class being
transported. Thus, the set of parallel reactions is constructed by taking the
product of substrate species and energy species as the lhs of the equations.
Naturally, transported species map onto the same species on the opposite side
of the membrane.

In addition to enzyme kinetics, metabolite influx, passive membrane diffu-
sion, and degradation have a straightforward implementation.

transcription regulation The rates at which genes are transcribed and trans-
lated are a function of their sequence as well as the concentrations of binding
TFs and their molecular ligands. The intrinsic basal expression rate of a gene is
encoded by a strength parameter in a gene’s promoter region. This basal expres-
sion rate can be modulated by TF's that bind to an operator sequence associated
with the gene. Binding sites and TF binding motifs are modelled as bit-strings
and matching depends on a certain fraction of sequence complementarity. If a
minimum complementarity is chosen < 1 a match may occur anywhere within
the full length of the operator binding sequence and the TF binding motif. The
maximum fraction of complementarity achieved between matching sequences
linearly scales the strength with which a TF binds the target gene. In addition
to binding strength following from sequence complementarity, TFs encode an
intrinsic binding affinity for promoters K}, representing the structural stability
of the TF-DNA binding complex.

TF's can, themselves, be bound to small ligand molecules, altering the reg-
ulatory effect they exert on downstream genes. These effects are encoded by
parameters effpound and effapo for the ligand-bound and ligand-free state of the

12



TF, respectively, and evolve independently. Analogous to the modeling of en-
zyme interactions with small molecules, TF ligands are specified at the Molecule
Class level and binding affinities for separate molecule species within a class
evolve independently. Ligand binding to TFs is assumed to be a fast process,
relative to enzymatic and transcription-translation dynamics, and modeled at
quasi steady state. We determine the fraction of TF that is not bound by any

of its ligands L:
1]
Wapo = H(1 - )
ieL m + K]

The fraction of time that a TF 7 in a particular state o (bound or apo) is bound
to a particular operator o:

_ [To] *Cro* [(b.r
1+ Zoes ZT(,GT[TU] “Cro+ Kb,

depends on the inherent binding affinity K;_ as well as the sequence comple-
mentarity score ¢;, between the tf binding motif and the operator sequence [cite
Neyfahk]. The binding polynomial in the denominator is the partition function
of all TFs T in any of the states S that can bind the operator. Note that
small declines in the concentration of free TFs due to binding to operators are
neglected.

Now, the operator mediated regulation function for any gene is given by

Vo

Reg=> V;-E

with V; the fraction of time that the operator is either unbound or bound by
a TF in either ligand bound or unbound state and F; the regulatory effect of
that state (1 if unbound or effyound or effspo when bound by a ligand bound or
ligand free TF, respectively ). Finally, protein concentrations [P] are governed
by the function:
d[P]
i = Pr- Reg * Pscated - Escaled — deg?" : [,P}

where Pr is the evolvable parameter promoter strength and degr a fixed protein
degradation rate.
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