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ABSTRACT

We show how Yang-Mills theory on S3×R can exhibit a spectrum with continuous bands if

coupled either to a topological 3-form gauge field, or to a dynamical axion with heavy Peccei-

Quinn scale. The basic mechanism consists in associating winding histories to a bosonic zero

mode whose role is to convert a circle in configuration space into a helix. The zero mode

is, respectively, the holonomy of the 3-form field or the axion momentum. In these models

different θ sectors coexist but are not mixed by local operators. Our analysis sheds light on,

and extends Seiberg’s proposal for modifying the topological sums in quantum field theories.

It refutes a recent claim that B + L violation at LHC is unsuppressed.
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1 Introduction

While revisiting recently the question of electroweak B+L violation [1] in collider experiments

(for reviews and more references see [2][3][4][5]) Tye and Wong made a bold proposal [6][7].

They argued that the relevant degree of freedom in the space-time interaction region for

such processes is the Chern-Simons number of the electroweak gauge fields, whose effective

quantum mechanics exhibits band structure similar to that of an electron in a solid. They

further argued that the width of these bands is proportional to the amplitude of the instanton-

induced tunneling transitions which grows with available energy, and went on to conclude

that B + L violation may be unsuppressed at LHC.

This last conclusion misses in our opinion the key aspect of the problem: the difficulty of

streamlining the collision energy into coherent excitations of one or few quantum degrees of

freedom. In weakly-coupled theories such streamlining is expected to be exponentially small,

independently of any other features such as the existence of many vacua. Thus, even though

the inclusive cross-section for tunneling processes does grow with collision energy [8, 9] the

growth is believed to stop much before one hits the unitarity bound. This can be shown

rigorously in an analog λφ4 quantum mechanical model [10, 11].

Quite independently of LHC physics, the claim that Yang-Mills theory can exhibit band

structure is by itself surprising. Energy bands arise when a particle moves in a non-compact

dimension with periodic potential V (q) = V (q + n), n ∈ Z. A band is spanned by the

quasi-momentum (or lattice momentum) which takes values in a Brillouin zone. In the Yang-

Mills case the coordinate q is the Chern-Simons number of the gauge field, and the shifts

q → q + n are implemented by large gauge transformations. Since these are gauge and not

global symmetries, q is identified with q+1 and the wavefunction must be a periodic function

of q. This fixes the quasi-momentum, so there are no bands.

The purpose of this short letter will be to discuss how to evade this conclusion. The basic

idea is to associate tunneling transitions to a bosonic zero mode which provides a ‘tag’ that

distinguishes the winding vacua. This device effectively converts large gauge transformations

into global symmetries or, more figuratively, turns the q-circle into a (non-compact) helix for

which the spectrum exhibits (continuous) bands. The question then is whether this strategy

can be implemented within local quantum field theory. We will discuss two different ways of

doing this on a compact space manifold.

The first, proposed by Seiberg [12], involves coupling Yang-Mills theory to a topological

3-form gauge field B. What tags the winding vacua is the holonomy b =
∫
M3
B of B around

the space manifold M3. Another, less contrived but only approximate way involves coupling

Yang-Mills to a dynamical axion, a, with very large decay constant fa. The linear coordinate

of the helix is in this case the axion momentum or, equivalently, the integrated Poincaré dual

3-form
∫
M3

∗da . As we will see, the axion model (which arises naturally from string theory)

reduces to the topological model in the limit fa →∞.

The bands in the above extensions of gauge theory are filled by coexisting θ sectors,

which are not mixed by local operators but do talk via charged-membrane interface probes
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(3-dimensional analogs of Wilson lines). Even under the optimistic assumptions (1) that we

may replace the 3-sphere in our analysis by an interaction region of size m−1W , and (2) that

the probe membranes become dynamical, these latter would be too heavy to play any role

in collider physics. Thus, independently of any other objections, the band structure that we

exhibit here is not relevant for B+L violation at LHC. Nevertheless our results provide new

insights on the topological sector of non-abelian gauge theories, and the ‘helix mechanism’ is

so simple and general that it may find applications in other contexts.

The paper is organized as follows. In section 2 we describe the basic idea with the example

of a charged particle moving on a helix or on a circle, in a gravitational potential. Because

2π rotations are global (respectively gauge) symmetries, the particle’s spectrum does (does

not) have energy bands. In section 3 we explain how Seiberg’s proposal to couple Yang-Mills

to a topological 3-form gauge field implements the helix mechanism in local quantum field

theory. Section 4 presents a different realization which involves a dynamical axion with high

Peccei-Quinn scale fa. We show that in this theory approximate θ sectors coexist, and that in

the limit fa → ∞ one recovers the non-compact version of Seiberg’s model. Finally, section

5 contains some concluding remarks, in particular on electroweak B+L violation – the issue

that prompted this investigation.

A quantum-mechanical action for the Chern-Simons variable, similar to the one proposed

by Tye and Wong [6], can be derived by putting the SU(2) theory on the 3-sphere and then

projecting onto the SO(4)-invariant sector. This is an amusing exercise, but since the details

of this action play no role we relegate it to the appendix.

2 Circle versus Helix

One reads in many textbooks that Yang-Mills theory has winding vacua |n〉, that the true

vacuum is a linear superposition |θ〉 =
∑

n e
inθ|n〉, and that different |θ〉 belong to distinct

superselection sectors. Though usually a matter of semantics, these statements hide a subtle

aspect of the problem and can be misleading. We start by explaining why in a simple model

of quantum mechanics. This is standard material (see e.g. [13]) and readers may want to go

quickly to the next section.

The model is that of a particle moving in a periodic potential V (q) = V (q + n), n ∈ Z
with action

S =

∫
dtL =

∫
dt
[M

2
q̇ 2 − V (q)− θ q̇

]
. (2.1)

We have added to L a topological term that plays the role of the θ term in Yang-Mills theory,

as will be clear in the following section. To fully specify the model we must still state whether

the symmetry under discrete translations, q → q+n, is global or gauged. 1 In the former case

the particle lives on the real line and the potential has an infinite number of local minima

1More generally it is possible to only gauge a subgroup q → q+Nn of the symmetry group which amounts

to putting the particle on a circle of radius N/2π.
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Figure 1: A particle moving on the real line in the potential V = −A cos(2πq) has the same action

as a pendulum of unit radius with A = M×(Earth’s gravity). In the pendulum the discrete symmetry

under 2π rotations is gauged and V has a unique minimum, whereas on the real line the symmetry

is global and the minima are distinct. The magnetic flux Φ shown in the figure induces a theta term

with θ = eΦ, where e is the particle’s charge.

labelled by n ∈ Z, while in the latter it lives on a circle and V has a unique minimum which

we may choose to be at q = 0.

A physical realization of the circle model is a quantum pendulum moving in the Earth’s

gravitational field. The topological θ term arises if the pendulum carries electric charge and

encircles a magnetic flux. To turn the gauge symmetry of 2π rotations into a global symmetry

one can employ a simple trick: Convert the circle into a helix by forcing the particle to move

in an extra (horizontal) dimension z, so that z = ξq . The minima of the potential are now

distinguished by their position in the extra dimension, and q is effectively decompactified.

The θ term still corresponds to a flux tube threading the helix. These facts are illustrated in

the figure 1 above.

The physics of these problems is familiar. In the non-compact case the energy eigenstates

are organized in continuous bands, while in the compact case one keeps a single Bloch wave

in every band and the spectrum is discrete. At the risk of being pedantic, let us recall how

this works in more detail. From (2.1) one finds the momentum and Hamiltonian

p ≡ ∂L
∂q̇

= Mq̇ − θ , H(θ) ≡ pq̇ − L =
1

2M
(p+ θ)2 + V (q) . (2.2)

The θ-dependence looks, at first sight, trivial since it is removed by a unitary transformation

p+ θ = e−iθq p eiθq =⇒ H(θ) = e−iθqH(0) eiθq . (2.3)

Indeed, eiθq is the Bohm-Aharonov phase for a particle moving around a magnetic flux tube

as in figure 1. However, while eiθq is a legitimate operator in the helix model, it is not for

the pendulum because it is multi-valued on the circle (unless θ ∈ 2πZ). Thus θ is a relevant

parameter in the compact case, whereas it can be absorbed by a redefinition of momentum

in the non-compact case.

Either way, the generator of discrete translations, P := eip, commutes with H and can be

diagonalized. Its eigenvalues are phases eik, where k ∈ [−π, π] is the lattice-momentum or
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Figure 2: On the left the typical band structure for a particle moving in a periodic potential on the

real line (assuming k → −k invariance). The width of the bands grows with the tunneling amplitude

between neighbouring wells and bands eventually merge in a continuum. Compactifying the line to a

circle projects onto states with effective quasi-momentum θ (the red spectrum on the right).

quasi-momentum. Energy eigenstates of the helix model are labelled by k and by the index

λ = 0, 1, · · · that designates an ‘electron’ band. A generic spectrum is illustrated in figure 2 .

It has narrow ‘tight-binding’ bands whose width grows with λ, until they eventually merge

in a continuum. If Ek,λ(θ) and ψk,λ(q, θ) are the eigenvalues and eigenfunctions of H(θ), the

unitary equivalence (2.3) implies

ψk,λ(q, θ) = e−iθq ψk+θ,λ(q, 0) and Ek,λ(θ) = Ek+θ,λ(0) . (2.4)

Thus the only effect of θ in the non-compact case is to reshuffle the eigenvalues in each energy

band by a universal shift of k – a trivial effect as stated above.

The situation is different in the compact case where P is a gauge transformation, so it

must leave invariant all physical states. We must now project to k = 0, i.e. keep only the

periodic wavefunctions ψ0,λ(q, θ) whose energy is E0,λ(θ) = Eθ,λ(0). This keeps one state in

each energy band as illustrated in the figure. If we use as reference the non-compact theory

with θ = 0, then gauging the Z symmetry has the effect of projecting onto the sector with

quasi-momentum equal to θ.

More generally, one may gauge a subgroup {q → q + nN |n ∈ Z} of the global symmetry

and project onto N states with equally-spaced quasi-momenta in each energy band. In the

language of the helix, this amounts to taking z periodic (z ∼ z+ 1) and ξ = 1/N so that the

helix has a total of N turns. For N � 1 the bands are filled very densely. Alternatively, we

may perturb the infinite-helix model by a shallow potential ∆V ∼ εz2 with ε� 1. Its effect

is to cut off effectively the number of helix turns to N ∼ 1/
√
ε, so the energy spectrum is to

a good approximation the same as for a long periodic helix. We will see that both models

are realized in gauge theory.

One final comment concerns the width of the bands, which measures the θ-dependence
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of the spectrum in the circle model. For the low-lying bands this is proportional to the

amplitude of tunneling between nearby potential wells which is exponentially small. At

higher energies the particle gets delocalized and the bandwidth grows. A frequently used

quantity is the topological susceptibility χ, which is the second derivative of the ground-state

energy at θ = 0. This vanishes when tunneling is suppressed, and it is exponentially small for

a potential barrier that is hard to penetrate, χ ∼ exp(−S0) where S0 is the instanton action.

For a freely-moving particle χ = 1/M . 2

3 Chern-Simons Number as Helix Angle

The periodic variable in Yang-Mills theory is the Chern-Simons number of the gauge field. In

temporal gauge, appropriate for Hamiltonian quantization, this is defined by the well-known

expression

nCS = − 1

8π2

∫
d3x εijk tr(Ai∂jAk +

2

3
AiAjAk) :=

∫
S3
C(A) , (3.1)

where C(A) is the shorthand symbol for the normalized Chern-Simons 3-form and we have

taken space to be the 3-sphere S3. The Chern-Simons number is invariant under gauge

transformations that are homotopic to the identity, but it transforms under large ones by

integer shifts, nCS → nCS + n, where n is the winding number of the gauge transformation.

Since all of the gauge transformations must act trivially on physical states, nCS lives on the

circle and is hence compact.

Let us now assume, following Tye and Wong [6][7], that it makes sense to write down an

effective action for the variable nCS. We will comment on the validity of this assumption in

the end. For now we only require two topological features of the action: that it is invariant

under integer shifts, and that its potential be bounded. The maximum of the potential in the

electroweak theory is the sphaleron’s mass [15]. In the pure gauge theory considered here the

infrared cutoff is the inverse sphere radius that we set equal to one, so the potential barrier

should be of order ∼ 1/g2.

For the sake of concreteness, we may write down an action by truncating the theory on

S3 to the SO(4)-invariant sector. This reduces configuration space to a single variable, which

can be chosen conveniently to be nCS. The action is then fixed by requiring that the standard

Belavin et al instanton [16] be a solution of the reduced model in imaginary time [17]. The

exercise is worked out in appendix A . The result is more easily expressed after a non-linear

redefinition of the Chern-Simons variable,

nCS(q) = q2(3− 2q) , (3.2)

where q must be restricted to the range [0, 1] and

S(q, q̇) =
12π2

g2

∫
dt
[
q̇ 2 − 4q2(q − 1) 2

]
− θ

∫
dt ṅCS(q) . (3.3)

2The ground state energy of a free particle is θ2/2M . It has a cusp at θ = ±π, a fact that can be attributed

more generally to the existence of many degenerate states [14]. We thank Cesar Gomez for this remark.

5



Note that as nCS varies from 0 to 1, the variable q covers monotonically this same range.

Since the endpoints of the interval are identified, one must glue together the two minima of

the double-well potential keeping the finite barrier in their middle. The resulting potential

is non-analytic at the identification point 0 = q = 1, but it remains twice-continuously

differentiable there.

The above action has the same gross features as that in [6], namely a harmonic potential

around q = 0 and a barrier height of order ∼ 1/g2 at weak coupling. Since q is a compact

variable, the energy spectrum is discrete with no bands. Furthermore, in contrast to the non-

compact toy model of section 2 here we cannot decree that the shift symmetry is global rather

than gauged. Doing this violates locality, because gauge transformations in the topologically

trivial (n = 0) sector can look ‘large’ in two widely-separated regions.

One way out is to associate to instanton transitions a shift of some bosonic zero mode 3

thereby turning configuration space into a helix. Interestingly, this can be achieved without

violation of locality by coupling the original Yang-Mills to a topological theory, as proposed

by Seiberg [12]. The extra term in the Lagrangian is

∆LYM = a
[
dC(A)− ξ−1dB

]
, (3.4)

where a is a Lagrange multiplier field, B := 1
3!Bµνρdx

µ ∧ dxν ∧ dxρ is a 3-form gauge field, d

is the exterior derivative, and ξ is a free parameter - the pitch of the helix.

The quantum-mechanical model on S3 has now two new variables, a and the holonomy

of the 3-form field, b :=
∫
S3 B. Their action is

∆S =

∫
dt a [ ṅCS − ξ−1 ḃ ] . (3.5)

The equation of motion for b forces a to be constant, while the equation of a implies ξṅCS = ḃ.

As expected, this modification did not add any dynamical degrees of freedom to the theory.

However, instanton transitions are now accompanied by a shift ∆b = ξ∆nCS, which converts

the nCS circle to a helix.

We may consider b to be a periodic variable, b ∼ b+ 1, if we decree that the theory only

admits membranes whose charge is an integral multiple of 2π. By analogy with conventional

gauge theories, this means that the admissible volume operators (counterparts of Wilson-loop

operators) are labeled by an integer charge m,

Wm := e2πim
∫
S3 B . (3.6)

The spectrum of the model with action S + ∆S, eqs. (3.3) and (3.5), depends then on the

parameter ξ. If ξ = 1 it is the same as for pure Yang-Mills theory. If ξ is irrational the helix

is non-compact and the spectrum has continuous bands. Finally, if ξ = 1/N the helix closes

after N turns and one should keep N eigenstates in every band.

3Fermionic zero modes will not do the job, since they at best double the effective period of nCS.

6



Let us pick ξ = 1/N . The energy eigenvalues in the notation of section 2 are Eθ+2πk/N, λ(0)

where λ is the label of the band and k = 0, 1, · · · , N − 1. Thus N different θ sectors coexist

and the partition function of the theory can be written as

Z =

N∑
k=1

ZYM

(
θ +

2πk

N

)
, (3.7)

where ZYM(θ) is the partition function of the original Yang-Mills at angle θ. This agrees

with the results of Seiberg [12]. Note that local operators do not mix the different θ sectors –

these are superselection sectors in the usual sense. They are however mixed by the operators

Wm which shift θ by ∆θ = 2πm/N , as the reader can verify.

The Wm are examples of boundary or interface operators (also called Janus interfaces

when they carry no degrees of freedom, as in this case). They have been studied extensively

in N = 4 super Yang-Mills where they preserve space-time supersymmetry if combined with

an appropriate discontinuity of the coupling g [18][19]. More generally, these interfaces can

be conformal but not topological as should be clear from the fact that they modify operator

dimensions (for a recent discussion of the θ-dependence of scaling dimensions in N = 4 super

Yang-Mills see [20]). Using radial quantization, the conformal interface operators can be

defined on 3-spheres in R4 and expanded for small 3-spheres in terms of local operators, the

leading of which is the topological density tr(F ∧ F ).

After all the dust has settled the theory looks deceivingly simple. It is a superposition of

N distinct gauge theories with different values of the θ-angle, related by interface operators.

There is however a non-trivial fact: this coexistence was achieved by a local modification

of the field theory action. 4 The construction is reminiscent of the non-dynamical 3-form

introduced by Brown and Teitelboim to describe a multi-valued cosmological constant [22].

4 Dynamical Axion

The 3-form model of the previous section may look contrived, and one can worry whether

it arises from a fundamental theory like string theory. It is therefore interesting to see that

a similar band structure emerges from a more conventional theory, Yang-Mills coupled to a

dynamical axion field. The extra terms in the reduced action are

∆S =

∫
dt

[
f2a
2
ȧ2 − a ṅCS

]
(4.1)

where fa is the axion decay constant which we will assume large. We also assume that a is

periodic (this is automatic in string-theory embeddings, and maybe more generally [23]) so

the target space of our quantum mechanical model is the two-dimensional torus (a, nCS) ∼
4The same trick can be used to force the coexistence of 2D sigma models with a Kähler modulus τ whose

real part takes several different values. In free-field models the expansion of interface operators in terms

of local operators can be computed to all orders from the exact conformal boundary states, see e.g. [21].

Interestingly, since the dimension of the identity operator vanishes for all values of τ , the ‘bandwidth’ is zero

for the lowest band but nor for those with non-trivial winding.
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(a, nCS + 1) ∼ (a + 2π, nCS). Note that 2π is the minimal period compatible with a well-

defined path-integral measure, but in general the period of a can be 2πk with k ∈ Z. 5 This

freedom will not be important to us, so we set k = 1.

The action S + ∆S, eqs. (3.3) and (4.1), describes a non-relativistic particle moving on a

2-dimensional torus in the background of a magnetic field and a non-trivial potential. The

torus is parametrized by (a/2π, nCS) which we will denote for short (x, y). The background

field A = −2πx dy corresponds to one unit of magnetic flux through the torus. Since the

quantization of the system does not depend on the choice of gauge for the magnetic field, we

may switch to A = 2πy dx which amounts to integrating by parts the
∫
a ṅCS term of the

action. The Hamiltonian is the sum of two terms,

H =
1

2f2a
[ pa − nCS ]2 +H0(θ) (4.2)

where pa is the momentum conjugate to a, and H0(θ) is the Hamiltonian of the pure Yang-

Mills theory derived from the action (3.3).

Let us analyze the energy spectrum in steps. We will first ignore the periodicity of nCS

and of the related variable q, allowing them to take values on the real line. Recall that q was

a redefinition of the Chern-Simons number between successive integers, whose only merit was

to simplify the kinetic and potential energy in our toy-action S. Since there is nothing sacred

about S, the fine distinction between q and nCS plays no special role. The periodicity of nCS

and q will be imposed in the end.

Next, we note that H commutes with the axion momentum pa which is furthermore

quantized, so we may set pa = na ∈ Z. The problem now reduces to that of a particle (with

canonical kinetic energy and mass ∼ 1/g2) moving in the effective 1D potential

V (q, na) =
1

2f2a
[na − nCS(q)]2 + V0(q) . (4.3)

Here V0 is the potential of the pure Yang-Mills theory which has been periodically extended

from the interval [0, 1] to the entire real line.

We have assumed that the axion scale is much larger than the other scales of the problem,

the inverse sphere radius (fa � 1) and the sphaleron’s mass (fa � 1/g2). The spectrum is

then, to a good approximation, determined by the periodic potential V0 which leads to the

characteristic band structure of a lattice model. The only effect of the axion term in (4.3) is

to put the particle inside a large box, centered around the Chern-Simons number nCS = na

and of approximate size fa. The box discretizes the quasi-momenta, but since their spacing

∼ 1/fa is small they cover the energy bands rather densely.

We can finally restore the winding transformations to their status of gauge, not global

symmetries. In pure Yang-Mills this identified periodically the Chern-Simons number nCS.

But (4.3) is only invariant under the combined shifts (nCS, na) → (nCS + n, na + n), so this

must be the symmetry that we need to gauge. This is familiar from the Landau problem

5To see why, consider a gauge group [SU(2)]k broken spontaneously to its diagonal subgroup. The aṅCS

term in ∆S is multiplied by k, so if normalized as in (4.1) the axion has k times the original period.
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on the square torus (x, y) ∼ (x + 1, y) ∼ (x, y + 1). The free-particle Hamiltonian in the

Ax = By gauge is H = 1
2(px −By)2 + 1

2p
2
y. It commutes with the torus translations

U = eipx and V = eipye−iBx , (4.4)

which furthermore commute with each other if B obeys the Dirac quantization B/2π = k ∈ Z.

The extra factor in V is the gauge transformation that patches together the local charts at y

and y + 1. The torus identifications impose on wavefunctions the conditions Uψ = V ψ = ψ,

and these are indeed obeyed by the k independent states at each Landau level,

ψλ,nx(x, y) =
∞∑

n=−∞
e2πi(nx+kn)x ψλ

(
y − n− nx

k

)
, (4.5)

where ψλ(y) are the harmonic-oscillator wavefunctions at level λ, and px/2π = nx ∈ Z (mod k).

Coming back to our problem we conclude that the large gauge transformations identify

periodically (nCS, na) ∼ (nCS+1, na+1), thus converting again the configuration space into a

helix. The second helix coordinate is the axion momentum na, which is only an approximate

zero mode lifted by the small quadratic term in the potential (4.3). In the limit fa →∞ the

zero mode becomes exact and the splitting of the quasi-momenta vanishes.

That the axion theory gives a similar spectrum as the topological model of the previous

section is, actually, no coincidence. We could have argued for this directly by adding to

the Lagrangian (3.4) a small mass term for the 3-form field, Lmass = (ξfa)
−2BµνρB

µνρ/12.

Integrating out the auxiliary field B gives, after integration by parts, Bµνρ = ξf2a εµνρσ∂
σa

thus reproducing precisely the dynamical axion model. Since the mass term breaks the

periodicity of B, interface operators of any charge are now allowed

Wγ = eiγ
∫
S3 ∗da ∀γ ∈ R . (4.6)

It is worth stressing that an approximate band structure would also arise from an axion

potential with a large number of stable minima between 0 and 2π, but such a model would

be really contrived. The simple axion model considered here is the one emerging naturally

from string theory, with fa of order the Planck scale .

We should here pause to assess the validity of our approximations. Reducing the gauge

theory on S3 to a quantum-mechanical model for nCS(t) has, a priori, zero range of validity.

Indeed, the perturbative excitations of this latter model have energy ∼ 1 (the inverse sphere

radius), which is also the energy of the truncated Kaluza-Klein modes. The only thing that

this model accurately describes is the θ-dependence of the vacuum energy, or more precisely

its exponential sensitivity e−S0 . This is, however, sufficient for our purpose here, which was

to explain how band structure may emerge in Yang-Mills. Note that level-splittings in the

lowest band are of order f−1a e−S0 ∼ N−1e−S0 , much smaller than the infrared cutoff which

is also the gap between bands.
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5 Concluding Remarks

The present investigation was prompted by ref. [6] which challenged the earlier consensus that

B +L-violating electroweak processes should be invisible at LHC. 6 The standard wisdom is

that the collision energy, initially carried by two hard quanta, has no chance of being stream-

lined to a coherent excitation of one (or a few) degrees of freedom in a weakly-coupled theory

like the electroweak Standard Model. Thus all processes involving solitons as intermediate

states should be exponentially suppressed, independently of any other details of the theory

at hand.

This ‘wisdom’ is supported by a lot of theoretical evidence, and also experimental [25][26].

In the context of the simple quantum mechanics of the Chern-Simons number analyzed here,

the suppression would not come from the tunneling rate of an excited state, but rather from

the unlikely probability of reaching this state when the energy is initially stored in a ‘hard

quantum’ that can be modelled by a highly-energetic source linear in q [10][11]. Still, in the

absence of a definitive calculation and since the LHC Run2 operates in the sphaleron range,

it is important to scrutinize all ‘heretic’ proposals.

We focussed here on one of the issues raised in ref. [6], namely whether the electroweak

theory exhibits band structure similar to that of an electron in a solid. We have explained

why this is not the case, although it would be conceivable if Yang-Mills theory were coupled to

an axion field with high Peccei-Quinn scale and if space could be treated as being compact.

It is amusing to note that even this hypothetical band structure would be absent in the

electroweak theory for a different reason: Because θ can be rotated away by a chiral U(1)B

and/or U(1)L rotation. In contrast to what happens for QCD such chiral rotations do not

transfer the electroweak θ angle to the Yukawa couplings of quarks and leptons, so θ is a

relevant parameter only if both B and L are explicitly broken [28].
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A An Action for the Chern-Simons number

A prototypical action for the Chern-Simons number nCS can be found by putting Yang-Mills

theory on S3 × Rτ where S3 is the unit-radius round 3-sphere and τ is imaginary time. This

spacetime is related to Euclidean R4 by a Weyl transformation,

ds2[S3 × R] = dτ2 + dΩ2
3 =

1

r2
(dr2 + r2dΩ2

3) =
1

r2
ds2[R4] (A.1)

with τ = log r, and dΩ2
3 the metric on the round 3-sphere. Since the self-dual Yang-Mills

equations are Weyl-invariant, 7 all solutions in R4 also solve the equations in S3 ×R. This is

in particular true for the celebrated Belavin et al [16] instanton

Aµ = − σ̄µν(xν − aν)

(x− a)2 + ρ2
=⇒ Fµν =

2σ̄µν ρ
2

[(x− a)2 + ρ2] 2
(A.2)

where σ̄µν = −iηaµνσa , η is the ’t Hooft tensor and σa the Pauli matrices. We are following

here the conventions of reference [17]. The instanton center, aν , and the instanton scale, ρ,

are collective coordinates of the solution.

To express this solution in terms of τ and coordinates φm on the 3-sphere we use the

relation xµ = |x| n̂µ = eτ n̂µ(φm) where n̂µn̂
µ = 1. The instanton centered at aν = 0, which

preserves an O(4) symmetry, is automatically in the Aτ = 0 gauge thanks to the antisymmetry

of σ̄µν . The vector potential, and the electric and magnetic fields read

Am =
σ̄µν n̂

µ∂mn̂
ν

1 + e2(τ0−τ)
, Fτm =

σ̄µν n̂
µ∂mn̂

ν

2 cosh2(τ − τ0)
, Flk =

σ̄µν ∂ln̂
µ∂kn̂

ν

2 cosh2(τ − τ0)
. (A.3)

We have here defined ρ ≡ eτ0 to make clear that the instanton scale in R4 becomes the time

collective coordinate in the new coordinate system. 8 The gauge field vanishes at τ → −∞
and is pure gauge at τ → +∞, so its field strength vanishes at both ends as expected since

it describes vacuum-to-vacuum tunneling.

From now on we set τ0 = 0 and think of (A.3) as a path in configuration space parametrized

by τ . The potential energy along the path is the energy stored in the magnetic fields,

V (τ) = − 1

2g2

∫
S3

tr(FlkF
lk) =

3π2

g2
1

cosh4 τ
, Vmax =

3π2

g2
. (A.4)

The normalization can be quickly fixed by noting that the integral of V is half the instanton

action,
∫
dτV (τ) = 4π2

g2
. The energy barrier is highest at τ = 0, the analog of the sphaleron

of the Standard Model. Note that the role of the W-boson mass is played by the radius of the

3-sphere, which introduces a cutoff on the instanton size. In holographic language the barrier

height attains its (non-zero) minimum when the D-instanton sits at the center of AdS5.

7The self-duality equations are Fµν = 1
2
ε ρσ
µν Fρσ, where the Levi-Civita tensor obeys

√
|g| εµνρσ ≡ ε̂µνρσ

with ε̂ the totally antisymmetric symbol normalized to ±1. Clearly ε ρσ
µν is Weyl invariant.

8This is familar from holographic dualities, where one identifies the instanton moduli with the coordinates

of a D-instanton in AdS5. The moduli aν and ρ are Poincaré coordinates for AdS5, while τ0 is the time in

global coordinates. Setting aν = 0 amounts to putting the D-instanton in the center of global AdS5.
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One may generalize the gauge field (A.3) to a variational ansatz (in temporal gauge) that

depends on a single arbitrary function y(τ),

Aτ = 0 , Am =
σ̄µν n̂

µ∂mn̂
ν

1 + e−2y(τ)
. (A.5)

It can be checked that this is the most general SO(4)-invariant configuration of the gauge

fields, so this is a symmetry truncation of configuration space. There is a single surviving

degree of freedom, which we can take to be the Chern-Simons number nCS. The magnetic

fields for the above configuration are the same as in (A.3) with τ replaced by y(τ), while the

electric fields are also multiplied by ẏ. Notice that this is not a reparametrization since we

keep the same metric gττ = 1. Computing the energy of the electric and magnetic fields gives

the effective Lagrangian (in Euclidean time) 9

L(q, q̇) =
3π2

g2
1

cosh4 y
(ẏ2 + 1) . (A.6)

One can check that ẏ = 1 solves the variational equation for this action, so the instanton is

a solution as it should be. The change of variable z = tanh y transforms the problem to the

standard double-well quantum mechanics,

L(q, q̇) =
3π2

g2
[
ż2 + (z2 − 1)2

]
. (A.7)

Finally we can relate the variable z to the Chern-Simons number of the field,

nCS(q) = − 1

8π2

∫
S3
εlkm tr(Al∂kAm +

2

3
AlAkAm) . (A.8)

Using the fact that space is compact and that nCS(−∞) = 0, one can rewrite the above

integral as a 4-dimensional integral of tr(Fµν
∗Fµν). This does not involve the metric, so the

result is form-invariant whether expressed as function of τ or y. Performing the integral gives

nCS =
1

2
+

sinh(3y) + 3 sinh y

8 cosh3 y
=

1

2
+
z

4
(3− z2) . (A.9)

In principle, one can invert this relation to find an effective quantum mechanics

L =
1

2
M(nCS) ṅ2CS − V (nCS) (A.10)

with functions M and V that can be computed.

Note that the range of z is [−1, 1], and the corresponding range of nCS is [0, 1], so the

Lagrangians (A.8) and (A.10) should be restricted to these finite intervals. A last change

of variable to q = (z + 1)/2, and Wick rotation to real time, gives finally the expressions

(3.2) and (3.3) of section 3. The range of q is the same as the range of nCS, so q can be

considered as a convenient redefinition of the Chern-Simons number. Since the only features

of the action that are relevant to our discussion are (1) its periodicity, and (2) the fact that

the potential barrier traversed by winding histories is finite, the fine distinction between nCS

and q is not important.

9The general Lagrangian that admits ẏ = 1 as a solution is L = f(y)(ẏ2 +1). Our calculation of the energy

stored in the magnetic fields fixes the arbitrary function f(y).
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