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CHAPTER

ONE

INSTALLING OBB

1.1 Requirements

oBB requires the following software to be installed:

• Python 2.6 to 2.7

• A working implementation of MPI-2 (e.g. OpenMPI or MPICH)

Additionally, the following python packages should be installed (these will be installed automatically if
using pip, see Installation using pip):

• NumPy 1.3.0 or higher

• MPI for Python 1.3 or higher

• CVXOPT 1.1.3 or higher

Optionally, matplotlib 1.1.0 or higher may be manually installed for visualising the algorithm in 2D.

1.2 Installation using pip

For easy installation, use pip as root:

$ [sudo] pip install obb

or alternatively easy_install:

$ [sudo] easy_install obb

If you do not have root privileges or you want to install oBB for your private use, you can use:

$ pip install --user obb

which will install oBB in your home directory.

Note that if an older install of oBB is present on your system you can use:

$ [sudo] pip install --upgrade obb

to upgrade oBB to the latest version.
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1.3 Manual installation

Alternatively, you can download the source code and unpack as follows:

$ wget http://pypi.python.org/packages/source/o/oBB/oBB-X.X.tar.gz
$ tar -xzvf oBB-X.X.tar.gz
$ cd oBB-X.X

and then build and install manually using:

$ python setup.py build
$ [sudo] python setup.py install

If you do not have root privileges or you want to install oBB for your private use, you can use:

$ python setup.py install --user

instead.

1.4 Testing

oBB includes a command line test script to check that the installation was successfull. To run the test simply
type the following into your shell:

$ test_obb

This will run oBB using MPI on one processor core for a simple 2D sum of sines problem (see Example of
Use).

Note that if using the MPICH implementation of MPI you first need to start an mpd daemon in the back-
ground:

$ mpd &

but this is not necessary for other MPI implementations, e.g. OpenMPI.

1.5 Uninstallation

If oBB was installed using pip you can uninstall as follows:

$ [sudo] pip uninstall obb

If oBB was installed manually you have to remove the installed files by hand (located in your python site-
packages directory).

1.3. Manual installation 3
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TWO

USER GUIDE

This section describes the main interface to oBB and how to use it.

2.1 Global Optimization

oBB is designed to solve the global optimization problem

min
x∈Rn

f(x)

s.t. l ≤ x ≤ u

and Ax ≤ b

Ex = d

where the objective function f has Lipschitz continuous gradient or Hessian. oBB does not need to know
the Lipschitz constants explicitly, it merely requires the user to supply elementwise bounds on the Hessian
or derivative tensor of the objective function (see How to use oBB). The linear inequality constraints Ax ≤ b
and equality constraints Ex = d are optional but the bound constraints l ≤ x ≤ u are required.

oBB uses local first or second order Taylor type approximations over balls within a parallel branch and
bound framework. As with all branch and bound algorithms, the curse of dimensionality limits its use to
low dimensional problems. The choice of whether to use first or second order approximations is down to
the user (see How to use oBB).

For an in-depth technical description of the algorithm see the tech-report [CFG2013] and the paper
[FGF2013].

2.2 How to use oBB

oBB requires the user to write a python script file that defines the functions and parameters necessary to
solve the global optimization problem and then passes them to the main obb function (see Example of
Use). The necessary functions are determined by the choice of a first or second order approximation model.
The following approximation models can be passed to oBB’s obb function using the mod argument (see
[CFG2013] for details):

4
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• First order models: ‘q’ - norm based, ‘g’, ‘Hz’, ‘lbH’, ‘E0’, ‘Ediag’ - minimum eigenvalue based

• Second order models: ‘c’ - norm based, ‘gc’ - minimum eigenvalue based

If using a first order model, the user is required to write the following functions:

• f(x) - returns objective function f at point x (scalar)

• g(x) - returns gradient∇xf of objective function at x (numpy 1D-array)

along with the bounding function:

• bndH(l,u) - returns two numpy 2D-arrays of elementwise lower and upper bounds on the Hessian
∇xxf of the objective function over [l, u]

For a second order model the user is additionally required to write the function:

• H(x) - returns Hessian∇xxf of objective function at x (numpy 2D-array)

and rather than bndH the bounding function:

• bndT(l,u) - returns two numpy 3D-arrays of elementwise lower and upper bounds on the derivative
tensor∇xxxf of the objective function over [l, u]

The type of parallel branch and bound algorithm to use should be passed to oBB’s obb function using the
alg argument and can be one of the following (see [CFG2013] for details):

• ‘T1’ - bounds in parallel

• ‘T2_individual’, ‘T2_synchronised’ - tree in parallel

See Example of Use for an in-depth worked example in python.

2.3 Optional Arguments

oBB allows the user to specify several optional arguments that control the behaviour of the algorithm:

• tol - objective function tolerance (e.g. 1e-2, the default)

• toltype - tolerance type (‘r’ - relative [default], ‘a’ - absolute)

• countf - count objective function evaluations (0 - off, 1 - on [default])

• countsp - count subproblem evaluations (0 - off, 1 - on [default])

and if matplotlib is installed:

• vis - visualisation of the algorithm in 2D (0 - off [default], 1 - on)

Note that the inequality constraint arguments A, b and equality constraint arguments E, d are also optional
as the optimization problem is only required to be bound constrained.

The user can also specify the QP solver that the algorithm calls to obtain feasible upper bounds (see
[CFG2013] for details). At present the user can choose from CVXOPT’s qp solver or the QuadProg++
solver using the optional argument:

• qpsolver - QP solver to use (‘cvxopt’ - CVXOPT’s qp [default], ‘quadprog’ - QuadProg++)

2.3. Optional Arguments 5
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Note that the QuadProg++ solver is faster as it is written in C++ but has very limited error handling and
may not work in all cases. The CVXOPT solver is slower as it is written entirely in Python but considerably
more stable.

2.4 Example of Use

Suppose we wish to solve the following global optimization problem:

min
x∈Rn

n∑
i=1

sin(xi)

s.t. − 1 ≤ xi ≤ 1 ∀i = 1, . . . , n

and
n∑

i=1

−xi ≤ 1

One can see that the gradient g, Hessian H and third order derivative tensor T are given by

g(x) = (cos(x1), . . . , cos(xn))
T

H(x) = diag(− sin(x1), . . . ,− sin(xn))

T (x) = diagt(− cos(x1), . . . ,− cos(xn))

where diagt is the tensor diagonal function (i.e. diagt(v) places the vector v on the diagonal of the tensor).

It is straightforward to obtain elementwise bounds on the Hessian matrix H and third order derivative tensor
T as both sin and cos can be bounded below and above by -1 and 1 respectively.

We can code this up in a python script file, let’s call it sines.py as follows:

# Example code for oBB
from obb import obb
from numpy import sin, cos, diag, ones, zeros

# Input Settings
# Algorithm (T1, T2_individual, T2_synchronised)
alg = ’T1’

# Model type (q - norm quadratic, g/Hz/lbH/E0/Ediag - min eig. quadratic,
# c - norm cubic, gc - gershgorin cubic)
mod = ’c’

# Tolerance
tol = 1e-2

# Tensor diagonal function
def diagt(v):

T = zeros((D,D,D))

2.4. Example of Use 6



oBB Documentation, Release 0.6b

for i in range(0,D):
T[i,i,i] = v[i]

return T

# Set up sum of sines test function
# Dimension
D = 2
# Constraints
l = -1*ones(D)
u = 1*ones(D)
A = -1*ones((1,D))
b = 1
# Required functions
f = lambda x: sum(sin(x))
g = lambda x: cos(x)
H = lambda x: diag(-sin(x))
bndH = lambda l,u: (diag(-ones(D)), diag(ones(D)))
bndT = lambda l,u: (diagt(-ones(D)), diagt(ones(D)))

# Name objective function
f.__name__ = ’Sum of Sins’

# Run oBB
xs, fxs, tol, itr = obb(f, g, H, bndH, bndT, l, u, alg, mod, A=A, b=b, tol=tol)

This file is included in oBB as sines.py, to run it see Running the Algorithm.

2.5 Running the Algorithm

To run the user-created python script file (e.g. sines.py, see Example of Use) we need to execute it using
MPI’s mpiexec command, specifying the number of processor cores with the -n option. For example, to run
oBB on four processor cores we simply execute the following shell command:

$ mpiexec -n 4 python sines.py

Note that if using the MPICH implementation of MPI we first need to start an mpd daemon in the back-
ground:

$ mpd &

but this is not necessary for other MPI implementations, e.g. OpenMPI.

2.6 Using the RBF Layer

oBB can optionally approximate the objective function f by a radial basis function (RBF) surrogate and
optimize the approximation instead (see [FGF2013] for details). The advantage of this approach is that the
user merely needs to supply the objective function and a set of points at which it should be evaluated to
construct the RBF approximation. The disadvantage is that the optimum found by the algorithm will only
be close to the optimum of the objective function if it is sampled at sufficiently many points.

2.5. Running the Algorithm 7
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As before, the user is required to write a python script file that defines the functions and parameters necessary
to solve the problem and then passes them to the obb_rbf function. In addition to the approximation model,
algorithm type and objective function arguments described in How to use oBB only an n by m numpy array
of m points at which to sample the objective function needs to be passed to the obb_rbf function using the
pts argument.

For example, suppose we wish to solve an RBF approximation to the problem given in the Example of Use
section:

min
x∈Rn

n∑
i=1

sin(xi)

s.t. − 1 ≤ xi ≤ 1 ∀i = 1, . . . , n

and
n∑

i=1

−xi ≤ 1

We can code this up in a python script file, let’s call it sines_rbf.py as follows:

# Example RBF Layer code for oBB
from obb import obb_rbf
from numpy import sin, ones
from numpy.random import rand, seed

# Input Settings
# Algorithm (T1, T2_individual, T2_synchronised)
alg = ’T1’

# Model type (q - norm quadratic, g/Hz/lbH/E0/Ediag - min eig. quadratic,
# c - norm cubic, gc - gershgorin cubic)
mod = ’c’

# Tolerance
tol = 1e-2

# Set up sum of sines test function
# Dimension
D = 2
# Constraints
l = -1*ones(D)
u = 1*ones(D)
A = -1*ones((1,D))
b = 1
# Required functions
f = lambda x: sum(sin(x))

# Generate 10*D sample points for RBF approximation
seed(5) # !!Sample points have to be the same on all processors!!
pts = rand(10*D, D)

# Scale points so they lie in [l,u]
for i in range(0,D):

2.6. Using the RBF Layer 8
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pts[:,i] = l[i] + (u[i]-l[i])*pts[:,i]

# Name objective function
f.__name__ = ’RBF Sum of Sins’

# Run oBB
xs, fxs, tol, itr = obb_rbf(f, pts, l, u, alg, mod, A=A, b=b, tol=tol)

Note the use of obb_rbf instead of obb and the need for a random number seed so that the sample points are
the same on all processors. This file is included in oBB as sines_rbf.py, to run it see Running the Algorithm.

2.7 RBF Layer for the COCONUT Test Set

oBB comes with a set of pre-computed RBF approximations to selected functions from the COCONUT
test set that were used to produce the numerical results in the paper [CFG2013]. In order to optimize these
approximations using oBB, the user is required to write a python script file that defines the desired function
and tolerance and then passes them to the obb_rbf_coconut function (see [CFG2013] for a list of all 31
functions available). For example, to optimize an RBF approximation to the ‘hs041’ function the user could
write the following python script file, let’s call it coconut.py:

# Example COCONUT RBF code for oBB
from obb import obb_rbf_coconut

# Input Settings
# Algorithm (T1, T2_individual, T2_synchronised)
alg = ’T1’

# Model type (q - norm quadratic, g/Hz/lbH/E0/Ediag - min eig. quadratic,
# c - norm cubic, gc - gershgorin cubic)
mod = ’c’

# Tolerance (can also be ’12hr’)
tol = 1e-2

# Choose RBF approximation from COCONUT test
f = ’hs041’

# Run oBB
xs, fxs, tol, itr = obb_rbf_coconut(f, alg, mod, tol=tol)

Note the use of obb_rbf_coconut as the calling function and the optional ‘12hr’ tolerance setting which
runs the algorithm to the absolute tolerance obtained by a serial code in twelve hours (see [CFG2013] for
details). This file is included in oBB as coconut.py, to run it see Running the Algorithm.
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providing us with his PyQuadProg code.
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