
1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55
Copyright © 2007 by the Spirit Consortium.
1370 Trancas Street #184, Napa, CA 94558
All rights reserved.

All rights reserved.This document is an unapproved draft of a proposed IP-XACT Standard. As such, this document is
subject to change. USE AT YOUR OWN RISK!

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 by the Spirit Consortium.
1370 Trancas Street #184, Napa, CA 94558
All rights reserved.

All rights reserved.This document is an unapproved draft of a proposed IP-XACT Standard. As such, this document is
subject to change. USE AT YOUR OWN RISK!

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1; May 28, 2009

IP-XACT Draft/D5: A specification for
XML meta-data and tool interfaces

Prepared by the

Schema Working Group
of
The SPIRIT Consortium

The SPIRIT Consortium.
1370 Trancas Street #184, Napa, CA 94558

Copyright © 2007 - 2008 by the SPIRIT Consortium.
All rights reserved. Published xx month 2008. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

1

5

10

15

20

25

30

35

40

45

50

55

The SPIRIT Consortium.
1370 Trancas Street #184, Napa, CA 94558

Copyright © 2005-2009 by the SPIRIT Consortium.
All rights reserved. Published xx June 2009. Printed in the United States of America.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

1

5

10

15

20

25

30

35

40

45

50

55

Abstract: The IP-XACT Standard forms the conformance checks for XML data designed to de-
scribe electronic systems. The meta data forms which are standardized include: components, sys-
tems, bus interfaces and connections, abstractions of those buses, and details of the components
including address maps, register and field descriptions, and file set descriptions for use in automat-
ing design, verification, documentation, and use flows for electronic systems. The standard includes
a set of XML schemas of the form described by the World Wide Web Consortium (W3C) and a set
of semantic consistency rules (SCRs). The standard also provides for a generator interface that is
portable across tool environments. The specified combination of methodology-independent meta-
data and the tool-independent mechanism for accessing that data provides for portability of design
data, design methodologies and environment implementations.
Keywords: Electronic Design Automation, EDA, XML Design Meta Data, IP-XACT, XML Schema,
Tight Generator Interface, TGI, Semantic Consistency Rules, SRCs, Design Environment, Use
Models, Tool And Data Interoperability, Implementation Constraints, Register Transfer Logic, RTL,
Electronic System Level, ESL, Bus Definitions, Abstraction Definitions, and Address Space Speci-
fication.

Copyright (c) 2005-2009 The SPIRIT Consortium. All rights reserved.
www.spiritconsortium.org

THIS WORK FORMS PART OF A SPIRIT CONSORTIUM SPECIFICATION.
USE OF THESE MATERIALS ARE GOVERNED BY
THE LEGAL TERMS AND CONDITIONS OUTLINED IN THE SPIRIT
SPECIFICATION DISCLAIMER AVAILABLE FROM
www.spiritconsortium.org

This document is provided on an AS IS basis. The SPIRIT Consortium disclaims
ANY WARRANTY EXPRESS OR IMPLIED INCLUDING ANY WARRANTY OF
MERCHANTABILITY AND FITNESS FOR USE FOR A PARTICULAR PURPOSE.
The user of the source file shall indemnify and hold The SPIRIT Consortium and its members
harmless from any damages or liability arising out of the use thereof or the performance or
implementation or partial implementation of the schema or any other reason.

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Introduction

The purpose of this standard is to provide the electronic design automation (EDA), semiconductor,
electronic intellectual property (IP) provider, and system design communities with a well-defined and
unified specification for the meta-data which represents the components and designs within an electronic
system. The goal of this specification is to enable delivery of compatible IP descriptions from multiple IP
vendors; better enable importing and exporting complex IP bundles to, from and between EDA tools for
SoC design (system on a chip design environments); better express configurable IP by using IP meta-data;
and better enable provision of EDA vendor-neutral IP creation and configuration scripts (generators). The
data and data access specification is designed to coexist and enhance the hardware description languages
(HDLs) presently used by designers while providing capabilities lacking in those languages.

The SPIRIT Consortium is a consortium of electronic system, IP provider, semiconductor, and EDA
companies. IP-XACT enables a productivity boost in design, transfer, validation, documentation, and use of
electronic IP and covers components, designs, interfaces, and details thereof. The data specified by IP-
XACT is extensible in locations specified in the schema.

IP-XACT enables the use of a unified structure for the meta specification of a design, components,
interfaces, documentation, and interconnection of components. This structure can be used as the basis of
both manual and automatic methodologies. IP-XACT specifies the tight generator interface (TGI) for access
to the data in a vendor-independent manner.

This standardization project provides electronic design engineers with a well-defined standard that meets
their requirements in structured design and validation and enables a step function increase in their
productivity. This standardization project will also provide the EDA industry with a standard to which they
can adhere and which they can support in order to deliver their solutions in this area.

The SPIRIT Consortium has prepared a set of bus and abstraction definitions for several common buses. It is
expected, over time, that those standards groups and manufacturers who define buses will include IP-XACT
Extensible Markup Language (XML) bus and abstraction definitions in their set of deliverables. Until that
time, and to cover existing useful buses, a set of bus and abstraction definitions for common buses has been
created.

A set of reference bus and abstraction definitions allows many vendors who define IP using these buses to
easily interconnect IP together. The SPIRIT Consortium posts these for use by its members, with no
warranty of suitability, but in the hope that these will be useful. The SPIRIT Consortium will, from time-to-
time, update these files and if a Standards body wishes to take over the work of definition, will transfer that
work to that body.

These reference bus and abstraction definition templates (with comments and examples) are available from
the public area of the http://www.spiritconsortium.org web site.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. iii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. iii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
Notice to users

Errata

Errata, if any, for this and all other standards of The SPIRIT Consortium can be accessed at the following
URL: http://www.spiritconsortium.org/releases/errata/. Users are encouraged to check this URL for errata
periodically.

Interpretations

Current interpretations, users guides, examples, etc. can be accessed at the following URL:
http://www.spiritconsortium.org/tech/docs/.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith.
iv Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

iv Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Participants

The following members and observers took part in the IP-XACT Schema Working Group (SWG) and the
Electronic System Level (ESL) Working Group (EWG):

Greg Ehmann, NXP Semiconductors, Chair SWG
Jean-Michel Fernandez, Cadence, Chair EWG

Gary Delp, The SPIRIT Consortium, Technical Director
Joe Daniels, Technical Editor

ARM: Allan Cochrane, Christopher Lennard, Andrew Nightingale, Chulho Shin, Peter Grun,
Anthony Berent, Sheldon Woodhouse

Cadence: Jean-Michel Fernandez, Giles Hall, Saverio Fazzari, Victor Berman

CoWare: Cesar A. Quiroz, Kris Dekeyser

Denali: Gary Lippert, Sean Smith, Joe Bauer

Duolog: Edwin Dankert

Freescale: Karl Heubaum, Michael Cruess

Infineon: Wolfgang Ecker, Thomas Steininger

LSI: Gary Delp, Wayne Nation, Gary Lippert, Dave Fechser

Magillem Design Services: Stephane Guntz, Cyril Spasevski

MatiTech: Aaron Baranoff

Mentor: John Wilson, Gary Dare, Mark Glasser, Matthew Ballance, Mike Andrews, Ajay Kumar

NXP Semiconductors: Greg Ehmann, Erwin de Kock, Geoff Mole, Ahmed Hemani, Roger Witlox,
Maurizio Vitale

Sonics: Pascal Chauvet, Kamil Synek

Semifore: Richard Weber

ST Microelectronics: Christophe Amerijckx, Serge Hustin, Anthony McIsaac, Stephane Guenot

Synopsys: Mark Noll, Bernard DeLay, John A. Swanson, Paul Wyborny

Texas Instruments: Bob Maaraoui, Bertrand Blanc

Special acknowledgment is given to:

Mentor: Contribution of initial schema upon which the work is based

Synopsys: Contribution of constraint structure

The Board of Directors of The SPIRIT Consortium active during the release of the IP-XACT Standard:

Ralph vonVignau, NXP, President
Gary Delp, The SPIRIT Consortium, Vice-President

Lynn Horobin, Executive Secretary

John Goodenough, ARM
 Stan Krolikoski, Cadence

 Luke Smithwick, Kathy Werner, Freescale
Gary Delp, Prabhu Krishnamurthy, LSI

 Bill Chown, Mentor Graphics
 Bart de Loore, NXP Semiconductors
 Serge Hustin, ST Microelectronics

 Pierre Bricaud, Synopsys
 Loic Le-Toumelin, David Peterman, Texas Instruments
Copyright © 2007 The SPIRIT Consortium. All rights reserved. v
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. v
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
vi Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

vi Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Contents

1. Overview .. 1

1.1 Scope .. 1
1.2 Purpose ... 1
1.3 Design environment (DE) .. 1

1.3.1 IP-XACT design environment .. 2
1.3.2 IP-XACT object descriptions .. 3
1.3.3 Object interactions .. 3
1.3.4 IP-XACT generators ... 4
1.3.5 IP-XACT design environment interfaces ... 4
1.3.6 Tight generator interface ... 4
1.3.7 Design intellectual property .. 4

1.4 IP-XACT enabled implementations ... 5
1.4.1 Design environments .. 6
1.4.2 Point tools ... 6
1.4.3 IPs ... 6
1.4.4 Generators ... 6

1.5 Conventions used ... 6
1.5.1 Visual cues (meta-syntax) ... 7
1.5.2 Notational conventions ... 7
1.5.3 Syntax examples ... 7
1.5.4 Graphics used to document the schema .. 7

1.6 Use of color in this standard... 11
1.7 Contents of this standard .. 11

2. Normative references ... 13

3. Definitions, acronyms, and abbreviations .. 15

3.1 Definitions.. 15
3.2 Acronyms and abbreviations.. 20

4. Interoperability use model.. 23

4.1 Roles and responsibilities... 23
4.1.1 Component IP provider ... 23
4.1.2 SoC design IP provider ... 23
4.1.3 SoC design IP consumer ... 24
4.1.4 Design tool supplier .. 24

4.2 IP-XACT IP exchange flows.. 24
4.2.1 Component or SoC design IP provider use model .. 25
4.2.2 Generator provider use model ... 25
4.2.3 System design tool provider use model .. 25

5. Interface definition descriptions... 27

5.1 Definition descriptions ... 27
5.2 Bus definition ... 27

5.2.1 Schema .. 27
5.2.2 Description .. 28
5.2.3 Example .. 28
Copyright © 2007 The SPIRIT Consortium. All rights reserved. vii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. vii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
5.3 Abstraction definition... 29
5.3.1 Schema .. 29
5.3.2 Description .. 29
5.3.3 Example .. 30

5.4 Ports.. 31
5.4.1 Schema .. 31
5.4.2 Description .. 31
5.4.3 Example .. 32

5.5 Wire ports ... 32
5.5.1 Schema .. 32
5.5.2 Description .. 32
5.5.3 Example .. 33

5.6 Qualifiers .. 33
5.6.1 Schema .. 33
5.6.2 Description .. 34
5.6.3 Example .. 34

5.7 Wire port group .. 35
5.7.1 Schema .. 35
5.7.2 Description .. 36
5.7.3 Example .. 37

5.8 Wire port ‘mode’ constraints.. 37
5.8.1 Schema .. 37
5.8.2 Description .. 37
5.8.3 Example .. 38

5.9 Wire port mirrored-‘mode’ constraints .. 38
5.9.1 Schema .. 38
5.9.2 Description .. 38
5.9.3 Example .. 39

5.10 Transactional ports ... 39
5.10.1 Schema .. 39
5.10.2 Description .. 40
5.10.3 Example .. 41

5.11 Transactional port group .. 41
5.11.1 Schema .. 41
5.11.2 Description .. 41
5.11.3 Example .. 42

5.12 Extending bus and abstraction definitions ... 42
5.12.1 Extending bus definitions ... 42
5.12.2 Extending abstraction definitions ... 43
5.12.3 Modifying definitions ... 44
5.12.4 Interface connections .. 44

5.13 Clock and reset handling .. 45

6. Component descriptions... 47

6.1 Component ... 47
6.1.1 Schema .. 48
6.1.2 Description .. 48
6.1.3 Example .. 49

6.2 Interfaces .. 50
6.2.1 Direct interface modes .. 50
6.2.2 Mirrored interface modes .. 50
6.2.3 Monitor interface modes ... 50
viii Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

viii Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.3 Interface interconnections .. 50
6.3.1 Direct connection .. 51
6.3.2 Mirrored-non-mirrored connection ... 51
6.3.3 Monitor connection ... 51
6.3.4 Interface logical to physical port mapping ... 51

6.4 Complex interface interconnections... 52
6.4.1 Channel ... 52
6.4.2 Bridge .. 53
6.4.3 Combining channels and bridges .. 53

6.5 Bus interfaces ... 54
6.5.1 busInterface ... 54
6.5.2 Interface modes ... 56
6.5.3 Master interface .. 58
6.5.4 Slave interface ... 60
6.5.5 Mirrored slave interface .. 62
6.5.6 Port map .. 63

6.6 Component channels .. 65
6.6.1 Schema .. 65
6.6.2 Description .. 66
6.6.3 Example .. 66

6.7 Address spaces ... 67
6.7.1 addressSpaces ... 67
6.7.2 Segments ... 69
6.7.3 executableImage ... 70
6.7.4 languageTools ... 72
6.7.5 fileBuilder ... 74
6.7.6 linkerCommandFile .. 75
6.7.7 Local memory map ... 77

6.8 Memory maps... 79
6.8.1 memoryMaps .. 79
6.8.2 Address block ... 80
6.8.3 Address block definition group ... 81
6.8.4 memoryBlockData group .. 83
6.8.5 Bank .. 85
6.8.6 Banked address block ... 87
6.8.7 Banked bank ... 89
6.8.8 Banked subspace ... 90
6.8.9 Subspace map ... 92

6.9 Remapping ... 95
6.9.1 Memory remap .. 95
6.9.2 Remap states ... 96

6.10 Registers ... 98
6.10.1 Register data ... 98
6.10.2 Register ... 98
6.10.3 Register definition group .. 100
6.10.4 Alternate registers ... 102
6.10.5 Alternate register definition group .. 103
6.10.6 Register file ... 105
6.10.7 Register reset value ... 107
6.10.8 Register bit-fields .. 107
6.10.9 Field data group .. 109
6.10.10 Enumeration values ... 111
6.10.11 Write value constraint ... 112
Copyright © 2007 The SPIRIT Consortium. All rights reserved. ix
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. ix
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.11 Models.. 114
6.11.1 Model .. 114
6.11.2 Views .. 114
6.11.3 Component ports ... 117
6.11.4 Component wire ports ... 119
6.11.5 Component wireTypeDef ... 120
6.11.6 Component driver ... 123
6.11.7 Component driver/clockDriver ... 124
6.11.8 Component driver/singleShotDriver ... 126
6.11.9 Implementation constraints ... 128
6.11.10 Component wire port constraints .. 128
6.11.11 Port drive constraints .. 130
6.11.12 Port load constraints .. 131
6.11.13 Port timing constraints .. 132
6.11.14 Load and drive constraint cell specification ... 133
6.11.15 Other clock drivers .. 134
6.11.16 Component transactional port type ... 136
6.11.17 Component transactional port type definition .. 137
6.11.18 Component transactional port service ... 138
6.11.19 Phantom ports ... 139
6.11.20 modelParameters ... 140

6.12 Component generators.. 145
6.12.1 Schema .. 145
6.12.2 Description .. 145
6.12.3 Example .. 146

6.13 File sets... 147
6.13.1 fileSets .. 147
6.13.2 file ... 148
6.13.3 buildCommand .. 151
6.13.4 define .. 152
6.13.5 defaultFileBuilder ... 153
6.13.6 function ... 154
6.13.7 argument ... 155
6.13.8 sourceFile .. 157

6.14 Choices ... 158
6.14.1 Schema .. 158
6.14.2 Description .. 158
6.14.3 Example .. 158

6.15 Whitebox elements... 160
6.15.1 Schema .. 160
6.15.2 Description .. 160
6.15.3 Example .. 161

6.16 Whitebox element reference... 161
6.16.1 Schema .. 161
6.16.2 Description .. 161
6.16.3 Example .. 162

6.17 CPUs... 163
6.17.1 Schema .. 163
6.17.2 Description .. 163
6.17.3 Example .. 163
x Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

x Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
7. Design descriptions .. 165

7.1 Design... 165
7.1.1 Schema .. 165
7.1.2 Description .. 166
7.1.3 Example .. 166

7.2 Design component instances .. 167
7.2.1 Schema .. 167
7.2.2 Description .. 168
7.2.3 Example .. 168

7.3 Design interconnections ... 169
7.3.1 Schema .. 169
7.3.2 Description .. 169
7.3.3 Example .. 170

7.4 Active, monitored, and monitor interfaces... 170
7.4.1 Schema .. 170
7.4.2 Description .. 171
7.4.3 Example .. 172

7.5 Design ad-hoc connections... 172
7.5.1 Schema .. 172
7.5.2 Description .. 173
7.5.3 Example .. 173
7.5.4 Ad-hoc wire connection .. 174
7.5.5 Ad-hoc transactional connection .. 174

7.6 Design hierarchical connections... 174
7.6.1 Schema .. 174
7.6.2 Description .. 175
7.6.3 Example .. 175

8. Abstractor descriptions... 177

8.1 Abstractor ... 177
8.1.1 Schema .. 177
8.1.2 Description .. 178
8.1.3 Example .. 179

8.2 Abstractor interfaces .. 179
8.2.1 Schema .. 179
8.2.2 Description .. 180
8.2.3 Example .. 180

8.3 Abstractor models .. 181
8.3.1 Schema .. 181
8.3.2 Description .. 181
8.3.3 Example .. 181

8.4 Abstractor views... 182
8.4.1 Schema .. 182
8.4.2 Description .. 183
8.4.3 Example .. 184

8.5 Abstractor ports .. 185
8.5.1 Schema .. 185
8.5.2 Description .. 185
8.5.3 Example .. 186
Copyright © 2007 The SPIRIT Consortium. All rights reserved. xi
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. xi
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
8.6 Abstractor wire ports .. 186
8.6.1 Schema .. 186
8.6.2 Description .. 187
8.6.3 Example .. 188

8.7 Abstractor generators ... 188
8.7.1 Schema .. 188
8.7.2 Description .. 189
8.7.3 Example .. 189

9. Generator chain descriptions.. 191

9.1 generatorChain ... 191
9.1.1 Schema .. 191
9.1.2 Description .. 191
9.1.3 Example .. 192

9.2 generatorChainSelector .. 193
9.2.1 Schema .. 193
9.2.2 Description .. 193
9.2.3 Example .. 194

9.3 generatorChain component selector ... 194
9.3.1 Schema .. 194
9.3.2 Description .. 194
9.3.3 Example .. 195

9.4 generatorChain generator ... 195
9.4.1 Schema .. 195
9.4.2 Description .. 196
9.4.3 Example .. 197

10. Design configuration descriptions.. 199

10.1 Design configuration .. 199
10.2 designConfiguration ... 199

10.2.1 Schema .. 199
10.2.2 Description .. 200
10.2.3 Example .. 201

10.3 generatorChainConfiguration... 202
10.3.1 Schema .. 202
10.3.2 Description .. 202
10.3.3 Example .. 203

10.4 interconnectionConfiguration... 203
10.4.1 Schema .. 203
10.4.2 Description .. 203
10.4.3 Example .. 204

11. Addressing and data visibility .. 207

11.1 Calculating the bit address of a bit in a memory map.. 207
11.2 Calculating the bus address at the slave bus interface ... 208
11.3 Address modifications of an interconnection... 208
11.4 Address modifications of a channel ... 209
11.5 Addressing in the master .. 210
11.6 Visibility of bits.. 210

11.6.1 Visible address ranges .. 210
11.6.2 Bit lanes in memory maps .. 211
xii Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

xii Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
11.6.3 Bit lanes in address spaces .. 211
11.6.4 Bit lanes in bus interfaces ... 211
11.6.5 Bit lanes in channels ... 211
11.6.6 Bit-steering in masters and slaves ... 211

11.7 Address translation in a bridge... 212

Annex A (informative) Bibliography .. 213

Annex B (normative) Semantic consistency rules (SCRs) ... 215

Annex C (normative) Common elements and concepts.. 243

Annex D (normative) Types.. 261

Annex E (normative) Dependency XPATH ... 265

Annex F (informative) External bus with an internal/digital interface ... 269

Annex G (normative) Tight generator interface (TGI) ... 271

Annex H (informative) Bridges and channels ... 351
Copyright © 2007 The SPIRIT Consortium. All rights reserved. xiii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. xiii
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
xiv Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

xiv Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
IP-XACT v1.5/D5: A specification for
XML meta-data and tool interfaces

1. Overview

This clause explains the scope and purpose of this standard; gives an overview of the basic concepts, major
semantic components, and conventions used in this standard; and summarizes its contents.

1.1 Scope

This standard describes an eXtensible Markup Language (XML)1 data format and structure, documented
with a schema2 for capturing the meta-data which documents design intellectual property (IP) used in the
development, implementation, and verification of electronic systems. The standard also includes a tight
generator interface (TGI) to provide consistent, tool-independent access to the meta-data. The XML
documents described and validated by the schema comprise a standard method to document IP that is
compatible with automated integration techniques. The TGI provides a standard method for linking
generation tools into a system development framework, enabling a flexible development environment (DE).
Tools compliant with this standard shall be able to interpret, configure, integrate, and manipulate IP blocks
that comply with the proposed IP meta-data description. This standard is independent of any specific design
process. It also does not cover the behavioral characteristics of the IP.

1.2 Purpose

This standard provides a well-defined XML schema for meta-data that documents the characteristics of IP
required for the automation of the configuration and integration of IP blocks; and also defines a TGI to make
this meta-data directly accessible to automation tools.

1.3 Design environment (DE)

The IP-XACT specification is a mechanism to express and exchange information about design IP and its
required configuration. While the IP-XACT description formats are the core of this standard, describing the
IP-XACT specification in the context of its basic use-model, the design environment (DE), more readily
depicts the extent and limitations of the semantic intent of the data. The DE coordinates a set of tools and IP,

1Information on references can be found in Clause 2.
2IP-XACT uses the World Wide Web Consortium (W3C) standard for the eXtensible Markup Language (XML) data. The valid format
of that XML data is described in a schema by using the Schema description Language described therein.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 1
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 1
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
or expressions of that IP (e.g., models), through the creation and maintenance of meta-data descriptions of
the SoC such that its system-design and implementation flows are efficiently enabled and re-use centric.

The use of The SPIRIT Consortium IP-XACT specified formats and interfaces are shown, in bold, in
Figure 1 and described in the following subsections.

Figure 1—IP-XACT design environment

1.3.1 IP-XACT design environment

A design environment enables the designer to work with IP-XACT design IP through a coordinated front-
end and IP design database. These tools create and manage the top-level meta-description of system design,
and may provide two basic types of services: design capture, which is the expression of design configuration
by the IP provider and design intent by the IP user; and design build, which is the creation of a design (or
design model) to those intentions.

As part of design capture, a system design tool shall recognize the structure and configuration options of
imported IP. In the case of structure, this implies both the structure of the design (e.g., how specific pin-outs
refer to lines in the HDL code) as well as the structure of the IP package (e.g., where design descriptions and
related generators are provided in the packaged IP data-structure). In the case of configuration, this is the set
of options for handling the imported IP (e.g., setting the base address and offset, bus-width, etc.) that may be
expressed as configurable parameters in the IP-XACT meta-data.

As part of design build, generators may be provided internally by a system design tool to achieve the
required IP integration or configuration, or provided externally (e.g., by an IP provider) and launched by the
system design-tool as appropriate.

The system design tool set defines a DE where the support for conceptual context and management of IP-
XACT meta-data resides. However, the IP-XACT specifications make no requirements upon system design
tool-architecture or a tool’s internal data structures. To be considered IP-XACT v1.5 enabled, a system
design-tool shall support the import/export of IP expressed with valid IP-XACT v1.5 meta-data for both
2 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

2 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
component IP and designs, and it needs to support the tight generator interface (TGI) for interfacing with
external generators (to the DE).

1.3.2 IP-XACT object descriptions

The IP-XACT schema is the core of the IP-XACT specification. There are seven top-level schema
definitions. Each schema definition can be used to create object descriptions of the corresponding type.

— A bus definition description defines the type attributes of an bus.

— An abstraction definition description defines the representation attributes of a bus.

— A component description defines an IP or interconnect structure.

— A design description defines the configuration of and interconnection between components.

— An abstractor description defines an adaptor between interfaces of two different abstractions.

— A generator chain description defines the grouping and ordering of generators.

— A design configuration description defines additional configuration information for a generator
chain or design description.

1.3.3 Object interactions

An object description contains a unique identifier in the header. The identifier in IP-XACT terms is called a
VLNV after the four elements that define its value: vendor, library, name, and version. See C.6 for further
details on a VLNV. This VLNV is used to create a reference from one description to another. The links
between these objects are illustrated in Figure 2. The arrows (A  B) illustrate a reference of one object to
another (e.g., reference of object B from object A).

Figure 2—IP-XACT object interactions
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 3
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 3
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
1.3.4 IP-XACT generators

Generators are executable objects (e.g., scripts or binary programs) which may be integrated within a design
environment (referred to as internal) or provided separately as an executable (referred to as external).
Generators may be provided as part of an IP package (e.g., for configurable IP, such as a bus-matrix
generator) or as a way of wrapping point tools for interaction with a design environment (e.g., an external
design netlister, external design checker, etc.).

An internal generator may perform a wide variety of tasks and may access IP-XACT compliant meta-data by
any method a DE supports. IP-XACT does not describe these protocols.

An external generator (often referred to as a TGI generator) is an executable program or script invoked from
within a DE to query or configure design descriptions and their related component and abstractor
descriptions. External generators can use the TGI to access their IP-XACT meta-data descriptions (as
currently loaded into the design environment) and perform the various operations associated with those
descriptions. In addition, external generators shall only operate upon IP-XACT compliant meta-data
through the defined TGI, see 1.3.6.

Generators can be referenced from a component, abstractor, or generator chain description. Generators can
also be grouped and ordered in generator chain descriptions and those chain descriptions contained inside
other chain descriptions. This sequencing of generators is critical for providing script-based support for SoC
flow creation.

1.3.5 IP-XACT design environment interfaces

There are two obvious interfaces expressed in Figure 1: from the DE to the external IP libraries and from the
DE to the generators. In the former case, the IP-XACT specifications are neutral regarding the design-tool
interfaces to IP repositories. Being able to read and write IP with IP-XACT meta-data is required; however,
the formal interaction between an external IP repository and a design environment is not specified.

1.3.6 Tight generator interface

The tight generator interface (TGI) is the method a generator uses to efficiently access a design or
component description in a design environment- and generator language-independent manner. Therefore, a
generator running on two different DEs produces the same results. The DE and the generator communicate
with each other by sending messages utilizing the Simple Object Access Protocol (SOAP) standard specified
in the Web Services Description Language (WSDL). SOAP provides a simple means for sending XML-
format messages using the Hyper Text Transfer Protocol (HTTP) or other transport protocols. IP-XACT
supports using an HTTP protocol or a file protocol.

The SOAP messages passed between the generator and the DE allow the generator to get all information
about the design interconnections (which contain components and abstractors), provide set information for
any configurable elements in a component or abstractor, and make simple modifications of the design
description. For additional details on the design environment generator invocation and the SOAP messages
passed between the generator and the DE, see Annex G.

1.3.7 Design intellectual property

IP-XACT is structured around the concept of IP re-use. Electronic Design Intellectual Property, or IP, is a
term used in the electronic design community to refer to a reusable collection of design specifications which
represent the behavior, properties, and/or representation of the design in various media. The name IP is
partially derived from the common practice of considering a collection of this type to be the intellectual
property of one party. Both hardware and software collections are encompassed by this term.
4 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

4 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
These collections may include the following.

a) Design objects—This can include the following.

1) TLM descriptions: SystemC & SystemVerilog

2) Fixed HDL descriptions: Verilog, VHDL

3) Configurable HDL descriptions (e.g., bus-fabric generators)

4) Design models for RT and transactional simulation (e.g., compiled core models)

5) HDL-specified verification IP (e.g., basic stimulus generators and checkers)

b) IP views—This is a list of different views (levels of description and/or languages) to describe the IP
object. In IP-XACT v1.5, these views include:

1) Design view: RTL Verilog or VHDL, flat or hierarchical components

2) Simulation view: model views, targets, simulation directives, etc.

3) Documentation view: Standard, User Guide, etc.

IP-XACT XML meta-data descriptions provide a standardized way of collecting much of the structural
information contained in the file sets. IP-XACT also can contain the information that identifies the
appropriate files included in a collection to be used for different parts of the design process.

1.4 IP-XACT enabled implementations

Complying with the rules outlined in this section allows the provider of tools, IP, or generators to class their
products as IP-XACT Enabled. Conversely, any violation of these rules removes that naming right. This
section first introduces the set of metrics for measuring the valid use of the specifications. It then specifies
when those validity checks are performed by the various classes of products and providers: DEs, point tools,
IPs, and generators.

a) Parse validity

1) Parsing correctness: Ability to read all IP-XACT descriptions.

2) Parsing completeness: Cannot require information which could be expressed in an IP-XACT
format to be specified in a non- IP-XACT format. Processing of all information present in an
IP-XACT document is not required.

b) Description validity

1) Schema correctness: IP is described using XML files that conform to the IP-XACT schema.

2) Usage completeness: Extensions to the IP-XACT schema shall only be used to express infor-
mation that cannot otherwise be described in IP-XACT.

c) Semantic validity

1) Semantic correctness: Adheres to the semantic interpretations of IP-XACT data described in
this standard.

2) Semantic completeness: Obeys all the semantic consistency rules described in Annex B.

These validity rules can be combined with the product class specific rules to cover the full IP-XACT enabled
space. The following subsections describe the rules a provider has to check to claim a product is IP-XACT
Enabled.

An IP-XACT Enabled design environment or point tool may read descriptions based on multiple versions of
the IP-XACT schema. If the DE or point tool does provide this capability, the effect shall be as if all of the
descriptions had been translated by the XSL Transform (XSLT), which is provided with the IP-XACT
release to convert descriptions from one version to the next. In addition, a DE or point tool may preserve
information in the initial description for use outside of the scope of the IP-XACT specification.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 5
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 5
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
1.4.1 Design environments

An IP-XACT Enabled design environment:

a) Shall follow the parse validity requirements shown in 1.4.

b) Shall only create IP which is IP-XACT Enabled.

c) When modifying any existing IP-XACT descriptions, shall do so without losing any pre-existing
information. In particular, it shall preserve any vendor extension data included in the existing IP-
XACT description.

d) Shall support the IP-XACT generator interfaces fully for interaction with underlying database.

e) Shall be able to invoke all IP-XACT Enabled generators.

XPATH version 1.0 support is required for DE compliance.

1.4.2 Point tools

A point tool is a tool which has a particular rather than a general set of capabilities. In contrast to IP-XACT
Enabled design environment (see 1.4.1), an IP-XACT Enabled point tool:

a) Shall follow the parse validity requirements shown in 1.4.

b) Shall only create IP which is IP-XACT Enabled.

c) When modifying any existing IP-XACT descriptions, shall do so without losing any pre-existing
information. In particular, it shall preserve any vendor extension data included in the existing IP-
XACT description.

1.4.3 IPs

An IP-XACT Enabled IP:

a) Shall have an IP-XACT description that follows the description and semantic validity requirements
shown in 1.4.

b) Shall only use IP-XACT Enabled generators for any generators associated with this IP.

XML descriptions compliant to IP-XACT shall provide a namespace reference to the index.xsd schema
file, not to any of the other files in the release.

1.4.4 Generators

An IP-XACT Enabled generator:

a) Shall only create IP which is IP-XACT Enabled.

b) When modifying any existing IP-XACT descriptions, shall do so without losing any pre-existing
information. In particular, it shall preserve any vendor extension data included in the existing IP-
XACT description.

c) Shall be callable though the IP-XACT TGI (see Annex G).

d) Shall only communicate with the DE that invoked it through the IP-XACT TGI (see Annex G).

1.5 Conventions used

The conventions used throughout the document are included here.

IP-XACT is case-sensitive.
6 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

6 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
1.5.1 Visual cues (meta-syntax)

Bold: shows required keywords and/or special characters, e.g., addressSpace. For the initial defini-
tional use (per element), keywords are shown in boldface-red text, e.g, bitsInLau (see also: 1.6).

Bold italics: shows group names or data types, e.g., nameGroup or boolean. For definitions of types
see Annex D.

Courier: shows examples, external command names, directories and files, etc.,
e.g., address 0x0 is on D[31:0].

1.5.2 Notational conventions

The keywords “required”, “shall”, “shall not”, “should”, “should not”, “recommended”, “may”, and
“optional” in this document are to be interpreted as described in the IETF Best Practices Document 14,
RFC-2119.

1.5.3 Syntax examples

Any syntax examples shown in this Standard are for information only and are only intended to illustrate the
use of such syntax.

1.5.4 Graphics used to document the schema

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ specifies the XML schema language used to
define the IP-XACT XML schemas. Normative details for compliance to the IP-XACT standard are
contained in the schema files. Within this document, pictorial representations of the information in the
schema files illustrate the structure of the schema and define any constraints of the standard. With the
exception of scope and visibility issues, the information in the figures and the schema files is intended to be
identical. Where the figures and schema are in conflict, the XML schema file shall take precedence.3

1.5.4.1 Elements and attributes

The element is the fundamental building block on which this standard is based. An element may be either a
leaf element, which is a container for information, or a branch element, which may contain further branch
elements or leaf elements.

A leaf or branch element may also contain attributes. Attributes are containers for information within the
containing element.

1.5.4.2 Types

A type is a designation of the format for the contents of an element or attribute. There are two different styles
of types that can be defined. A type may be assigned to a leaf element or an attribute. This type is called a
simpleType and defines the format of data that may be stored in this container. A type may also be assigned
to a branch element. This type is called a complexType and defines further elements and attributes contained
in the branch element.

1.5.4.3 Groups

A group is a collection of elements or attributes, which allow the same collection of items to be referenced
consistently in many places. There are two different types of groups that can be defined. A group is a

3The graphics for this document have been generated by taking “screen-shots” of the various files as they are displayed in Altova’s
XML environment XMLSpyTM. The use of these illustrations is not an endorsement of this tool.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 7
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 7
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
combination of leaf or branch elements. An attributeGroup, a simple list of attributes. The names assigned
to either group have no representation in the resulting description.

1.5.4.4 Name space

Each element, attribute, type, or group has a name, which is preceded by a namespace and separated from
the name by a colon (:). For the examples in 1.5.4.5, xyz is used as the namespace for all of the items
whereas the Standard uses spirit. Within the text of this standard, the namespace is not written when
describing an item; it is only shown in examples.

1.5.4.5 Diagrams

The diagrams used throughout this standard graphically detail the organization the elements and attributes.

1.5.4.5.1 Elements and sequences

Figure 3 shows the sequence-compositor. At the left is a branch element, element1, with some descriptive
text below. element1 is connected to a sequence-compositor. The sequence-compositor defines the order the
subelements appear in the branch element. subElement1 shall appear first inside of element1. This is
followed by subElement2, subElement3, subElement4, and subElement5 before closing element1.

Figure 3—Sequence-compositor

a) subElement1 is a mandatory element, as indicated by the solid line of the containing box. The type
of the data contained in this element is set to string and it has a default value of ip-xact if the ele-
ment is present, but left empty.

b) subElement2 is an optional element, as indicated by the dashed-line of the containing box.

c) subElement3 is an mandatory element that may appear multiple times, indicated by the double solid
line of the containing box. The number of times the element may appear is indicated by the range of
the numbers listed below the element.

d) subElement4 is an optional element that may appear multiple times, as indicated by the double-
dashed line of the containing box. The number of times the element may appear is indicated by the
range of the numbers listed below the element.

e) subElement5 is an mandatory branch element that contains further elements inside, as indicated by
the small plus sign (+) in the small box on the right.

Figure 4 shows variations of a sequence-compositor. root1 is connected to an optional sequence-
compositor, as indicated by the symbol being drawn with a dashed line. element1 may appear first inside of
root1; if it does, it shall be followed by element2. Each subelement is connected to a sequence-compositor.
8 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

8 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Figure 4—Sequence-compositor variations

— element1 may contain one or more of the following sequences in the following order: subElement1
and subElement2 and subElement3. The number of times the sequence-compositor may appear is
indicated by the range of the numbers listed below the symbol. If the range is greater than 1, the
sequence-compositor symbol is drawn with double-lines.

— element2 is optional and may contain one or more of the following sequences in the following order:
subElement1 and subElement2 and subElement3. The number of times the sequence-compositor
may appear is indicated by the range of the numbers listed below the symbol. If the range starts at 0
and the maximum is greater then 1, the sequence-compositor symbol is drawn with double-dashed
lines.

1.5.4.5.2 Elements and choices

Figure 5 shows the variations of the choice-compositor. root is connected to a choice-compositor. The
choice-compositor specifies that one of the elements on the right side shall be chosen. root may contain one
of the following: element1, element2, or element3. Each subelement is connected to a choice-compositor.

Figure 5—Choice-compositor variations

a) element1 may contain one of the following: subElement1, subElement2, or subElement3, as indi-
cated by the symbol being drawn with a dashed-line.

b) element2 may contain any (0 or more) of the following: subElement1, subElement2, or
subElement3 in any order. The number of times the choice-compositor may appear is indicated by
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 9
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 9
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
the range of the numbers listed below the symbol. If the range starts at 0, the choice-compositor is
drawn with dashed-lines.

c) element3 may contain one or more of the following: subElement1, subElement2, or subElement3
in any order. The number of times the choice-compositor may appear is indicated by the range of the
numbers listed below the symbol. If the range is greater than 1, the choice-compositor is drawn with
double lines.

1.5.4.5.3 Elements, attributes, groups and attributeGroups

Figure 6 shows the use of attributes, groups, and attributeGroups. element1 contains two attributes, shown
in the tab shaped box labeled attributes. attribute1 is optional, as indicated by the dashed containing box.
attribute1 also has a type defined of integer and a default value of 7 if the attribute is not present.
attribute2 is a required attribute, as indicated by the solid containing box, and is of type Boolean with no
default. The ordering in which attribute1 and attribute2 appear inside element1 is irrelevant.

Figure 6—Attributes, groups, and attributeGroups

a) eGroup1 is an element group inside element1. This group contains three subelements and the group
symbol can be replaced by a solid line. The name of the group has no representation in the resulting
output description. An element group can be optional, as indicated by a dashed outline (not shown)
and it can also have a range, as indicated by numbers below the group symbol (not shown).

b) aGroup1 is an attributeGroup inside element2 and element3. This attributeGroup contains two
attributes, attribute7 and attribute8. Inside element2, the attributeGroup is shown in its collapsed
form, as indicated by the small plus sign (+) inside the small box. Inside element3 the attribute-
Group is shown in it expanded form, as indicated by the small minus sign (-) inside the small box.
10 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

10 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
element2 contains four attributes: attribute3, attribute4, attribute7, and attribute8. element3
also contains four attributes: attribute5, attribute6, attribute7, and attribute8. The name of the
attributeGroup has no representation in the resulting description.

1.5.4.5.4 Wildcards

Figure 7 show the use of wildcards. A wildcard is depicted by the rounded box with the any ##any text.
Wildcards indicate any well-formed attribute or element may be inserted into the containing element.

Figure 7—Wildcards

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:

— Clause 2 provides references to other applicable standards that are assumed or required for this stan-
dard.

— Clause 3 defines terms and acronyms used throughout the different specifications contained in this
standard.

— Clause 4 defines the interoperability use model.

— Clause 5 defines the bus and abstraction definitions.

— Clause 6 defines the component and interconnect models.

— Clause 7 defines the designs and their connections.

— Clause 8 defines the abstractor model between abstraction definitions.

— Clause 9 defines the generator chain.

— Clause 10 defines the design and generator chain configuration.

— Clause 11 defines addressing and data visibility.

— Annexes. Following Clause 11 are a series of annexes.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 11
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 11
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
12 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

12 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
2. Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEC/IEEE 61691-1-1, Behavioral languages—Part 1: VHDL language reference manual.4, 5

IEEE Std 754™-1985, IEEE Standard for Binary Floating-Point Arithmetic.6

IEEE Std 1364™, IEEE Standard for Verilog Hardware Description Language.

IEEE Std 1666™-2005, IEEE Standard for SystemC Language Reference Manual.

IETF Best Practices Document 14, RFC-2119.

ISO/IEC 8859-1, Information technology—8-bit single-byte coded graphic character sets—Part 1: Latin
Alphabet No. 1.7

ISO/IEC 8879, Information processing—Text and office systems—Standard Generalized Markup Language
(SGML).

The IP-XACT Schema v1.5 is available from The SPIRIT Consortium web site at:
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5/index.xsd.

The IP-XACT TGI WSDL v1.5 is available from The SPIRIT Consortium web site at:
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5/TGI/TGI.wsdl.

The Simple Object Access Protocol (SOAP) Version 1.2 specification is available from the W3C web site:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

The Web Services Description Language (WSDL) 1.1 specification is available from the W3C web site:
http://www.w3.org/TR/wsdl.

The XML version 1.0 is available from the W3C web site:
http://www.w3.org/TR/2000/REC-xml-20001006.

The XML Schema specification is available from the W3C web site:
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028;
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028;
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318.

4IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue
de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States
from the Sales Department, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://
www.ansi.org/).
5IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
6The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
7ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Swit-
zerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering Documents,
15 Inverness Way East, Englewood, CO 80112, USA (http://global.ihs.com/). Electronic copies are available in the United States from
the American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036, USA (http://www.ansi.org/).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 13
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 13
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
The XPath specification, version 1.0, is available from the W3C web site:
http://www.w3.org/TR/1999/REC-xpath-19991116.

The XSLT version 1.0 is available from the W3C web site:
http://www.w3.org/TR/1999/REC-xslt-19991116.
14 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

14 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The Authoritative Dictionary
of IEEE Standards Terms [B2]8 should be referenced for terms not defined in this clause.

3.1 Definitions

3.1.1 abstraction definition: An object that describes a representation of bus interface, including details of
the ports this type of bus interface may have and the constraints that apply to these ports.

3.1.2 ad-hoc connection: Directly connects two ports without the use of bus interfaces or interconnec-
tions. Wire ad-hoc connections have a wire protocol and transactional connections have a transactional con-
nection.

3.1.3 abstractor: A top level IP-XACT element used to convert between two bus interfaces having differ-
ent abstraction types and sharing the same bus type.

3.1.4 active interface: An interface that participates in the transactions.

3.1.5 AMBA:9 An open specification on-chip backbone for interconnecting intellectual property (IP)
blocks.

3.1.6 application programmers interface (API): A method for accessing design and meta-data in a proce-
dural way.

3.1.7 architectural rules: Generic rules which define how subsystems relate to platforms that relate to
components of system design.

3.1.8 bridge: A mechanism to model the internal relationship between master interfaces and slave inter-
faces inside a component. Bridges explicitly describe the internal point-to-point connections between the
component interfaces. A bridge can have multiple address spaces, supports memory mapping and re-map-
ping, and can only have direct interfaces. Syn: bus bridge.

3.1.9 bus: A collection of ports used to connect blocks connected to it involving both hardware and soft-
ware protocols. Within IP-XACT, buses are components.

3.1.10 bus definition: An object that describes the type properties for a bus, such as the maximum masters
allowed or if one bus expands upon the definition of another.

3.1.11 bus interface: The interface of an IP to a bus. Components are connected together by linking the
bus interfaces together. There are three different classes of bus interfaces: master, slave, and system with
two flavors: direct and mirrored.

3.1.12 channel: A special object that can be used to describe multi-point connections between regular com-
ponents, which may require some interface adaptation. A channel connects component master, slave, and
system interfaces on the same bus. A channel can also represent a simple wiring interconnection or a more
complex structure, such as a bus. A channel can only have one address space. Channel interfaces are always
mirrored interfaces. A channel supports memory mapping and re-mapping.

8The number in brackets correspond to those of the bibliography in Annex A.
9AMBA is a Registered Trade Mark of ARM Limited.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 15
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 15
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
3.1.13 component: The central place holder for object meta-data and its bus and generator interfaces.
Components are used to describe cores, peripherals, and buses. Components may reference designs to create
hierarchy. Syn: component description.

3.1.14 configurable element: An element in an IP-XACT description that can be set to a new value by a
user, generator, or dependency equation. This includes all elements with a resolve attribute.

3.1.15 configurable IP: IP which contains configurable elements and an IP-specific generator capable of
creating new components from the configured component and updating the design with the new version of
the component. Syn: configurable component.

3.1.16 configuration manager: An object which creates and manages top-level meta-description of system
on a chip (SoC) design. It can annotate SoC schema with details of a specific SoC design including: IP ver-
sions, IP views, IP configuration, IP connectivity, and IP constraints. It manages the launching of IP gener-
ators and tool plug-ins, and any meta-data updates occurring as a consequence of a launch. It also handles
the updating and retrieval of relevant IP meta-data from the IP repository.

3.1.17 connection: Generally describes a communication mechanism between one or more components.

3.1.18 constraint: A constraint defines a limitation on a part of the system that needs to be satisfied for the
system to be correct. Timing constraints are often specified on ports, requiring that during a given clock
cycle the value of the port become stable in a certain time period and remain stable for a certain time period
relative to a particular clock edge.

3.1.19 constraint set: Constraints defined in groups to associate different constraints with different views
of the component.

3.1.20 design: An IP-XACT description of a system or subsystem listing its components, the connections
between these components, and the interfaces exported by the system or subsystem.

3.1.20.1 design configuration: This description contains non-essential ancillary information for generators,
the active or current view selected for instances in the design, and configurable information defined in ven-
dor extensions. It references a design description and can specify a view for the component instances and
abstractors for each interconnection, and configure generator chains. Syn: configuration.

3.1.21 design database: Working storage for both meta-data and component information that helps create
and verify systems and subsystems.

3.1.22 design environment (DE): The coordination of a set of tools and IP, or expressions of that IP (e.g.,
models) so the system-design and implementation flows of a SoC re-use-centric development flow is effi-
ciently enabled. This is managed by creating and maintaining a meta-data description of the SoC.

3.1.23 endianness: big endian is the most significant byte at the lowest memory address and little endian is
the least significant byte at the lowest memory address.

3.1.24 electronic design intellectual property (IP) is a term used in the electronic design community to
refer to a reusable collection of design specifications which represent the behavior, properties, and/or repre-
sentation of the design in various media. The name IP is partially derived from the common practice of con-
sidering a collection of this type to be the intellectual property of one party. Both hardware and software
collections are encompassed by this term. IP utilized in the context of a SoC design or design flow may
include specifications; design models; design implementation descriptions; verification coordinators, stimu-
lus generators, checkers and assertion / constraint descriptions; soft design objects (such as embedded soft-
ware and real-time operating systems); design and verification flow information and scripts. IP-XACT
distinguishes between fixed IP and configurable IP.
16 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

16 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
3.1.25 electronic system level (ESL) A high level of design modeling typically done with, but not limited
to, SystemC or SystemVerilog design languages.

3.1.26 external components: Components that do not end up on the SoC, but are needed for total system
verification.

3.1.27 fixed IP: IP that has no elements which are configured by the DE or set by industry de-facto tools.

3.1.28 generator: Combines component meta-data with architectural rules to provide a consistent sys-
tem description which uses a specified tight generator interface (TGI) to generate specific design views or
configurations for the purposes of supporting a number of design styles. The generator may add/remove/
replace components, add/remove/replace interconnections, add/remove/replace project settings, and add/
remove/replace persistent data.

3.1.29 generator API: This API provides a common interface for algorithmic code in a generator or tool
plug-in to the SOAP interface of the TGI.

3.1.30 generator TGI: This SOAP messaging interface connects the generators and tool plug-ins to the
design environment (DE), allowing the execution of these scripts and code-elements against the SoC meta-
description. The DE enables the registration of new generators or plug-ins, exporting SoC meta-data and
updating that data following generator or plug-in execution, and handling generator or plug-in error condi-
tions which relate to the meta-data description.

3.1.31 generator chain: A hierarchical list of generators used to define the order for executing generators.
A design flow can be represented by a generator chain.

3.1.32 generator group: A symbolic name assigned to a generator to enable generator selection.

3.1.33 generator invocation: A method of running an application at a defined phase in the generator group
with a given number of elements.

3.1.34 hierarchical child bus interface: A bus interface IC of component CC is a hierarchical child of bus
interface IP of component CP if and only if CP contains a hierarchical view, the design description of which
contains a hierarchical connection with interface name IP, component ref CC, and interface ref IC. A hier-
archical child bus interface may be a hierarchical bus interface itself.

3.1.35 hierarchical component: A component that has one or more views which reference IP-XACT
design descriptions.

3.1.36 hierarchical descendant bus interface: A bus interface DC is a hierarchical descendant of bus inter-
face AC if and only if DC is a hierarchical child of AC or a hierarchical child of a hierarchical descendant of
AC.

3.1.37 hierarchical family of bus interfaces: A hierarchical family of bus interfaces is a set of bus inter-
faces composed of a hierarchical bus interface and all its hierarchical descendants.

3.1.38 hierarchical child component: A hierarchical child of a component C is any component referenced
in a design of C.

3.1.39 hierarchical descendent component: A hierarchical descendent of a component is any hierarchical
child of that component or any hierarchical child of any hierarchical descendent of the component.

3.1.40 hierarchical family of components: A hierarchical family of components is a component and all its
hierarchical descendents.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 17
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 17
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
3.1.41 initiative: An abstract description of port modes: requires, provides, both, or phantom. Used for
transactional level modeling.

3.1.42 interconnection: Defines the point-to-point connection between two bus interfaces.

3.1.43 interface connection: Bus interfaces with bus definitions and abstraction definitions can be listed
in the design as connected to another compatible interface on another component. The listing of the inter-
connection creates a connection to that interface.

3.1.44 IP generators: Tools which create specific IP based upon SoC meta-data details entered into the
configuration manager. IP generators serve as interfaces to IP repository for placing and retrieval of IP.
and can annotate completion details (e.g., generated IP or failure of generation of IP) back into the configu-
ration manager.

3.1.45 IP integrator: A party in the design process who receives configured IP and subsystems and com-
bines them into a larger system.

3.1.46 IP platform architect: Creator of platform-based architectures.

3.1.47 IP provider: Creator and supplier of IP.

3.1.48 IP repository: Database of IP.

3.1.49 leaf component: Components that do not contain other IP-XACT descriptions.

3.1.50 legacy IP: IP that has no specific IP-XACT meta-data view.

3.1.51 master interface: The bus interface that initiates a transaction (like a read or write) on a bus.

3.1.52 memory map: A block of memory in a component (which may be accessible through a slave inter-
face).

3.1.53 meta-data: A tool-interpretable way of describing the design-history, locality, object association,
configuration options, constraints against, and integration requirements of an object.

3.1.54 meta IP: Meta-data description of an object.

3.1.55 mirror interface: Has the same (or similar) ports to its related direct bus interface, but the port
directions are reversed. So, a port that is an input on a direct bus interface would be an output in the match-
ing mirror interface.

3.1.56 monitor interface: An interface used in verification that is neither a master, slave, nor system
interface.

3.1.57 multi-layer buses: Buses that have to be modeled as component bridges with direct interfaces or as
a hierarchical component.

3.1.58 objects: These are XML descriptions of the following types: components, designs, busDefinitions,
abstractionDefinitions, abstractors, designConfigurations, and generatorChains. To be able to be
uniquely referenced, each object has an unique identifier called its Vendor Library Name Version
(VLNV).

3.1.59 opaque bridge: A bus interconnect component that may modify the address space of a master bus
interface of one bus type to the memory map of a slave bus interface of another bus type and does not allow
18 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

18 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
direct access to any components residing on that address space. An opaque bridge has the opaque attribute
equal to true.

3.1.60 Open SystemC Initiative (OSCI): An independent non-profit organization composed of a broad
range of companies, universities and individuals dedicated to supporting and advancing SystemC as an open
source standard for system-level design (see [B6]).

3.1.61 phantom port: An initiative of a port which indicates this port does not have a true connection to the
implementation, e.g., the port does not appear on the VHDL entity.

3.1.62 phase number: Define the sequence in which generators should be fired.

3.1.63 platform: Architectural (sub)system framework.

3.1.64 platform consumer: User/group who builds a SoC based on a particular platform.

3.1.65 platform provider: User/group that develops and delivers platforms to platform consumers.

3.1.66 platform rules: Rules that define how components interface to a specific platform.

3.1.67 port: Specifies interface items of a component. These interface items allow dynamic exchange of
information. Connections between ports may be specified by using ad-hoc connections or by including
them in bus interfaces connected together by interconnections.

3.1.68 schema: A means for defining the structure, content, and semantics of Extensible Markup Lan-
guage (XML) documents.

3.1.69 segment: A portion of an addressSpace, defined with an address offset and range.

3.1.70 semantic consistency rules (SCRs): Additional rules applied to an XML description that cannot be
expressed in the schema. Typically, these are rules between elements in multiple XML descriptions.

3.1.71 slave interface: The bus interface that terminates or consumes a transaction initiated by a master
interface. Slave interfaces often contain information about the registers accessible through the slave inter-
face.

3.1.72 system on chip (SoC): Also refers to a general system which may not be implemented on a chip,
such as a transaction-level modeling (TLM) design.

3.1.73 SoC platform: The top netlist containing all the instances and connections of the design.

3.1.74 style sheets: How documents are presented on screens and in print.

3.1.75 subsystem: A set of connected components that have dependencies on other IP.

3.1.76 system: A configured set of connected components.

3.1.77 system interface: An interface that is neither a master nor slave interface, and allows specialized
(or non-standard) connections to a bus (e.g. clock).

3.1.78 tight generator interface (TGI): Used to manipulate values of elements and attributes for IP-XACT
compliant XML.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 19
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 19
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
3.1.79 transaction-level modeling (TLM): An abstraction level higher than register transfer level (RTL),
used for specifying, simulating, verifying, implementing, and evaluating SoC designs.

3.1.80 tool plug-ins: Tools which integrate IP, based upon SoC meta-data details, and prep IP for anima-
tion (e.g., simulation or emulation), optimization (e.g., synthesis) and verification (e.g., regression-suite
generation). They can also annotate completion details (e.g., integrated SoC IP or failure of integration) back
into the configuration manager.

3.1.81 transactional port: A port that has a service name (which can specify the data type of the port) and
a port initiative. Used for high-level modeling.

3.1.82 transparent bridge: A bus interconnect component that modifies the address space of a master bus
interface of one bus type to the memory map of a slave bus interface of another bus type with directly
addressable access to any components residing on that address space. A transparent bridge has the opaque
attribute equal to false.

3.1.83 use model: A process method of working with a tool.

3.1.84 user interface: Methods of interacting between a tool and its user.

3.1.85 validation: Proving the correctness of construction of a set of components.

3.1.86 verification: Proving the behavior of a set of connected components.

3.1.87 view: An implementation of a component. A component may have multiple views, each with it's own
function in the design flow.

3.1.88 verification IP (VIP): Components included in a design for verification purposes.

3.1.89 Vendor Library Name Version (VLNV): Each IP-XACT object is assigned a unique identifier that
is defined in the header of each XML file.

3.1.90 wire port: A port that describes binary values or an array of binary values. Wire ports can have a
direction: in, out, or inout.

3.1.91 wire connections: Connections that connect wire ports.

3.1.92 white box interface (WBI): Internal points in the IP to be probed or driven by verification tools and/
or test benches.

3.1.93 Extensible Markup Language (XML): A simple, very flexible text format derived from SGML (see
ISO/IEC 8879).

3.1.94 XPATH: An expression language used by XSLT to access or refer to parts of an XML document.

3.1.95 XSLT: XSL Transform is a particular program written in the XSL language for performing a transfor-
mation (from one version to the next).

3.2 Acronyms and abbreviations

AHB AMBA high speed bus

API application programmers interface
20 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

20 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
DE design environment

EDA electronic design automation

ESL electronic system level

HDL hardware description language

IP electronic design intellectual property

LAU least addressable unit (of memory)

OSCI Open SystemC Initiative

PV programmers view

PVT programmers view with timing

RAM random access memory

ROM read only memory

RTL register transfer level (design)

SCR semantic consistency rule

SoC system on chip

TGI tight generator interface

TLI task level interface

TLM transaction-level modeling

VIP verification IP

VLNV Vendor Library Name Version

WBI white box interface

XSLT XSL Transform

XML Extensible Markup Language

3MD 3 levels of meta-data
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 21
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 21
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
22 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

22 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
4. Interoperability use model

To introduce the use-model for the IP-XACT specifications, it is first necessary to identify specific roles and
responsibilities within the model, and then relate these to how the IP-XACT specifications impact their
interactions. All or some of the roles can be mixed within a single organization, e.g., some EDA providers
are also providing IP, a component IP provider can also be a platform provider, and an IP system design
provider may also be a consumer.

4.1 Roles and responsibilities

For this Standard, the roles and responsibilities are restricted to the scope of IP-XACT v1.5 HDL and TLM
system design.

4.1.1 Component IP provider

This is a person, group or company creating IP components or subsystems for integration into a SoC design.
These IPs can be hardware components (processors, memories, buses, etc.), verification components, and/or
hardware-dependent software elements. They may be provided as source files or in a compiled form (i.e.,
simulation model). An IP is usually provided with a functional description, a timing description, some
implementation or verification constraints, and some parameters to characterize (or configure) the IP. All
these types of characterization data may be described as meta-data compliant with the IP-XACT Schema.
Those elements not already provided in the base schema can be provided using name-space extensibility
mechanisms of the specification.

The IP provider can use one or more EDA tools to create/refine/debug IP. During this process, the IP
provider may export and re-import his design from one environment to another. The IP-XACT IP
descriptions need to enable this exchange for component IP.

At some point, this IP can be transferred to customers, partners and external EDA tool suppliers by using IP-
XACT compliant XML. IP can be characterized into different types.

— Fixed IP is IP that is straightforward to describe and exchange as there are no configurable parame-
ters. No generators need to be provided.

— Parameterized IP are those IP blocks that do not need IP specific generators, but have ‘standard’
customizations (where ‘standard’ is defined as industry de-facto tool support), i.e., no generators
need be provided for SoC design tools that support these parameterizations. An example of a param-
eterized IP is an AHB / APB bridge with configurable bus-widths, done with VHDL generics or
Verilog parameters.

— Configurable IP is IP created or modified as a direct result of running an IP-specific generator to
build the IP to the user’s specified configuration. This IP usually requires generators to be provided
with it. An example of a configurable IP is an AHB bus fabric component which has selectable num-
ber of masters and slaves, and automatic generation of decode functionality.

4.1.2 SoC design IP provider

This is a person, group or company that integrates and validates IP provided by one or more IP providers to
build system platforms, which are complete and validated systems or sub-systems. Like the IP provider, the
platform provider can use EDA tools to create/refine/debug its platform, but at some point the IP needs to be
exchanged with others (customers, partners, other EDA tools, etc.). To do so, the platform IP has to be
expressed in the IP-XACT specified format as a hierarchical component.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 23
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 23
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
4.1.3 SoC design IP consumer

This is a person, group or company that configures and generates system applications based on platforms
supplied by SoC Design IP providers. These platforms are complete system designs or sub-systems. Like the
platform provider, the platform consumer can use EDA tools to create/refine/debug its system application
and/or configure the design architecture. To do so, the EDA tool needs to support any platform IP expressed
in the IP-XACT specified format.

4.1.4 Design tool supplier

This is a group or company that provides tools to verify and/or implement an IP or platform IP. There are
three major tools (which could be combined) provided in a system flow:

— Platform builder (or System Design Environment) tools: these help to assemble a platform with some
automation (e.g., automatic generation of interconnect).

— Verification point-tools: these handle functional and timing Simulation, Verification, Analysis,
Debugging, Co-simulation, Co-verification, and acceleration.

— Implementation point-tools: these handle Synthesizing, Floorplaning, Place and routing, etc.

The EDA provider needs to be able to import IP-XACT component or system IP libraries from multiple
sources and export them in the same format.

Further, IP-XACT EDA tools need to recognize, associate and launch generators that may be provided by a
Generator or IP provider in support of configurable IP bundles. The imported IP might need to be created
and/or modified by the tool and then exported back (e.g., to be exchanged with other EDA vendor tools) to
satisfy the customer design flow.

To further support any generators supplied with IP bundles, the IP-XACT DE tools need to be able to
recognize and interface with generator-wrapped point-tools. These may be provided by another EDA
provider or by the IP designer/consumer as part of a company’s internal design and verification flow. In
general, these support specialized design-automation features, such as architectural-rule checking.

4.2 IP-XACT IP exchange flows

This section describes a typical IP exchange flow that the IP-XACT specifications technically support
between the roles defined in 4.1. By way of example, the following specific exchange flow can benefit from
use of the IP-XACT specification.

The Component IP provider generates an IP-XACT XML package and sends it to a SoC design-tool
(EDA tool supplier) or directly to a Platform (i.e., SoC Design IP) provider. The EDA tool supplier
imports IP-XACT XML IP and generates platform IP and/or updates (configures) the IP compo-
nents. The Platform provider generates a configurable platform IP and exports it in IP-XACT XML
format, which the end-user imports to build system applications. The platform provider can also
generate its own platform IP into IP-XACT format and send it to the EDA provider.

Although many different possible IP exchange flows exist, from the user’s viewpoint, there are three main
use models:

— IP (Component or SoC Design) provider use model

— Generator (IP provider and Design tool provider) use model

— SoC design-tool provider use model
24 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

24 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
4.2.1 Component or SoC design IP provider use model

The IP provider (a hardware component IP designer or platform IP architect) can use IP-XACT to package
IP in a standard and reusable format. The first step consists in creating an IP-XACT XML package (XML
plus any IP views) to export the IP database in a valid format. To express this IP as an IP-XACT IP, the IP
provider needs to parse the entire design description tree (which is composed of files of different types: HDL
source files, data sheets, interfaces, parameters, etc.) and package it into an IP-XACT XML format. This can
be a manual step (by directly editing IP-XACT compliant XML) or an automated one (using scripts to
generate Schema compliant IP-XACT XML).

Once the IP has been packaged in an IP-XACT format, the IP provider can use a SoC design-tool to write/
debug/simulate/implement the IP.

4.2.2 Generator provider use model

The author of a generator expects to interact with the SoC design tool through a fixed interface during well
defined times in the design life-cycle: when components are instantiated or modified or when a generator
chain is started.

Generators are used within the SoC design-tool to extend its capabilities: wrapping a point tool, e.g. a
simulator; wiring up IP within the design; or checking the design is correct or maybe modifying the design.
Many of these features may be supplied by the IP author and handled by generators embedded in the IP
itself.

Consequently, there are at least two groups of generator providers: the IP vendor, who supplies generators
that are written specifically to support their IP and generic generator authors who wish to extend the features
available within the SoC design-tool. This latter group will be mainly SoC-design tool vendors at first, but
will also come to include third-party generator vendors.

4.2.3 System design tool provider use model

The system design-tool takes IP-XACT components and designs as input, configures them, and loads them
into its own database format. Then it can automate some tasks, such as creating the platform, generating the
component interconnect and bus fabric, and generating or updating the IP-XACT IP as an output (by
providing new or updated XML with the attached information: new source files, parameters, documentation,
etc.).

Customer design flows are usually composed of a chain of different tools from the same or different EDA
vendors (e.g., when an EDA provider is not providing the entire tool chain to cover all the user flow or the
customer is selecting the best-in-class point tools). To address this requirement, the EDA vendor providing
an IP-XACT enabled tool needs to read and produce the IP-XACT specified format, and utilize and
implement the interfaces defined by The SPIRIT Consortium. In this use model, each SoC design-tool uses
its own generators (possibly utilizing the IP-XACT tight generator interface (TGI)) to build and update its
internal meta-data state and export to an IP-XACT format. Then the IP-XACT description can be imported
by another IP-XACT enabled EDA tool.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 25
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 25
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
26 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

26 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
5. Interface definition descriptions

5.1 Definition descriptions

In IP-XACT, a group of ports that together perform a function are described by a set of elements and
attributes split across two descriptions, a bus definition and an abstraction definition. These two descriptions
are referenced by components or abstractors in their bus or abstractor interfaces.

The bus definition description contains the high-level attributes of the interface, including items such as the
connection method and indication of addressing.

The abstraction definition contains the low-level attributes of the interface, including items such as the
name, direction, and width of the ports. This is a list of logical ports that may appear on a bus interface for
that bus type. See 6.5.

5.2 Bus definition

5.2.1 Schema

The following schema details the information contained in the busDefinition element, which is one of the
seven top-level elements in the IP-XACT specification used to describe the high-level aspects of a bus.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 27
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 27
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
5.2.2 Description

The top-level busDefinition element describes the high-level aspects of a bus or interconnect. It contains the
following elements and attributes.

a) The versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-
level IP-XACT element. See C.6

b) directConnection (mandatory) specifies what connections are allowed. The directConnection ele-
ment is of type Boolean. A value of true specifies these interfaces may be connected in a direct
master to slave fashion. A value of false indicates only non-mirror to mirror type connections are
allowed (i.e., master—mirroredMaster, slave—mirroredSlave, or system—mirroredSystem).

c) isAddressable (mandatory) specifies the bus has addressing information. The isAddressable ele-
ment is of type Boolean (see 6.3). A value of true specifies these interfaces contain addressing
information and a memory map can be traced through this interface. A value of false indicates these
interfaces do not contain any traceable addressing information.

d) extends (optional) specifies if this definition is an extension from another bus definition. The
extends element is of type libraryRefType (see C.7), it contains four attributes to specify a unique
VLNV. See also: 5.12.

e) maxMasters specifies the maximum number of masters that are allowed on the bus. If the maxMas-
ters element is not present, the numbers of masters is unbounded. The maxMasters elements is of
type nonNegativeInteger.

f) maxSlaves specifies the maximum number of slaves that are allowed to appear on the bus. If the
maxSlaves element is not present, the numbers of slaves is unbounded. The maxSlaves elements is
of type nonNegativeInteger.

g) systemGroupNames (optional) defines an unbounded list of systemGroupName elements, which
in turn, define the possible group names to be used under an onSystem element in an abstraction
definition. The definition of the group names in the bus definition allows multiple abstraction defini-
tions to indicate which system interfaces match each other. The systemGroupName shall be unique
with the containing systemGroupNames element. The systemGroupName element is of type
Name.

h) description (optional) allows a textual description of the interface. The type of this element is
string.

i) vendorExtensions (optional) contains any extra vendor-specific data related to the interface. See
C.10.

See also: SCR 1.3, SCR 1.9, SCR 1.11, and SCR 6.17.

5.2.3 Example

This is an example of an AHB busDefinition.

<?xml version="1.0" encoding="UTF-8" ?>
<spirit:busDefinition
xmlns:spirit= http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5/index.xsd">

<spirit:vendor>amba.com</spirit:vendor>
<spirit:library>AMBA</spirit:library>
<spirit:name>AHB</spirit:name>
<spirit:version>v1.0</spirit:version>
<spirit:directConnection>false</spirit:directConnection>
<spirit:isAddressable>true</spirit:isAddressable>
<spirit:extends spirit:vendor="amba.com"
28 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

28 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
spirit:library="AMBA"
spirit:name="AHBlite"
spirit:name=”v1.0” />

<spirit:maxMasters>16</spirit:maxMasters>
<spirit:maxSlaves>16</spirit:maxSlaves>
<spirit:systemGroupNames>

<spirit:systemGroupName>ahb_clk</spirit:systemGroupName>
<spirit:systemGroupName>ahb_reset</spirit:systemGroupName>

</spirit:systemGroupNames>
</spirit:busDefinition>

5.3 Abstraction definition

5.3.1 Schema

The following schema details the information contained in the abstractionDefinition element, which is one
of the seven top-level elements in the IP-XACT specification used to describe the low-level aspects of a bus.

5.3.2 Description

The abstractionDefinition element describes the low-level aspects of a bus or interconnect. It contains the
following elements and attributes.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 29
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 29
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
a) The versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-
level IP-XACT element. See C.6.

b) busType (mandatory) specifies the bus definition that this abstraction definition. The busType ele-
ment is of type libraryRefType (see C.7), it contains four attributes to specify a unique VLNV. See
also: 5.12.

c) extends (optional) specifies if this definition is an extension from another abstraction definition. The
extends element is of type libraryRefType (see C.7), it contains four attributes to specify a unique
VLNV. The extending abstraction definition may change the definition of logical ports, add new
ports, or mark existing logical ports illegal (to disallow their use). See also: 5.12.

d) ports (mandatory) is a list of logical ports, see 5.4.

e) description (optional) allows a textual description of the interface. The type of this element is
string.

f) vendorExtensions (optional) contains any extra vendor-specific data related to the interface. See
C.10.

The abstractionDefinition element contains a list of logical ports that define a representation of the bus
type to which it refers. A port can be a wire port (see 5.7) or a transactional port (see 5.10). A wire port
carries logic information or an array of logic information. A transactional port carries information that is
represented on a higher level of abstraction.

See also: SCR 1.9, SCR 1.11, SCR 1.13, SCR 3.1, SCR 3.17, SCR 3.18, and SCR 6.11.

5.3.3 Example

The following example shows an abstraction definition for the interrupt bus in the Leon2 TLM example.

<spirit:vendor>spiritconsortium.org</spirit:vendor>

<spirit:library>Leon</spirit:library>

<spirit:name>INT_PV</spirit:name>

<spirit:version>1.5</spirit:version>

<spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="Leon" spirit:name="Int" spirit:version="v1.0"/>

<spirit:ports>

<spirit:port>

<spirit:logicalName>INT_TRANSACTION</spirit:logicalName>

<spirit:wire>

<spirit:onMaster>

<spirit:presence>required</spirit:presence>

<spirit:direction>out</spirit:direction>

</spirit:onMaster>

<spirit:onSlave>

<spirit:presence>required</spirit:presence>

<spirit:direction>in</spirit:direction>

</spirit:onSlave>

</spirit:wire>

</spirit:port>

</spirit:ports>
30 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

30 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
5.4 Ports

5.4.1 Schema

The following schema details the information contained in the ports element, which appears as part of the
abstractionDefinition element within an abstraction definition. This is different from the ports element that
appears as part of the model element within components.

5.4.2 Description

The ports element is an unbounded list of port elements. Each port element defines the logical port
information for the containing abstraction definition. It contains the following elements.

a) logicalName (mandatory) gives a name to the logical port that can be used later in component
description when the mapping is done from a logical abstraction definition port to the components
physical port. The logicalName shall be unique within the abstractionDefinition. The type of this
element is Name.

b) displayName (optional) allows a short descriptive text to be associated with the port. The type of
this element is string.

c) description (optional) allows a textual description of the port. The type of this element is string.

d) Each port also requires a wire element or a transactional element to further describe the details
about this port. See 5.5 or 5.10, respectively. A wire style port is a port that carries logic values or an
array of logic values. A transactional style port is a port that carries any other type of information,
typically used for TLM.

e) vendorExtensions (optional) contains any extra vendor-specific data related to the port. See C.10.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 31
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 31
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
5.4.3 Example

See 5.3.3 for an example.

5.5 Wire ports

5.5.1 Schema

The following schema details the information contained in the wire element, which may appear as part of
the port element within an abstraction definition (abstractionDefinition/ports/port).

5.5.2 Description

A wire element represents a port that carries logic values or an array of logic values. This logical wire port
may provide optional constraints for a wire port, to which it is mapped inside a component or abstractor’s
busInterface. It contains the following elements and attributes.

a) qualifier (optional) indicates which type of information this wire port carries. See 5.6.

b) onSystem (optional) defines constraints, e.g., timing constraints, for this wire port if it is present in a
system bus interface with a matching group name.

1) The group (mandatory) attribute indicates the group name for the wire port. It distinguishes
between different sets of system interfaces. Usually, all the arbiter ports are processed together,
or all the clock or reset ports are processed together. So, this is really a mechanism to specify
any sort of non-standard bus interface capabilities for the interconnect. The type of this element
is Name.
32 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

32 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
2) The group wirePort specifies what elements are used in this port. See 5.7.

c) onMaster (optional) defines constraints for this wire port when present in a master bus interface.
The group wirePort specifies what elements are used in this port. See 5.7.

d) onSlave (optional) defines constraints for this wire port when present in a slave bus interface. The
group wirePort specifies what elements are used in this port. See 5.7.

e) Either of the follow two element are allowed, but not both.

1) defaultValue (optional) contains the default logic value for this wire port. This value is applied
when the logical port is left unconnected or not mapped in a bus interface. A default value spec-
ified on a port in a component shall override that default value specified in the abstraction defi-
nition. The type of this element is scaledNonNegativeInteger.

2) requiresDriver (optional) specifies whether the port requires a driver when used in a com-
pleted design. The type of this element is Boolean. If this element is not present, its effective
value is false, indicating this port does not require a driver. When set to true, the attribute driv-
erType further qualifies what driver type is required: any (meaning any logic signal or value),
clock (meaning a repeating type waveform), or singleshot (a non-repeating type waveform). If
this element is not present, its effective value is any.

NOTE—The onMaster, onSlave, and onSystem elements associated with each logical port provide optional con-
straints. If any of these are missing, there are no constraints for how the port appears on interfaces with that mode (mas-
ter, system, or slave). A port may appear in any system interface group unless its presence is marked as illegal for that
group. The abstraction definition author has the choice of how far to constrain the definitions. Generally speaking, more
constraints in the definitions reduce implementation flexibility for whoever is creating IP with interface that conform to
the abstraction definition.

See also: SCR 6.12 and SCR 6.15.

5.5.3 Example

See 5.3.3 for an example.

5.6 Qualifiers

5.6.1 Schema

The following schema details the information contained in the qualifier element, which may appear as part
of the wire element within an abstraction definition (abstractionDefinition/ports/port/wire).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 33
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 33
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
5.6.2 Description

The qualifier element indicates which type of information a wire port carries. It contains the following
elements.

a) isAddress (optional), when true, specifies the port contains address information. This qualifier
may be paired with the isData element (e.g., used with serial protocols). The type of this element is
Boolean. See also: Clause 11.

b) isData (optional), when true, specifies the port contains data information. This data resides in regis-
ters defined in the memory map referenced by the interface. The width defined by the port on each
side of the two connected bus interfaces can be used to determine which portions of the data may be
lost or gained (tied off to defaults) during transfers if the two widths do not match. This qualifier
may be paired with the isAddress element (e.g., used with serial protocols). The type of this element
is Boolean. See also: Clause 11.

c) isClock (optional), when true, specifies this port is a clock for this bus interface, i.e., it provides a
repeating pattern which the interface uses to implement the protocol. No method of processing is
implied with this tag. This tag shall only be applied to pure clock ports. This qualifier shall not be
combined with other qualifiers. The type of this element is Boolean.

d) isReset (optional), when true, specifies this port is a reset for this bus interface., i.e., it provides the
necessary input to put the interface into a known state. No method of processing is implied with this
tag. This tag should only be applied to pure reset ports. This qualifier shall not be combined with
other qualifiers. The type of this element is Boolean.

See also: SCR 6.17, SCR 9.1, SCR 9.2, and SCR 12.8.

5.6.3 Example

<spirit:port>
<spirit:logicalName>Clock</spirit:logicalName>
<spirit:wire>

<spirit:qualifier>
<spirit:isClock>true</spirit:isClock>

</spirit:qualifier>
<spirit:onSystem>

<spirit:group>clk</spirit:group>
34 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

34 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:width>1</spirit:width>
<spirit:direction>out</spirit:direction>

</spirit:onSystem>
<spirit:onMaster>

<spirit:direction>in</spirit:direction>
</spirit:onMaster>
<spirit:onSlave>

<spirit:direction>in</spirit:direction>
</spirit:onSlave>

</spirit:wire>
</spirit:port>
<spirit:port>

<spirit:logicalName>Resetn</spirit:logicalName>
<spirit:wire>

<spirit:qualifier>
<spirit:isReset>true</spirit:isReset>

</spirit:qualifier>
<spirit:onSystem>

<spirit:group>reset</spirit:group>
<spirit:width>1</spirit:width>
<spirit:direction>out</spirit:direction>

</spirit:onSystem>
<spirit:onMaster>

<spirit:direction>in</spirit:direction>
</spirit:onMaster>
<spirit:onSlave>

<spirit:direction>in</spirit:direction>
</spirit:onSlave>

</spirit:wire>
</spirit:port>
<spirit:port>

<spirit:logicalName>Address</spirit:logicalName>
<spirit:wire>

<spirit:qualifier>
<spirit:isAddress>true</spirit:isAddress>

</spirit:qualifier>
<spirit:onMaster>

<spirit:direction>out</spirit:direction>
</spirit:onMaster>
<spirit:onSlave>

<spirit:direction>in</spirit:direction>
</spirit:onSlave>

</spirit:wire>
</spirit:port>

5.7 Wire port group

5.7.1 Schema

The following schema details the information contained in the wirePort group, which may appear as part of
the onSystem, onMaster, or onSlave element within a wire element within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 35
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 35
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
5.7.2 Description

The wirePort group specifies what elements are used in a wire port. It contains the following elements.

a) presence (optional) provides the capability to require or forbid a port from appearing in a busInter-
face. The three possible values are illegal, required, or optional. If this element is not present, its
effective value is optional.

b) width (optional) represents the number of logical bits that are required to represent this port. When
mapping to this logical port in a busInterface/portmap, the numbering shall start from 0 to
width-1. If width is not specified, the component shall define the number of bits in this port, but
the logical portmap numbering shall still start at 0. If necessary, logical bit 0 shall be the least sig-
nificant bit. The width element is of type positveInteger.

c) direction (optional) restricts the direction of the port relative to the non-mirrored interface (see 6.2).
The three possible values are in, out, or inout.

d) Each wirePort group can also have a sequence of modeConstraints and mirroredModeCon-
straints specifying the default constraints of this interface during synthesis. The modeConstraints
apply to this port if it appears in a non-mirrored ‘mode’ bus interface (see 5.8). Any mirroredMo-
deConstraints apply to this port if it appears in a mirrored-‘mode’ bus interface (see 5.9).

If mirroredModeConstraints are not specified, the modeConstraints also apply to this port in a
mirrored-‘mode’ bus interface.
36 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

36 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
See also: SCR 6.5, SCR 6.6, SCR 6.7, and SCR 6.18.

5.7.3 Example

See 5.3.3 for an example.

5.8 Wire port ‘mode’ constraints

5.8.1 Schema

The following schema defines the information contained in the modeConstraints element, which may
appear within an onMaster, onSlave, or onSystem element within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).

5.8.2 Description

The modeConstraints element defines any default implementation constraints associated with the
containing wire port of the abstraction definition. It contains one or more of the following elements.

a) timingConstraint (optional) element defines a technology-independent timing constraint associated
with the containing wire port. See 6.11.13.

b) driveConstraint (optional) element defines a technology-independent drive constraint associated
with the containing wire port. See 6.11.12.

c) loadConstraint (optional) element defines a technology-independent load constraint associated
with the containing wire port. See 6.11.11.

The constraints contained within the modeConstraints element are only applied to the corresponding
physical ports in a component when the physical port does not have any constraints defined within its own
port element and there is no SDC file associated with the component. For example, if it appears inside an
onMaster element, the constraints apply when the port appears in a master interface. If the
modeConstraints element is immediately followed by a mirroredModeConstraints element (see 5.9), the
constraints defined in the modeConstraints element apply only when the port is used in a non-mirrored
mode interface. Otherwise, the constraints apply when the port appears in a mode interface or a mirrored-
mode interface.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 37
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 37
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
5.8.3 Example

The following example shows a port within an abstraction definition, containing a single timing constraint.
Since there is no mirroredModeConstraint element, this timing constraint applies when the HRDATA port
appears in either a master interface or a mirrored-master interface. On a master interface the port gets 40%
of the cycle time and on a mirrored master interface it gets 60% of the cycle time.

<spirit:port>
<spirit:logicalName>HRDATA</spirit:logicalName>
<spirit:wire>

<spirit:onMaster>
<spirit:modeConstraints>

<spirit:timingConstraint spirit:clockName=”HCLK”>40
</spirit:timingConstraint>

</spirit:modeConstraints>
</spirit:onMaster>

</spirit:wire>
</spirit:port>

5.9 Wire port mirrored-‘mode’ constraints

5.9.1 Schema

The following schema defines the information contained in the mirroredModeConstraints element, which
may appear within an onMaster, onSlave, or onSystem element within an abstraction definition
(abstractionDefinition/ports/port/wire/onmode).

5.9.2 Description

The mirroredModeConstraints element also defines any default implementation constraints associated
with the containing wire port of the abstraction definition. It contains one or more of the following elements.

a) timingConstraint (optional) element defines a technology-independent timing constraint associated
with the containing wire port. See 6.11.13.

b) driveConstraint (optional) element defines a technology-independent drive constraint associated
with the containing wire port. See 6.11.12.

c) loadConstraint (optional) element defines a technology-independent load constraint associated
with the containing wire port. See 6.11.11.
38 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

38 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
The constraints contained within the mirroredModeConstraints element are only applied to the
corresponding physical port in a component when the physical port does not have any constraints defined
within its own port element and there is no SDC file associated with the component. For example, if it
appears inside an onMaster element, the constraints only apply when the port appears in a mirrored-master
interface.

5.9.3 Example

The following example shows a port within an abstraction definition, containing a single timing constraint.
On a master interface the port gets 40% of the cycle time and on a mirrored master interface it gets 50% of
the cycle time.

<spirit:port>
<spirit:logicalName>HRDATA</spirit:logicalName>
<spirit:wire>

<spirit:onMaster>
<spirit:modeConstraints>

<spirit:timingConstraint spirit:clockName=”HCLK”>40
</spirit:timingConstraint>

</spirit:modeConstraints>
<spirit:mirroredModeConstraints>

<spirit:timingConstraint spirit:clockName=”HCLK”>50
</spirit:timingConstraint>

</spirit:mirroredModeConstraints>
</spirit:onMaster>

/spirit:wire>
</spirit:port>

5.10 Transactional ports

5.10.1 Schema

The following schema defines the information contained in the transactional element, which may appear
within a port within an abstraction definition (abstractionDefinition/ports/port).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 39
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 39
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
5.10.2 Description

The transactional element defines a logical transactional port of the abstraction definition. This logical
transactional port may provide optional constraints for a transactional port, to which it is mapped inside a
component or abstractor’s busInterface. The transactional element also contains the following elements
and attributes.

a) The qualifier (optional) element indicates which type of information this transactional port carries.
It contains either or both of the following elements.

1) isAddress (optional) specifies the port contains address information.

2) isData (optional) specifies the port contains data information.

b) onSystem defines constraints for this transactional port if it is present in a system bus interface with
a matching group name.

1) The group attribute indicates the group name for the transactional port. It distinguishes
between different sets of system interfaces. Usually, all the arbiter ports are processed together,
or all the clock or reset ports are processed together. So, this is really a mechanism to specify
any sort of non-standard bus interface capabilities for the interconnect. The group name shall
match the one specified in the bus definition systemGroupName.

2) The group transactionalPort specifies what elements are used in this port. See 5.11.

c) onMaster defines constraints for this transactional port when present in a master bus interface. The
group transactionalPort specifies what elements are used in this port. See 5.11.

d) onSlave defines constraints for this transactional port when present in a slave bus interface. The
group transactionalPort specifies what elements are used in this port. See 5.11.

NOTE—The onMaster, onSlave, and onSystem elements associated with each logical port provide optional con-
straints. If any of these are missing, there are no constraints for how the port appears on interfaces with that mode (mas-
ter, system, or slave). If no onSystem constraint is specified with a particular group, there are no constraints for system
interfaces in that group. The abstraction definition author has the choice of how far to constrain the definitions. Gener-
ally speaking, more constraints in the definitions reduce implementation flexibility for whoever is creating IP with inter-
face that conform to the abstraction definition.
40 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

40 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
See also: SCR 6.13, SCR 6.14, SCR 6.15, and SCR 6.17.

5.10.3 Example

The following example shows a transactional port within an abstraction definition, carrying data
information.

<spirit:port>
<spirit:logicalName>pv_data</spirit:logicalName>
<spirit:transactional>

<spirit:qualifier>
<spirit:isData>true</spirit:isData>

</spirit:qualifier>
<spirit:onMaster>

<spirit:presence>required</spirit:presence>
<spirit:service>

spirit:initiative>requires</spirit:initiative>
<spirit:typeName>pv_basic_type</spirit:typeName>

</spirit:service>
</spirit:onMaster>

</spirit:transactional>
</spirit:port>

5.11 Transactional port group

5.11.1 Schema

The following schema defines the information contained in the transactionalPort group, which may appear
within an onMaster, onSlave, or onSystem element within an abstraction definition (abstractionDefinition/
ports/port/transactional/onmode).

5.11.2 Description

A transactionalPort group contains elements defining constraints associated with a transactional logical
port within an abstractionDefinition. It contains the following elements.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 41
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 41
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
a) presence (optional) provides the capability to require or forbid a port to appear in a busInterface.
Its three possible values are illegal, required, or optional. If this element is not present, its effective
value is optional.

b) service (mandatory) defines constraints on the service type, which the component transactional port
can provide or require. It also contains the following elements or attributes.

1) initiative (mandatory) defines the type of access: requires, provides, or both. For example, a
SystemC sc_port is defined using requires, since it requires a SystemC interface.

2) typeName (mandatory) is an unbounded list that defines the names of the transactional inter-
face types. The typeName element is of type anyURI. The implicit (optional) attribute may be
be used here to indicate this element is implicit and a netlister shall not declare this service in a
language-specific top-level netlist.

3) vendorExtensions contains any extra vendor-specific data related to the interface. See C.10.

See also: SCR 6.2, SCR 6.3, SCR 6.4, SCR 6.8, and SCR 6.18.

5.11.3 Example

The following example shows a custom transactional port within an abstraction definition. Constraints are
defined for transactional port used in master or slave interfaces.

<spirit:port>
<spirit:logicalName>custom_tlm_port</spirit:logicalName>
<spirit:transactional>

<spirit:onMaster>
<spirit:service>

<spirit:initiative>provides</spirit:initiative>
<spirit:typeName implicit=”true”>TLM

</spirit:typeName>
</spirit:service>

</spirit:onMaster>
<spirit:onSlave>

<spirit:service>
<spirit:initiative>requires</spirit:initiative>
<spirit:typeName implicit=”true”>TLM

</spirit:typeName>
</spirit:service>

</spirit:onSlave>
</spirit:transactional>

</spirit:port>

5.12 Extending bus and abstraction definitions

5.12.1 Extending bus definitions

Bus definitions may use the extends element to create a family of compatible inter-connectable bus
definitions. A bus definition (B) extends another existing bus definition (A) by specifying the extends
element in the B bus definition’s element list. Bus definition B is referred to as the extending bus definition
and bus definition A is referred to as the extended bus definition. For two bus definitions related by the
extends relation to be inter-connectable, they need to be in a direct line of descent in the hierarchical
extension tree, as illustrated in Figure 8.
42 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

42 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Figure 8—Extends relation hierarchy tree

In Figure 8, bus definition B extends bus definition A. Bus interfaces of bus definition E shall only be
connected with bus interfaces of bus definitions E, B, and A. By the same token, bus interfaces of bus
definition F shall only be connected with bus interfaces of bus definitions F, B, and A.

5.12.2 Extending abstraction definitions

The abstractionDefinition that references the extended busDefinition via the busType element is referred
to as the extended abstractionDefinition. The bus definition writer shall supply an abstractionDefinition
that references the extending busDefinition and it is referred to as the extending abstractionDefinition. The
extending abstractionDefinition shall reference the extended abstractionDefinition via its extends
element. An example of extending is shown in Figure 9.

Figure 9—Example of extending

The extending bus definition and abstraction definition pair shall be able to stand on its own independent of
the extended bus definition and abstraction definition pair; therefore, all the elements and attributes of the
extended bus definition and abstraction definition pair shall be specified in the extending bus definition and
abstraction definition pair. Also, all the ports in the extended abstraction definition shall be explicitly
defined in the extending abstraction definition. Some of the elements and attributes of the extending bus

AA

CC DDBB

FFEE

extended

extending
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 43
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 43
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
definition and abstraction definition pair may be modified from the extended bus definition and abstraction
definition pair, while others may not.

See also: SCR 3.18.

5.12.3 Modifying definitions

Table 1 specifies which elements and attributes may be modified in a bus definition.

Table 2 specifies which elements and attributes may be modified in an abstraction definition.

The extending abstraction definition may add new ports and the extending abstraction definition may mark
certain ports as illegal to disallow their use. Table 3 specifies which port elements may be modified when
extending bus definitions.

5.12.4 Interface connections

When a bus interface of the extended bus definition and abstraction definition pair is connected with a bus
interface of the extending bus definition and abstraction definition pair, it is possible either interface may
have unconnected ports due to the previous modifications of the port list (i.e., adding or removing ports).
The abstraction definition writer needs to be aware of these scenarios and specify default values where
necessary. Here are the possible connections between two extended interfaces (A and B).

Table 1—Elements of extending bus definition

Item Modified Comment

directConnection No

isAddressable No

maxMasters Yes Smaller number applies when connecting
interfaces of extended bus definitions.

maxSlaves Yes Smaller number applies when connecting
interfaces of extended bus definitions.

systemGroupNames Yes New group names may be added; group names
not specified are not allowed by this bus defi-
nition.

description Yes

vendorExtensions Yes

Table 2—Elements of extending abstraction definition

Item Modified Comment

ports Yes See Table 3 and SCR 6.11.

description Yes

vendorExtensions Yes
44 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

44 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
master(A) connecting to slave(B) (if directConnection = true)

master(A) connecting to mirror-master(B)

slave(A) connecting to mirror-slave(B)

system(A) connecting to mirrored-system(B)

master(B) connecting to slave(A) (if directConnection = true)

master(B) connecting to mirror-master(A)

slave(B) connecting to mirror-slave(A)

system(B) connecting to mirrored-system(A)

5.13 Clock and reset handling

Abstraction definitions shall include all the logical ports that can participate in the protocol of the bus; bus
interfaces also need to map to the component all the logical ports that participate in the protocol of that bus
at that interface. For example, on an AXI bus, the ports of the write channel can participate in the protocol of
the bus, so they shall be included in the AXI abstraction definition. These ports participate in the protocol at

Table 3—Elements of a port in an extending abstraction definition

Item Modified Comment

logicalName No Changing this name implies a port that is different
than the one in the extended abstractionDefini-
tion.

requiresDriver Yes

isAddress No

isData No

isClock No

isReset No

onSystem/group Yes

presence Yes

width Yes

direction No

modeConstraints Yes

mirroredModeConstraints Yes

defaultValue Yes This default can be used to set a value for the
extended abstraction definition logical port, if this
port is not mapped or its presence is marked as ille-
gal.

service/initiative No

service/typeName No

service/vendorExtensions Yes

vendorExtensions Yes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 45
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 45
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
any AXI bus interface that supports writes, so they need to be included in all such bus interfaces, but not
included in any AXI bus interfaces that only support reads.

This requirement applies to clock and reset ports as much as it does to other ports. If the protocol of a bus is
dependent on a clock or reset port, the bus definition for that bus shall include that clock or reset port.
Similarly if the bus protocol at a bus interface is dependent on a particular clock or reset port, the port map
of that bus interface shall include that port. The clock or reset port, however, does not need to exist as a port
of the component implementation, since it may be mapped to a phantom port of the component (see
6.11.18.2). Also, since multiple bus ports may be mapped to a single component port (and component ports
may also participate in ad-hoc connections), the clock routing is not required to match or be defined by the
bus infrastructure.

In some cases, a component may have clock or reset ports that are not associated with and do not participate
in the protocol of any bus interface, but do provide a clock or reset to the internal logic of the component
instead, e.g., a processor clock. In such cases, the clock port should be included in a special purpose clock or
reset bus interface, with an appropriate special purpose bus type, or not be mapped into any interface and
connected using ad-hoc connections instead.
46 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

46 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6. Component descriptions

6.1 Component

An IP-XACT component is the central placeholder for the objects meta-data. Components are used to
describe cores (processors, co-processors, DSPs, etc.), peripherals (memories, DMA controllers, timers,
UART, etc.), and buses (simple buses, multi-layer buses, cross bars, network on chip, etc.). An IP-XACT
component can be of two kinds: static or configurable. A DE cannot change a static component. A
configurable (or parameterized) component has configurable elements (such as parameters) that can be
configured by the DE and these elements may also configure the RTL or TLM model.

An IP-XACT component can be a hierarchical object or a leaf object. Leaf components do not contain other
IP-XACT components, while hierarchical components contain other IP-XACT sub-components. This can
be recursive by having hierarchical components that contain hierarchical components, etc.—leading to the
concept of hierarchy depth. The IP being described may have a completely different hierarchical
arrangement in terms of its implementation in RTL or TLM to that of its IP-XACT description. So, a
description of a large IP component may be made up of many levels of hierarchy, but its IP-XACT
description need only be a leaf object as that completely describes the IP. On the other hand, some IP can
only be described in terms of a hierarchical IP-XACT description, no matter what the arrangement of the
implementation hierarchy.

An IP-XACT component may contain a channel or a bridge. A channel is a special IP-XACT object that can
be used to describe multi-point connections between regular components that may require some interface
adaptation. A bridge is a point-to-point reference of slave to master interfaces. Both of these concepts are
used to describe the interconnect between components.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 47
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 47
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.1.1 Schema

The following schema details the information contained in the component element, which is one of the
seven top-level elements in the IP-XACT specification used to describe a component.

6.1.2 Description

Each element of a component is detailed in the rest of this clause; the main sections of a component are:

a) versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-level
IP-XACT element. See C.6.

b) busInterfaces (optional) specifies all the interfaces for this component. A busInterface is a group-
ing of ports related to a function, typically a bus, defined by a bus definition and abstraction defini-
tion. See 6.5.

c) channels (optional) specifies the interconnection between interfaces inside of the component. See
6.6.

d) remapStates (optional) specifies the combination of logic states on the component ports and trans-
lates them into a logical name for use by logic that controls the defined address map. See 6.9.2.

e) addressSpaces (optional) specifies the addressable area as seen from busInterfaces with an inter-
face mode of master or from cpus. See 6.7.

f) memoryMaps (optional) specifies the addressable area as seen from busInterfaces with an inter-
face mode of slave. See 6.8.
48 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

48 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
g) model (optional) specifies all the different views, ports, and model configuration parameters of the
component. See 6.11.

h) componentGenerators (optional) specifies a list of generator programs attached to this component.
See 6.12.

i) choices (optional) specifies multiple enumerated lists. These lists are referenced by other sections of
this component description. See 6.14.

j) fileSets (optional) specifies groups of files and possibly their function for reference by other sec-
tions of this component description. See 6.13.

k) whiteboxElements (optional) specifies all the different locations in the component that can be
accessed for verification purposes. See 6.15.

l) cpus (optional) indicates this component contains programmable processors. See 6.17.

m) otherClockDrivers (optional) specifies any clock signals which are referenced by implementation
constraints, but are not external ports of the component. See 6.11.15.

n) description (optional) allows a textual description of the component. The description element is of
type string.

o) parameters (optional) describes any parameter that can be used to configure or hold information
related to this component. See C.11.

p) vendorExtensions (optional) contains any extra vendor-specific data related to the component. See
C.10.

See also: SCR 1.9.

6.1.3 Example

This is an example of a component (a timers peripheral in a Leon2 library).

<?xml version="1.0" encoding="UTF-8" ?>

<spirit:component

xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5/index.xsd">

<spirit:vendor>spiritconsortium.org</spirit:vendor>

<spirit:library>Leon2</spirit:library>

<spirit:name>timers</spirit:name>

<spirit:version>1.00</spirit:version>

<spirit:busInterfaces>

...

 <spirit:memoryMaps>

...

 <spirit:model>

...

 <spirit:choices>

...

 <spirit:fileSets>

...

</spirit:component>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 49
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 49
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.2 Interfaces

Each IP component normally identifies one or more bus interfaces. Bus interfaces are groups of ports that
belong to an identified bus type (i.e., a reference to a busDefinition (see 5.2)) and an abstraction type (i.e., a
reference to an abstractionDefinition (see 5.3)). The purpose of the bus interface is to map the physical
ports of the component to the logical ports of the abstraction definition. This mapping provides more
information about the interface.

There are seven possible modes for a bus interface: a bus interface may be a master, slave, or system
interface, and may be direct or mirrored. The seventh interface mode is the monitor mode. A monitor
interface can be used to connect IP into the design for verification.

6.2.1 Direct interface modes

A master interface is the interface mode that initiates a transaction (like a read or write) on a bus. Master
interfaces tend to have associated address spaces (address spaces with programmers view).

A slave interface is the interface mode that terminates or consumes a transaction initiated by a master
interface. Slave interfaces often contain information about the registers that are accessible through the slave
interface.

A system interface is neither a master nor slave interface; this interface mode allows specialized (or non-
standard) connections to a bus, such as external arbiters. System interfaces can be used to handle situations
not covered by the bus specification or deviations from the bus specification standard.

The following guidelines also apply to the direct interface modes.

— If a port participates in the protocol of the master or slave interfaces, it shall be included in master
and slave interfaces. System interfaces often contain some of the same ports as master or slave inter-
faces.

— Some buses have specialized sideband ports. If these are tied or related to the standard ports in the
bus (as opposed to being completely standalone), these ports should have some sort of system ele-
ment designator in the bus definition.

6.2.2 Mirrored interface modes

As the name suggests, a mirrored interface has the same (or similar) ports to its related direct bus interface,
but each port’s direction or initiative is reversed. So a port that is an input on a direct bus interface would be
an output in the matching mirrored interface. A mirrored bus interface (like its direct counterpart) supports
the master, slave, and system interface modes.

6.2.3 Monitor interface modes

A monitor interface connects to a master, slave, system, mirrored-master, mirrored-slave, or mirrored-
system for observation. The connection shall not modify the connected interfaces. A monitor interface is
identified by using the monitor element in the interface definition and specifying the type of active interface
being monitored (master, slave, etc.).

6.3 Interface interconnections

IP-XACT provides for three different types of connections between interfaces. A direct connection is a
connection between a master interface and a slave interface. A direct-mirrored connection is a connection
between a direct interface and its corresponding mirrored interface (i.e. slave and mirrored-slave). A monitor
50 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

50 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
connection is a connection between any interface type (other than monitor) and a monitor interface. It is not
possible to connect two mirrored interfaces.

All interconnections are described in a top-level design object. See 7.1.

6.3.1 Direct connection

A direct connection is a connection between a master interface and a slave interface. This connection is a
single point-to-point connection. More complex connection schemes with direct connections are possible
with the use of a component containing a bridge element(s).

See also: SCR 2.2, SCR 2.10, SCR 2.11, SCR 2.12, SCR 2.13, and SCR 2.14.

6.3.2 Mirrored-non-mirrored connection

A mirrored-non-mirrored connection is a connection between a master interface and a mirrored-master
interface, a slave interface and a mirrored-slave interface, or a system interface and a mirrored-system
interface. These connections are all single point-to-point connections. More complex connection schemes
with mirrored-non-mirrored connections are possible with the use of a component containing a channel
element.

See also: SCR 2.2, SCR 2.12, and SCR 2.14.

6.3.3 Monitor connection

A monitor connection is a connection between a monitor interface and any other interface mode, master,
mirrored-master, slave, mirrored-slave, system, or mirrored-system interface. The monitor interface is
defined for only one mode and can only be used with that specific mode. Monitor connections are purely for
non-intrusive observation of an interface. These connections are single-point to multi-point connections: the
single point being the interface to be monitored and the multi-point being the monitor interface. More than
one monitor may be attached to the same interface. The monitor connection shall meet the following.

a) The connection of a monitor interface shall not count as a connected interface in the determination
of the maximum master or maximum slave calculations.

b) The direction or initiative of ports in a monitor interface cannot be specified in an abstraction defini-
tion. All wire ports on a monitor interface shall be treated as having a logical direction of in. A mon-
itor interface connected to any active interface shall see the values on the wire ports of the active
interface as inputs on its ports regardless of the direction they have on the active interface. All trans-
actional ports on a monitor interface shall be treated as having a logical initiative of requires.

See also: SCR 2.2, SCR 4.6, and the SCRs in Table B4.

6.3.4 Interface logical to physical port mapping

An interface on a component contains a port map to associate the physical ports on the component with the
logical ports in the abstraction definition. This mapping is what provides the extra information needed to
enable higher level of design.

A physical port defined in a component is assigned a physical port name and optionally can be assigned a
left and a right element to represent a vector. The left element indicates the first boundary, the right
element, the second boundary. left may be larger than right and that left may be the MSB or LSB (the right
being the opposite). The left and right elements are the (bit) rank of the left-most and right-most bits of the
port.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 51
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 51
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
A logical port defined in an abstraction definition is assigned a logical port name and, optionally, a width.
The logical port is assigned a numbering from width-1 down to 0 if the width is present. If the width is
not present, the logical port number shall have a lower bound of 0 and does not have an upper bound.

6.3.4.1 Mapping rules

Mapping rules describe the assignment of logical bit numbers to physical bit numbers.

a) First, apply all the rules defined in B.1.8 to determine the logical and physical ranges.

b) The mapping is logical.left-> physical.left down to logical.right-> physical.right.

6.3.4.2 Physical interconnections

With all logical bits having been assigned from the abstraction definition to physical port, it is a simple
matter to describe the physical connections that result from an interface connection. All connections are
made purely based on the logical bit assignment. Like logical bit numbers from each interface are connected.
The alignment is always such that logical bit 0 from interface A connects to logical bit 0 from interface B,
logical bit 1 from interface A connects to logical bit 1 from interface B, and so on.

6.4 Complex interface interconnections

There are two constructs used to connect interfaces of standard components together (traditional
components, usually with ‘master’ and ‘slave’ interfaces), a channel and a bridge. These constructs are
encapsulated into components. Not only does the channel or bridge component provide a connection
between standard components, but it also provides information on the addressing and data flow. With this
information, it is possible to construct things such as a memory map for the system.

A channel identifies interfaces in a component which connect a component’s master, slave, and system
interfaces on the same bus. All masters connected to a channel see each slave at the same physical address.
On a channel, only one master may initiate transactions at a time. This does not preclude bus protocols that
utilize pipelining or out-of-order completion. A bus that has addresses which are simultaneously seen
differently from different masters or a bus which allows transactions from different masters to be
simultaneously initiated may only be represented using bus bridges, not channels.

A bridge is an interface between two separate buses, which may be of the same or different types. Such a
component has at least one master interface (onto the peripheral bus) and one slave interface (onto the main
system bus). Crossbar bus infrastructure (e.g., an ARM Multilayer AMBA) is also treated as a component
containing bus bridges—such examples might have multiple master and multiple slave interfaces.

6.4.1 Channel

A channel is a general name which denotes the collection of connections between multiple internal bus
interfaces. The memory map between these connections is restricted so that, for example, a generator can be
called to automatically compute all the address maps for the complete design. A channel can represent a
simple wiring interconnect or a more complex structure such as a bus.

A channel also encapsulates the connection between master and slave components. A channel is the
construct, which represents the bus infrastructure and allows transactions initiated by a master interface to
be completed by a slave interface.

The following rules apply for using channels.

a) A slave connected to a channel has the same address as seen from all masters connected to this chan-
nel. This guarantees the slave addresses (as seen by each master) are consistent for the system. As a
52 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

52 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
consequence, all slave interfaces connected to a channel see the same address (if they do not, they
are connected to different channels).

b) A channel supports memory mapping and re-mapping (see 6.8, 6.9, Clause 10, and H.3).

See also: SCR 3.2.

6.4.2 Bridge

Some buses can be modeled using a component as a bridge. A bridge is a component that physically links
one or more master bus interfaces to a slave bus interface and logically connects the master address space(s)
to a slave memory map having two bus types on each side. This component has at least one master bus
interface and at least one slave bus interface, each for different protocols, and the bridge translates any
signals between them. The slave bus’s interface definition contains a bridge element (or a set of them) to
designate the corresponding master bus interface(s). There two different types of bridges defined in IP-
XACT: transparent and opaque. See also: Annex H.

The bridge relationship is transparent (opaque attribute is false) when the address space on the bridged
master bus interface is a decoded subset of the main address space, as seen through the bus bridge’s slave
bus interface. In this case, a slave component connected on the bridged master side shall reserve an address
block on the main memory map seen on the bridging slave side. If nothing is attached to the bridged master
bus interface, then no address block is reserved on the main memory map.

The bridge relationship is opaque (opaque attribute is true) when the address space on the bridged master
bus interface is not directly accessible to the main address space, as seen from channel to which the slave
bus interface is connected. In this case, the bridging component occupies a single address block, which is the
size of its slave bus interface, reserved on the memory map of the masters attached to the main bus channel.

The following rules apply for using bridges.

a) A slave interface can bridge to multiple address spaces. Specifically, a bridge shall have one or more
master interfaces and each master interface may have an address space associated with that inter-
face.

b) A bridge can only have direct interfaces. As a consequence, a bridge can directly connect to another
component (e.g., master interface to slave interface connection) under the conditions defined in
6.3.1. Or it can connect to a channel (e.g., master interface to mirrored-master interface).

c) A bridge supports memory mapping and re-mapping (see 6.8, 6.9, Clause 10, and H.3).

The transfer of addressing information from the slave interface to the master interface of a bridge is done
through the address space assigned to the master interface. This address space defines the visible address
range from this master interface.

6.4.3 Combining channels and bridges

It is possible to combine channels and bridges together each in separate components to form a new
hierarchical component for the purpose of modeling more complex interconnects. A multi-layer bus is a
more complex interconnect that supports multiple memory maps. As such, it cannot be modeled as a channel
and if the interfaces are asymmetric (they do not allow direct connections), then the bus also cannot be
modeled as a bridge.

The solution is to use a combination of channel and bridge components. The bridge component in the center
forms the main cross-bar for the communications between components. It decides which interfaces may
bridge to other interfaces. The smaller channels then come in to convert the direct interface of the bridge
(which could not connect to the master’s or slave’s because of the asymmetric bus) into a mirrored interface
that can now connect with a direct-mirrored connection to the master or slave, as shown in Figure 10.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 53
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 53
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
Figure 10—Asymmetric multi-layer bus connection using channels

6.5 Bus interfaces

6.5.1 busInterface

6.5.1.1 Schema

The following schema details the information contained in the busInterfaces element, which may appear as
an element inside the top-level component element.

6.5.1.2 Description

Bus interfaces enable individual ports that appear on the component to be grouped together into a
meaningful, known protocol. When the protocol is known, a lot of additional information can be written
down about the characteristics of that interface.

The busInterfaces element contains an unbounded list of busInterface elements; therefore, a component
may have multiple bus interfaces of the same or different types. Each busInterface element defines
54 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

54 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
properties of this specific interface in a component. The busInterface element also allows for vendor
attributes to be applied. It contains the following elements and attributes.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing com-
ponent element.

b) busType (mandatory) specifies the bus definition that this bus interface is referenced. A bus defini-
tion (see 5.2) describes the high-level attributes of a bus description. The busType element is of type
libraryRefType (see C.7); it contains four attributes to specify a unique VLNV.

c) abstractionType (optional) specifies the abstraction definition where this bus interface is refer-
enced. An abstraction definition describes the low-level attributes of a bus description (see 5.3). The
abstractionType element is of type libraryRefType (see C.7); it contains four attributes to specify a
unique VLNV.

d) interfaceMode group describes further information on the mode for this interface. There are seven
possible modes for an interface: master, slave, mirroredMaster, mirroredSlave, system, mirrored-
System and monitor. See 6.5.2.

e) connectionRequired (optional), if true, specifies when this component is integrated; this interface
shall be connected to another interface for the integration to be valid. If false, this interface may be
left unconnected. If this element is not present, its effective value is false. The connectionRequired
element is of type Boolean.

f) portMaps (optional) describes the mapping between the abstraction definition’s logical ports and
the component’s physical ports. See 6.5.6.

g) bitsInLau (optional) describes the number of data bits that are addressable by the least significant
address bit in the bus interface. It is only appropriate to specify this element for interfaces that are
addressable. The bitsInLau element is of type positiveInteger. The default value is 8.

h) bitSteering (optional) designates if this interface has the ability to dynamically align data on differ-
ent byte channels on a data bus. This element shall only be specified for interfaces that are address-
able. The bitSteering element is a choice of two values, on indicating this interface uses data
steering logic and off that this interface does not use data steering logic. The bitSteering element is
configurable using attributes from string.prompt.att, see C.12.

i) endianness (optional) indicates the endianness of the bus interface. The two choices are big for big-
endian and little for little-endian. If this element is not present, its effective value is little. See also
6.5.1.2.1.

j) parameters (optional) specifies any parameter data value(s) for this bus interface. See C.11.

k) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this bus interface. See C.10.

See also: SCR 1.4, SCR 2.14, SCR 2.15, SCR 9.4, SCR 9.5, and SCR 9.6.

6.5.1.2.1 Endianness

Endianness is defined under the busInterface element of the component. There are (only) two legal values
(big and little) to specify the endianness.

— Big endian (big) means the most significant byte of any multi-byte data field is stored at the lowest
memory address, which is also the address of the larger field.

— Little endian (little) means the least significant byte of any multi-byte data field is stored at the low-
est memory address, which is also the address of the larger field.

NOTE—The description of endianness is byte-centric as that is the most common LAU. However, this description gen-
erally applies to any size LAU.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 55
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 55
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.5.1.2.2 Big-endianness

There are at least two ways for big-endianness to manifest itself, byte-invariant and word-invariant (also
known as middle-endian); the difference being if data is stored as word-invariant, the data is stored
differently for transfers larger than a byte, e.g.,

a) Byte invariant: A word access to address 0x0 is on D[31:0]. The MSB is D[7:0], the LSB is
D[31:24].

b) Word invariant: A word access to address 0x0 is on D[31:0]. The MSB is D[31:24], the LSB
byte is D[7:0].

c) In IP-XACT, the interpretation of big-endian is the byte-invariant style.

6.5.1.3 Example

The example below shows a simple bus interface for a clock port. The interface reference a bus definition
and an abstraction definition.

<spirit:busInterface>
<spirit:name>APBClk</spirit:name>
<spirit:busType spirit:vendor="spiritconsortium.org"
spirit:library="busdef.clock" spirit:name="clock" spirit:version="1.0"/>
<spirit:abstractionType spirit:vendor="spiritconsortium.org"
spirit:library="busdef.clock" spirit:name="clock_rtl"
spirit:version="1.0"/>
<spirit:slave/>
<spirit:portMaps>

<spirit:portMap>
<spirit:logicalPort>

<spirit:name>CLK</spirit:name>
</spirit:logicalPort>
<spirit:physicalPort>

<spirit:name>clk</spirit:name>
</spirit:physicalPort>

</spirit:portMap>
</spirit:portMaps>

</spirit:busInterface>

6.5.2 Interface modes

The following schema details the information contained in the interfaceMode group, which appears as a
group inside the busInterface element.
56 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

56 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.5.2.1 Schema

6.5.2.2 Description

The busInterface’s mode designates the purpose of the busInterface on this component. There are seven
possible modes: three pairs of standard functional interfaces and their mirrored counterparts, and a monitor
interface for VIP.

The interfaceMode group shall contain one of the following seven elements.

a) A master interface mode (sometimes also known as an initiator) is one that initiates transactions.
See 6.5.3.

b) A slave interface mode (sometimes also known as a target) is one that responds to transactions. See
6.5.4.

c) A system interface mode is used for some classes of interfaces that are standard on different bus
types, but do not fit into the master or slave category.

The group (mandatory) attribute for the system element defines the name of the group to
which this system interface belongs. The type of the group attribute is Name.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 57
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 57
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
d) A mirroredSlave interface mode is the mirrored version of a slave interface and can provide addi-
tion address offsets to the connected slave interface. See 6.5.5

e) A mirroredMaster interface mode is the mirrored version of a master interface.

f) A mirroredSystem interface mode is the mirrored version of a system interface.

The group (mandatory) attribute for the mirroredSystem element defines the name of the
group to which this mirroredSystem interface belongs. The type of the group attribute is
Name.

g) A monitor interface mode is a special interface that can be used for verification. This monitor inter-
face mode is used to gather data from other interfaces. See 6.3.3.

1) The interfaceMode (mandatory) attribute defines the interface mode for which this monitor
interface can be connected.: master, slave, system, mirroredMaster, mirroredSlave, or mir-
roredSystem.

2) The group (optional) element is required if the interfaceMode attribute is set to system or mir-
roredSystem. This element defines the name of the system group for this monitor interface. The
type of the group element is Name.

See also: SCR 2.12, SCR 4.3, SCR 4.4, and SCR 6.16.

6.5.2.3 Example

The example below shows a portion of a bus interface for an AHB bus interface. The interface mode is
defined as monitor for a slave.

<spirit:busInterface>

<spirit:name>ambaAHBSlaveMonitor</spirit:name>

<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0_5"/>

<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB_rtl" spirit:version="r2p0_5"/>

<spirit:monitor spirit:interfaceMode="slave"/>

<spirit:portMaps>

<spirit:portMap>

<spirit:logicalPort>

<spirit:name>HRESP</spirit:name>

</spirit:logicalPort>

<spirit:physicalPort>

<spirit:name>hresp</spirit:name>

</spirit:physicalPort>

</spirit:portMap>

...

</spirit:busInterface>

6.5.3 Master interface

The following schema details the information contained in the master element, which appears as an element
inside the interfaceMode group inside busInterface element.
58 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

58 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.5.3.1 Schema

6.5.3.2 Description

A master interface (also known as an initiator) is one that initiates transactions. The master element
contains the following elements and attributes.

a) addressSpaceRef (optional) element contains attributes and subelements to describe information
about the range of addresses with which this master interface can generate transactions.

1) addressSpaceRef (mandatory) attribute references a name of an address space defined in the
containing description. The address space shall define the range and width for transaction on
this interface. See 6.7.

2) baseAddress (optional) specifies the starting address of the address space. The address space
numbering normally starts at 0. Some address spaces may use offset addressing (starting at a
number other than 0) so the base address element can be used to designate this information.
The type of this element is set to scaledInteger, see D.15. The baseAddress element is config-
urable with attributes from long.att, see C.12. The prompt (optional) attribute allows the set-
ting of a string for the configuration and has a default value of “Base Address:”. See also:
Clause 11.

See also: SCR 9.1.

6.5.3.3 Example

The example below shows a portion of a bus interface for an AHB master bus interface. The interface
contains a reference to an address space called main, that has its base address starting at 0.

<spirit:busInterface>
<spirit:name>AHBmaster</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0_5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB_rtl" spirit:version="r2p0_5"/>
<spirit:master>
<spirit:addressSpaceRef spirit:addressSpaceRef="main"/>
</spirit:master>
<spirit:connectionRequired>true</spirit:connectionRequired>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 59
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 59
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:portMaps>
<spirit:portMap>
<spirit:logicalPort>

<spirit:name>HRDATA</spirit:name>
</spirit:logicalPort>
<spirit:physicalPort>

<spirit:name>hrdata</spirit:name>
</spirit:physicalPort>

</spirit:portMap>
...
</spirit:busInterface>

6.5.4 Slave interface

The following schema details the information contained in the slave element, which appears as an element
inside the interfaceMode group inside busInterface element.

6.5.4.1 Schema

6.5.4.2 Description

A slave interface (sometimes also known as a target) is one that responds to transactions. The memory map
reference points to information about the range of registers, memory, or other address blocks accessible
through this slave interface. This slave interface can also be used in a bridge application to “bridge” a
transaction from a slave interface to a master interface.

a) memoryMapRef (optional) element contains an attribute that references a memory map.

The memoryMapRef (mandatory) attribute references a name of a memory map defined in the
containing description. The memory map contains information about the range of registers,
memory, or other address blocks. See 6.8.

b) bridge (optional) element is an unbounded list of references to master interfaces. If the interface is
of a bus definition that is addressable, a bridge element may be included.
60 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

60 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
1) The masterRef (mandatory) attribute shall reference a master interface (see 6.5.3) in the con-
taining description. Under some conditions, transactions from the slave interface may be
bridged to the referenced master interface, as defined by opaque (see also 6.4.2).

2) The opaque (mandatory) attribute defines the type of bridging. The opaque attribute is of type
Boolean. true means the addressing entering into the slave interface shall have the subspace
maps baseAddress added and, if non-negative, the result shall exit on the subspace maps’ ref-
erenced master interface’s referenced address space (see 6.4.2 and Clause 11). false means all
addressing entering the slave interface shall exit the above referenced master interface without
any modifications, this type of bridge is sometimes called transparent.

c) fileSetRefGroup (optional) element is an unbounded list of the references to file sets contained in
this component. These file set references are associated with this slave interface. This element may
seem out of place, but it allows each slave port to reference a unique fileSet element (see 6.13). This
element can further be used to reference a software driver, which can be made different for each
slave port.

group (optional) element allows the definition of a group name for the fileSetRefGroup. The
group element is of type Name.

d) fileSetRef (optional) is an unbounded list of references to a fileSet by name within the containing
document or another document referenced by the VLNV. See C.8.

See also: SCR 3.6 and SCR 9.2.

6.5.4.3 Example

The example below shows a portion of an opaque bridge from and AHB slave bus interface to an APB
master bus interface.

<spirit:busInterface>
<spirit:name>ambaAPB</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="APB" spirit:version="r2p0_3"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="APB_rtl" spirit:version="r2p0_3"/>
<spirit:master>

<spirit:addressSpaceRef spirit:addressSpaceRef="apb"/>
</spirit:master>

...
<spirit:busInterface>

<spirit:name>ambaAHB</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0_5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB_rtl" spirit:version="r2p0_5"/>
<spirit:slave>

<spirit:memoryMapRef spirit:memoryMapRef="ambaAHB"/>
<spirit:bridge spirit:masterRef="ambaAPB" spirit:opaque="true"/>

</spirit:slave>
...
<spirit:addressSpaces>

<spirit:addressSpace>
<spirit:name>apb</spirit:name>
<spirit:range spirit:choiceRef="addressWidthChoice"

spirit:format="choice" spirit:id="masterRange" spirit:prompt="Master Port
Size :" spirit:resolve="user">1M</spirit:range>

<spirit:width spirit:format="long">32</spirit:width>
</spirit:addressSpace>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 61
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 61
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:addressSpaces>

<spirit:memoryMaps>

<spirit:memoryMap>

<spirit:name>ambaAHB</spirit:name>

<spirit:subspaceMap spirit:masterRef="ambaAPB">

<spirit:name>bridgemap</spirit:name>

<spirit:baseAddress>0x10000000</spirit:baseAddress>

</spirit:subspaceMap>

</spirit:memoryMap>

</spirit:memoryMaps>

6.5.5 Mirrored slave interface

The following schema details the information contained in the mirroredSlave element, which appears as an
element inside the interfaceMode group inside busInterface element.

6.5.5.1 Schema

6.5.5.2 Description

A mirroredSlave interface is used to connect to a slave interface. The mirroredSlave interface may contain
additional address information in the baseAddresses (optional) element.

a) remapAddress (mandatory) element is an unbounded list that specifies the address offset to apply
to the connected slave interface. The remapAddress is expressed as the number of addressable units
based on the size of an addressable unit as defined inside the containing busInterface/bitsInLau
element. The type of this element is set to scaledNonNegativeInteger, see D.15. The remapAd-
dress element is configurable with attributes from long.att, see C.12. The prompt (optional)
attribute allows the setting of a string for the configuration and has a default value of “Base
Address:”. The state (optional) attribute references a defined state in the component and identifies
the remapState/name for which the remapAddress and range apply. See 6.9.2.

b) range (mandatory) specifies the address range to apply to the connected slave interface. The range
is expressed as the number of addressable units based on the size of an addressable unit as defined
inside the containing busInterface/bitsInLau element. See 6.5.1. The type of this element is set to
scaledPositiveInteger. The range element is configurable with attributes from long.prompt.att, see
C.12.
62 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

62 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.5.5.3 Example

This example shows a portion of a bus interface for an AHB mirroredSlave bus interface. The interface
contains two remap addresses. The first does not have a state attribute and is always active unless a named
state is active, in this case, the base address of the connected slave is offset by 0x00000000. The second
remap address is active when state=remapped is selected, in this case the base address of the slave is offset
by 0x10000000.

<spirit:busInterface>
<spirit:name>MirroredSlave0</spirit:name>
<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB" spirit:version="r2p0_5"/>
<spirit:abstractionType spirit:vendor="amba.com" spirit:library="AMBA2"
spirit:name="AHB_rtl" spirit:version="r2p0_5"/>
<spirit:mirroredSlave>

<spirit:baseAddresses>
<spirit:remapAddress spirit:resolve="user"

spirit:id="start_addr_slv0_mirror" spirit:choiceRef="BaseAddressChoices"
spirit:format="choice" spirit:prompt="Slave 0 Starting
Address:">0x00000000</spirit:remapAddress>

<spirit:remapAddress spirit:resolve="user"
spirit:id="restart_addr_slv0_mirror"
spirit:choiceRef="BaseAddressChoices" spirit:format="choice"
spirit:prompt="Remap Slave 0 Starting Address:"
spirit:state="remapped">0x10000000</spirit:remapAddress>

<spirit:range spirit:resolve="user" spirit:id="range_slv0_mirror"
spirit:prompt="Slave 0 Range:">0x00010000</spirit:range>

</spirit:baseAddresses>
</spirit:mirroredSlave>

...
</spirit:busInterface>

6.5.6 Port map

The following schema details the information contained in the portMaps element, which appears as an
element inside busInterface element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 63
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 63
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.5.6.1 Schema

6.5.6.2 Description

The portMaps (optional) element contains an unbounded list of portMap elements. Each portMap
element describes the mapping between the logical ports, defined in the referenced abstraction definition, to
the physical ports, defined in the containing component description.

a) logicalPort (mandatory) contains the information on the logical port from the abstraction definition.

1) name (mandatory) specifies the logical port name. The name shall be a name of a logical port
in the referenced abstraction definition that is defined as legal for this interface mode. The
name element is of type Name.

2) vector (optional) is used for a vectored logical port to specify the indices of the logical port
mapping. The vector element contains two subelements: left and right. The values of left and
right shall be less than the width if specified for the logical port from the abstraction defini-
tion. The left and right elements are both of type nonNegativeInteger. The left and right ele-
ments are configurable with attributes from long.prompt.att, see C.12.

b) physicalPort (mandatory) contains information on the physical port contained in the component.

1) name (mandatory) specifies the physical port name. The name shall be a name of a port in the
containing component. The name element is of type Name.

2) vector (optional) is used for a vectored physical port to specify the indices of the physical port
mapping. The vector element contains two subelements: left and right. The values of left and
right shall be within the left and right values specified for the physical port. The left and right
elements are both of type nonNegativeInteger. The left and right elements are configurable
with attributes from long.prompt.att, see C.12.

The same physical port may be mapped to a number of different logical ports on the same or different bus
interfaces, and the same logical port may be mapped to a number of different physical ports. For port
mapping rules, see 6.3.4.1.

See also: SCR 6.1, SCR 6.2, SCR 6.3, SCR 6.4, SCR 6.5, SCR 6.6, SCR 6.7, SCR 6.12, SCR 6.13,
SCR 6.19, SCR 6.20, SCR 6.21, SCR 6.22, SCR 6.23, SCR 6.24, and SCR 6.25.
64 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

64 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.5.6.3 Example

The example below shows a portion of a bus interface for an APB bus interface. A mapping from the logical
port PADDR to the lower 12 bits of the physical port paddr. A mapping from the logical port PWRITE to
the physical port pwrite.

<spirit:portMap>

<spirit:logicalPort>

<spirit:name>PADDR</spirit:name>

</spirit:logicalPort>

<spirit:physicalPort>

<spirit:name>paddr</spirit:name>

<spirit:vector>

<spirit:left>11</spirit:left>

<spirit:right>11</spirit:right>

</spirit:vector>

</spirit:physicalPort>

</spirit:portMap>

<spirit:portMap>

<spirit:logicalPort>

<spirit:name>PWRITE</spirit:name>

</spirit:logicalPort>

<spirit:physicalPort>

<spirit:name>pwrite</spirit:name>

</spirit:physicalPort>

</spirit:portMap>

6.6 Component channels

6.6.1 Schema

The following schema details the information contained in the channels element, which may appear as an
element inside the top-level component element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 65
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 65
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.6.2 Description

The channels element contains an unbounded list of channel elements. Each channel element contains a
list of all the mirrored bus interfaces in the containing component that belong to the same channel.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing chan-
nels element.

b) busInterfaceRef (mandatory) is an unbound list of references (a minimum of two) to mirrored bus
interfaces in the containing component. Each mirrored bus interface in a component may be refer-
enced in any channel at most once. The order of this list may be used by the design environment in
some way and shall be maintained. The busInterfaceRef element is of type Name. See 6.5.1.

See also: SCR 3.1, SCR 3.2, SCR 3.3, SCR 3.4, and SCR 3.5.

6.6.3 Example

The following example shows a channel with two connected busInterfaces.

<spirit:busInterfaces>

 <spirit:busInterface>

 <spirit:name>InterfaceA</spirit:name>

 <spirit:busType>...</spirit:busType>

 <spirit:mirroredMaster>...</spirit:mirroredMaster>

 </spirit:busInterface>

 <spirit:busInterface>

 <spirit:name>InterfaceB</spirit:name>

 <spirit:busType>...</spirit:busType>

 <spirit:mirroredSlave>...</spirit:mirroredSlave>

 </spirit:busInterface>

</spirit:busInterfaces>

<spirit:channels>

 <spirit:channel>

 <spirit:name>masterChannel</spirit:name>

 <spirit:displayName>Channel for Master communication</spirit:displayName>

 <spirit:description>This channel includes all transaction calls used by
the master component of the system</spirit:description>

 <spirit:busInterfaceRef>InterfaceA</spirit:busInterfaceRef>

 <spirit:busInterfaceRef>InterfaceB</spirit:busInterfaceRef>

 </spirit:channel>

</spirit:channels>
66 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

66 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.7 Address spaces

An address space is defined as a logical addressable space of memory. Each master interface can be assigned
a logical address space. Address spaces are effectively the programmer's view looking out from a master
interface. Some components may have one address space associated with more than one master interface
(for instance, a processor that has a system bus and a fast memory bus. Other components (for instance,
Harvard architecture processors) may have multiple address spaces associated with multiple master
interfaces—one for instruction and the other for data.

6.7.1 addressSpaces

6.7.1.1 Schema

The following schema details the information contained in the addressSpaces element, which may appear
as an element inside the top-level component element.

6.7.1.2 Description

The addressSpaces element contains an unbounded list of addressSpace elements. Each addressSpace
element defines a logical address space seen by a master bus interface. It contains the following elements.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing
addressSpaces element.

b) blockSize group includes the following.

1) range (mandatory) gives the address range of an address space. This is expressed as the num-
ber of addressable units of the address space. The size of an addressable unit is defined inside
the addressUnitBits element. The type of the range element is set to scaledPositiveInteger.
The range element is configurable with attributes from long.prompt.att, see C.12.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 67
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 67
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
2) width (mandatory) is the bit width of a row in the address space. The type of this element is set
to nonNegativeInteger. The width element is configurable with attributes from
long.prompt.att, see C.12.

c) segments (optional) describes a portion of the address space starting at an address offset and con-
tinuing for a given range. A segment can be referenced by a subspaceMap. See 6.7.7.

d) addressUnitBits (optional) defines the number of data bits in each address increment of the address
space. If this element is not present, it is presumed to be 8.

e) executableImage (optional) describes the details of an executable image that can be loaded and exe-
cuted in this address space on the processor to which this master bus interface belongs. See 6.7.3.

f) localMemoryMap (optional) describes a local memory map that is seen exclusively by this master
bus interface viewing this address space. See 6.7.7.

g) parameters (optional) specifies any parameter data value(s) for this address space. See C.11.

h) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this address space. See C.10.

The range and width elements are related by the following formulas

number_of_bits_in_block = addressUnitBits * range

number_of_rows_in_block = number_of_bits_in_block / width

See also: SCR 9.3 and SCR 9.8.

6.7.1.3 Example

The following example shows the definition of an address space with a range (length) of 4 giga-bytes and a
width of 32 bits.

<spirit:addressSpaces>
<spirit:addressSpace>

<spirit:name>main</spirit:name>
<spirit:range>4G</spirit:range>
<spirit:width>32</spirit:width>
<spirit:addressUnitBits>8</spirit:addressUnitBits>
68 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

68 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:addressSpace>

</spirit:addressSpaces>

6.7.2 Segments

6.7.2.1 Schema

The following schema details the information contained in the segments element, which may appear inside
an addressSpace element.

6.7.2.2 Description

The segments element contains an unbounded list of segment elements. Each segment describes the
location and size of an area in the containing addressSpace.The segment element contains the following
elements.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing seg-
ments element.

b) addressOffset (mandatory) describes, in addressing units from the containing addressSpace/
addressUnitBits element, the offset from the start of the addressSpace. The addressOffset element
is of type scaledNonNegativeInteger. The addressOffset element is configurable with attributes
from long.prompt.att, see C.12.

c) range (mandatory) gives the address range of an address space segment. This is expressed as the
number of addressable units of the address space segment. The size of an addressable unit is defined
inside the addressUnitBits element. The type of the range element is set to scaledPositiveInteger.
The range element is configurable with attributes from long.prompt.att, see C.12.

d) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this address space. See C.10.

See also: SCR 9.8.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 69
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 69
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.7.2.3 Example

The following example shows the definition of an address space with a range (length) of 4 giga-bytes and a
width of 32 bits. The address space contains two segments, one starting at 0x10000000 with a range of 32
mega-bytes, the second segment starts at 0x80000000 with a range of 1 giga-byte.

<spirit:addressSpaces>
<spirit:addressSpace>

<spirit:name>main</spirit:name>
<spirit:range>4G</spirit:range>
<spirit:width>32</spirit:width>
<spirit:segments>

<spirit:segment>
<spirit:name>segment1</spirit:name>
<spirit:addressOffset>0x10000000</spirit:addressOffset>
<spirit:range>32M</spirit:range>

</spirit:segment>
<spirit:segment>

<spirit:name>segment2</spirit:name>
<spirit:addressOffset>0x80000000</spirit:addressOffset>
<spirit:range>1G</spirit:range>

</spirit:segment>
</spirit:segments>
<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:addressSpace>
</spirit:addressSpaces>

6.7.3 executableImage

6.7.3.1 Schema

The following schema details the information contained in the executableImage element, which may appear
inside an addressSpace element.
70 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

70 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.7.3.2 Description

The executableImage element describes the details of an executable image that can be loaded and executed
in this address space on the processor to which this master bus interface belongs and contains the following
elements.

a) id (mandatory) attribute uniquely identifies the executableImage for reference in a fileSet/func-
tion/fileRef. The id attribute is of type ID.

b) imageType (optional) attribute can describe the binary executable format (e.g., ELF, raw binary,
etc.). The list of possible values is user-defined. The imageType attribute is of type Name.

c) name (mandatory) identifies the location of the executable object. The name element is of type
spiritURI.

d) description (optional) allows a textual description of the address space. The description element is
of type string.

e) parameters (optional) specifies any parameter data value(s) for this executable object. See C.11.

f) languageTools (optional) contains further elements to describe the information needed to build the
executable image. See 6.7.4.

g) fileSetRefGroup (optional) element contains a list of fileSetRef subelements, each one containing
the name of a file set associated with this executableImage. See 6.13.

h) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this address space. See C.10.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 71
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 71
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
See also: SCR 9.3.

6.7.3.3 Example

The following example shows the definition of a binary executable produced using the Gnu C Compiler
(GCC) software tools.

<spirit:executableImage spirit:id="gnu" spirit:imageType="bin">

<spirit:name>calculator.x</spirit:name>

<spirit:description>Calculator function</spirit:name>

<spirit:languageTools>

<spirit:fileBuilder>

<spirit:fileType>cSource</spirit:fileType>

<spirit:command spirit:id="gccCompilerDefault"> gcc</
spirit:command>

<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES_LOCATION}/
software/include -I${GCC_LIBRARY}/common/include</spirit:flags>

</spirit:fileBuilder>

<spirit:fileBuilder>

<spirit:fileType>asmSource</spirit:fileType>

<spirit:command spirit:id="gccAssemblerDefault">gcc</
spirit:command>

<spirit:flags spirit:id="gccAsmFlags">-c -Wa,--gdwarf2 -
I${INCLUDES_LOCATION}/software/include -I${GCC _LIBRARY}/common/include</
spirit:flags>

</spirit:fileBuilder>

<spirit:linker spirit:id="gccLinker">gcc</spirit:linker>

<spirit:linkerFlags spirit:id="gccLnkFlags">-g -nostdlib -static -
mcpu=arm9</spirit:linkerFlags>

<spirit:linkerCommandFile>

<spirit:name spirit:id="lnkCmdFile">linker.ld</spirit:name>

<spirit:commandLineSwitch spirit:id="lnkCmSwitch">-T</
spirit:commandLineSwitch>

<spirit:enable spirit:id="lnkCmdEnable">true</spirit:enable>

<spirit:generatorRef>org.spiritconsortium.tool</spirit:generatorRef>

</spirit:linkerCommandFile>

</spirit:languageTools>

<spirit:fileSetRefGroup>

<spirit:fileSetRef>calculatorAppC</spirit:fileSetRef>

<spirit:fileSetRef>mathFunctions</spirit:fileSetRef>

<spirit:fileSetRef>coreLib-gnu</spirit:fileSetRef>

</spirit:fileSetRefGroup>

</spirit:executableImage>

6.7.4 languageTools

6.7.4.1 Schema

The following schema details the information contained in the languageTools element, which may appear as
an element inside the executableImage element.
72 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

72 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.7.4.2 Description

The languageTools element contains the following list of optional elements to document a set of software
tools used to create an executable binary documented by the parent executableImage element. Multiple
languageTools information can be created to reflect various software tool sets that can create this executable
binary file.

a) fileBuilder (optional) contains the information details of a compiler or assembler for software
source code. See 6.7.5.

b) linker (optional) documents the link editor associated with the software tools described in file-
Builder. The linker element is of type string. The linker element is configurable with attributes
from string.prompt.att, see C.12.

c) linkerFlags (optional) can also be associated with any linker information. The linkerFlags element
is of type string. The linkerFlags element is configurable with attributes from string.prompt.att, see
C.12.

d) linkerCommandFile (optional) documents a file containing commands the linker follows. See
6.7.6.

See also: SCR 9.7.

6.7.4.3 Example

The following example shows the definition of GCC software tools used together to produce an executable
binary code file.

<spirit:languageTools>
<spirit:fileBuilder>

<spirit:fileType>cSource</spirit:fileType>
<spirit:command spirit:id="gccCompilerDefault"> gcc</spirit:command>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 73
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 73
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES_LOCATION}/
software/include -I${GCC_LIBRARY}/common/include</spirit:flags>

</spirit:fileBuilder>

<spirit:fileBuilder>

<spirit:fileType>asmSource</spirit:fileType>

<spirit:command spirit:id="gccAssemblerDefault">gcc</spirit:command>

<spirit:flags spirit:id="gccAsmFlags">-c -Wa,--gdwarf2 -
I${INCLUDES_LOCATION}/software/include -I${GCC _LIBRARY}/common/include</
spirit:flags>

</spirit:fileBuilder>

<spirit:linker spirit:id="gccLinker">gcc</spirit:linker>

<spirit:linkerFlags spirit:id="gccLnkFlags">-g -nostdlib -static -
mcpu=arm9</spirit:linkerFlags>

<spirit:linkerCommandFile>

<spirit:name spirit:id="lnkCmdFile">linker.ld</spirit:name>

<spirit:commandLineSwitch spirit:id="lnkCmSwitch">-T</
spirit:commandLineSwitch>

<spirit:enable spirit:id="lnkCmdEnable">true</spirit:enable>

spirit:generatorRef>org.spiritconsortium.tool</spirit:generatorRef>

</spirit:linkerCommandFile>

</spirit:languageTools>

6.7.5 fileBuilder

6.7.5.1 Schema

The following schema details the information contained in the fileBuilder element, which may appear as an
element inside a languageTools element within the executableImage element.
74 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

74 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.7.5.2 Description

The fileBuilder element contains the following elements.

a) fileType (mandatory) group contains one or more of the elements defined in C.9.

b) command (optional) element defines a compiler or assembler tool that processes the software of
this type. The command element is of type string. The command element is configurable with
attributes from string.prompt.att, see C.12.

c) flags (optional) documents any flags to be passed along with the software tool command. The flags
element is of type string. The flags element is configurable with attributes from string.prompt.att,
see C.12.

d) replaceDefaultFlags (optional) documents, when true, flags that replace any of the default flags
from a build script generator. If false, the flags contained in the flags element are appended to the
current command. If the value is true and the flags element is empty or does not exist, this has the
effect of clearing all the flags in build script generator. The replaceDefaultFlags element is of type
Boolean. The replaceDefaultFlags element is configurable with attributes from bool.prompt.att,
see C.12.

e) vendorExtensions (optional) holds vendor-specific data from other name spaces applicable to
building this software source code file into an executable object file. See C.10.

6.7.5.3 Example

The following example shows the specification for compiling a C language file using GCC.

<spirit:fileBuilder>
<spirit:fileType>cSource</spirit:fileType>
<spirit:command spirit:id="gccCompilerDefault"> gcc</spirit:command>
<spirit:flags spirit:id="gccCFlags">-c -g -I${INCLUDES_LOCATION}/software/
include -I${GCC_LIBRARY}/common/include</spirit:flags>

</spirit:fileBuilder>

6.7.6 linkerCommandFile

6.7.6.1 Schema

The following schema details the information contained in the linkerCommandFile element, which may
appear as an element inside a languageTools element within the executableImage element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 75
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 75
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.7.6.2 Description

The linkerCommandFile element contains information related to contents of the linker and linkerFlags
elements, specifically about a file containing linker commands. It contains the following elements.

a) name (mandatory) documents the location and name of the file containing commands for the linker.
The name element is of type spiritURI. The name element is configurable with attributes from
string.prompt.att, see C.12.

b) commandLineSwitch (mandatory) documents the flag on the command line specifying the linker
command file. The commandLineSwitch element is of type spiritURI. The commandLineSwitch
element is configurable with attributes from string.prompt.att, see C.12.

c) enable (mandatory) indicates whether to use this linker command file in the default scenario. The
enable element is of type Boolean. The enable element is configurable with attributes from
bool.prompt.att, see C.12. The following also apply. For:

1) enable=true and a generatorRef, run the generator to link the executableImage; it may use
the other elements to link the executableImage.

2) enable=true and no generatorRef, run the linker with the -commandLineSwitch name (the
command file).

3) enable=false, run the linker with linkerFlags.

d) generatorRef (optional) references the generator (in the containing component) that creates and
launches the linker command. There may be any number of these elements present. The generator-
Ref element is of type string. See 6.12.

e) vendorExtensions (optional) holds any vendor-specific data from other name spaces applicable to
using this linker. See C.10.
76 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

76 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.7.6.3 Example

The following example shows the definition of a status register which can be accessed within a component
during verification.

<spirit:linkerCommandFile>

<spirit:name spirit:id="linkerCommandFileName2">linker.ld</spirit:name>

<spirit:commandLineSwitch spirit:id="lnkCmSwitch">-T</
spirit:commandLineSwitch>

<spirit:enable spirit:id="lnkCmdEnable">true</spirit:enable>

<spirit:generatorRef>org.spiritconsortium.tool.gccLinkerLauncher</
spirit:generatorRef>

</spirit:linkerCommandFile>

6.7.7 Local memory map

6.7.7.1 Schema

The following schema details the information contained in the localMemoryMap element, which may
appear inside an addressSpace element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 77
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 77
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.7.7.2 Description

Some processor components require specifying a memory map that is local to the component. Local memory
maps (the localMemoryMap element in the addressSpace element of the component) are blocks of
memory within a component that can only be accessed by the master interfaces of that component. If the
master interface containing a local memory map is bridged from a slave interface (see 6.4.2), the local
memory map is visible from this slave interface. The localMemoryMap element contains an id (optional)
attribute which assigns a unique identifier to the containing element for reference throughout the containing
description. localMemoryMap contains the following mandatory and optional elements.

a) nameGroup group is describe in C.1.

b) memoryMap group (optional) is any number of the following.

1) addressBlock describes a single block. See 6.8.2.

2) bank represents a collection of address blocks, banks, or subspace maps. See 6.8.5.

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.
See 6.8.9.

6.7.7.3 Example

The following example shows a secure register space with limited access to the master bus interface as the
definition of a local memory map for an address space.

<spirit:localMemoryMap>
<spirit:name>secureRegs</spirit:name>
<spirit:displayName>Secure Registers</spirit:displayName>
<spirit:description>Secure registers area</spirit: description>
<spirit:addressBlock>

<spirit:baseAddress spirit:id="secureRegs">0x50000000</
spirit:baseAddress>

<spirit:range>64</spirit:range>
<spirit:width>32</spirit:width>
<spirit:usage>register</spirit:usage>
<spirit:access>read-write</spirit:access>

</spirit:addressBlock>
</spirit:localMemoryMap>
78 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

78 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.8 Memory maps

6.8.1 memoryMaps

6.8.1.1 Schema

The following schema details the information contained in the memoryMaps element, which may appear as
an element inside the component element.

6.8.1.2 Description

A memory map can be defined for each slave interface of a component. The memoryMaps element
contains an unbounded list of memoryMap elements. The memoryMap elements are referenced by the
component’s slave interface. The memoryMap element contains an id (optional) attribute which assigns a
unique identifier to the containing element for reference throughout the containing description.
memoryMap contains the following mandatory and optional elements.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing mem-
oryMaps element.

b) memoryMap group (optional) is any number of the following.

1) addressBlock describes a single block. See 6.8.2.

2) bank represents a collections of address blocks, banks or subspace maps. See 6.8.5.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 79
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 79
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.
See 6.8.9.

c) The optional memoryRemap element describes additional address blocks, banks, and subspace
maps of a slave bus interface in a specific remap state.

d) The optional addressUnitBits elements defines the number of data bits in each address increment of
the memory map. This is required to allow the elements in the memory map to define items such as
register offsets.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the memory map. See
C.10.

6.8.2 Address block

6.8.2.1 Schema

The following schema details the information contained in the addressBlock element, which may appear in
a memoryMap element. It is of type addressBlockType.

6.8.2.2 Description

The addressBlock element describes a single, contiguous block of memory that is part of a memory map.
The addressBlock element contains an id (optional) attribute which assigns a unique identifier to the
containing element for reference throughout the containing description. addressBlock contains the
following mandatory and optional elements.
80 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

80 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
a) nameGroup is defined in C.1. The name of the addressBlock, subspaceMap, bank, and memo-
ryRemap shall be unique within the containing memoryMap, localMemoryMap, or memo-
ryRemap element.

b) addressSpecifier group includes the following.

baseAddress (mandatory) specifies the starting address of the block. The baseAddress is expressed
in addressing units from the containing memoryMap/addressUnitBits or localMemoryMap/
addressUnitBits element. The baseAddress element is of type scaledNonNegativeInteger. The
baseAddress element is configurable with attributes from long.att, see C.12. The prompt (optional)
attribute allows the setting of a string for the configuration and has a default value of “Base
Address:”.

c) addressBlockDefinitionGroup group contains definition information about address blocks. See
6.8.3.

d) vendorExtensions (optional) adds any extra vendor-specific data related to the address block. See
C.10.

See also: SCR 8.1 and SCR 8.16.

6.8.2.3 Example

The following example shows an address block starting at address 0x1000 in memory map map1,
containing 64 addressable 8 -bit units, organized into larger 32-bit units.

<spirit:memoryMap>
<spirit:name>map1</spirit:name>
<spirit:addressBlock>

<spirit:name>AB1</spirit:name>
<spirit:baseAddress>0x1000</spirit:baseAddress>
<spirit:range>64</spirit:range>
<spirit:width>32</spirit:width>

</spirit:addressBlock>
<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:memoryMap>

6.8.3 Address block definition group

6.8.3.1 Schema

The following schema details the information contained in the addressBlockDefinitionGroup group, which
may appear in an addressBlock element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 81
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 81
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.8.3.2 Description

The addressBlockDefinitionGroup group describes the definition information about address blocks. It
contains the following mandatory and optional elements.

a) typeIdentifier (optional) indicates multiple address block elements with the same typeIdentifier in
the same description contain the exact same information for the elements in the addressBlockDefi-
nitionsGroup.

b) blockSize group includes the following.

1) range (mandatory) gives the address range of an address block. This is expressed as the num-
ber of addressable units. The size of an addressable unit is defined inside the containing memo-
ryMap/addressUnitBits or memoryMap/addressUnitBits element. The range element is of
type scaledPositiveInteger. The range element is configurable with attributes from
long.prompt.att, see C.12.

2) width (mandatory) is the bit width of a row in the address block. A row in an address block sets
the maximum single transfer size into the memory map allowed by the referencing bus inter-
face and also defines the maximum size that a single register can be defined across an intercon-
nection. The width element is of type nonNegativeInteger. The width element is configurable
with attributes from long.prompt.att, see C.12.

c) memoryBlockData group contains information about usage, access, volatility, and other parameters.
See 6.8.4.

d) registerData group contains information about the grouping of bits into registers and fields. See
6.10.1.

The range and width elements are related by the following formulas
82 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

82 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
number_of_bits_in_block = addressUnitBits * range

number_of_rows_in_block = number_of_bits_in_block / width

See also: SCR 8.1 and SCR 7.15.

6.8.3.3 Example

The following example shows an address block starting at address 0 in memory map map1, containing 1024
addressable 8 -bit units, organized into larger 32-bit units.

<spirit:memoryMap>

<spirit:name>map1</spirit:name>

<spirit:addressBlock>

<spirit:name>AB1</spirit:name>

<spirit:baseAddress>0</spirit:baseAddress>

<spirit:range>1K</spirit:range>

<spirit:width>32</spirit:width>

</spirit:addressBlock>

<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:memoryMap>

6.8.4 memoryBlockData group

6.8.4.1 Schema

The following schema details the information contained in the memoryBlockData group, an optional part of
both addressBlock and bank.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 83
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 83
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.8.4.2 Description

The memoryBlockData group is a collection of elements that contains further specification of addressBlock
or bank elements. It contains the following elements.

a) usage (optional) specifies the type of usage for the address block or bank to which it belongs.

1) For an addressBlock:

i) memory defines, when the access element is set to read-only, the entire range of the
addressBlock as a ROM. If the access element is set to read-write, the entire range of the
addressBlock is a RAM. If the access element is set to write-only, the entire range of the
addressBlock is a write-only memory. This usage type shall not contain registers.

ii) register defines the entire range of the addressBlock as possible locations for registers.

iii) reserved defines the entire range of the addressBlock as reserved or for unknown usage
to IP-XACT. This type shall not contain registers.

iv) if unspecified, the presumed value for usage shall be register if the addressBlock con-
tains register elements; otherwise it is reserved.

2) For a bank:

i) memory defines all containing addressBlock elements are of this access type.

ii) register defines all containing addressBlock elements are of this access type.

iii) reserved defines all containing addressBlock elements are of this access type.

iv) unspecified usage means the bank may contain a mixture of memory, register, and
reserved addressBlock elements.

b) volatile (optional) when true indicates the case of a write followed by read, or in the case of two
consecutive reads, there is no guarantee what is returned by the read on the second transaction or
that this return value is consistent with the write or read of the first transaction. The element implies
there is some additional mechanism by which these registers can acquire new values other than
reads/writes/resets and other access methods known to IP-XACT. If this element is not present, it is
presumed to be false for a field and unspecified for bank, addressBlock, or register. The volatile
element is of type Boolean.

c) access (optional) specifies the accessibility of the data in the address block. If the usage element is
reserved, this element has no meaning. If the access is not specified, the value shall be inherited
from the containing bank or default to read-write if this element is contained in a memoryMap.

i) read-write defines, when the usage element is memory, the entire range is a RAM. If the
usage element is register, then any access type for a register or alternate register is
allowed.
84 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

84 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
ii) read-only defines, when the usage element is memory, the entire range is a ROM. If the
usage element is register, then an access type shall be read-only for a register or alternate
register.

iii) write-only defines, when the usage element is memory, the entire range is a write-only
memory. If the usage element is register, then an access type shall be write-only or writ-
eOnce for a register or alternate register.

iv) read-writeOnce defines, when the usage element is memory, the entire range is a RAM
that is writable once after power up. If the usage element is register, then the access type
for a register or alternate register shall be read-only, read-writeOnce, write-only, or
writeOnce.

v) writeOnce defines, when the usage element is memory, the entire range is a write-only
memory that is writable once after power up. If the usage element is register, then the
access type for a register or alternate register shall be writeOnce.

d) parameters (optional) details any additional parameters that describe the address block for genera-
tor usage. See C.11.

See also: SCR 8.3, SCR 8.4, SCR 8.6, SCR 8.7, SCR 8.9, SCR 8.10, SCR 8.11, SCR 8.13, and SCR 8.14.

6.8.4.3 Example

The following example shows an address block starting at address 0x0 containing 64 addressable memory
locations of 8 bits, organized into larger 32-bit units.

<spirit:memoryMap>

<spirit:addressBlock>

<spirit:name>AB1</spirit:name>

<spirit:baseAddress>0</spirit:baseAddress>

<spirit:range>64</spirit:range>

<spirit:width>32</spirit:width>

<spirit:usage>memory</spirit:width>

<spirit:volatile>false</spirit:volatile>

<spirit:access>read-write</spirit:access>

</spirit:addressBlock>

<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:memoryMap>

6.8.5 Bank

6.8.5.1 Schema

The following schema details the information contained in the bank element, which can appear in a
memoryMap element. It is of type addressBankType.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 85
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 85
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.8.5.2 Description

The bank element allows multiple addressBlocks, banks, or subspaceMaps to be concatenated together
horizontally or vertically as a single entity. It contains the following attributes and elements.

a) bankAlignment (mandatory) attribute organizes the bank:

1) parallel specifies each item is located at the same base address with different bit offsets. The
bit offset of the first item in the bank always starts at 0, the offset of the next items in the bank
is equal to the widths of all the previous items.

2) serial specifies the first item is located at the bank’s base address. Each subsequent item is
located at the previous item’s address, plus the range of that item (adjusted for LAU and bus
width considerations, rounded up to the next whole multiple). This allows the user to specify
only a single base address for the bank and have each item assigned an address in sequence.

b) nameGroup is defined in C.1. The name of the addressBlock, subspaceMap, bank, and memo-
ryRemap shall be unique within the containing memoryMap, localMemoryMap, or memo-
ryRemap element.

c) addressSpecifier group includes the following.

baseAddress (mandatory) specifies the starting address of the block. The baseAddress is expressed
in addressing units from the containing memoryMap/addressUnitBits or localMemoryMap/
addressUnitBits element. The type of this element is set to scaledNonNegativeInteger. The
baseAddress element is configurable with attributes from bool.prompt.att, see C.12. The prompt
attribute allows the setting of a string for the configuration and has a default value of “Base
Address:”.

d) bankBase group includes the following. This group is later used inside the bankedBaseType type to
create recursion.
86 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

86 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
1) addressBlock (multiple usage allowed) is an address block that makes up part of the bank. See
6.8.6.

2) bank (multiple usage allowed) is a bank within the bank. This allows for complex configura-
tions with nested banks. See 6.8.7.

3) subspaceMap (multiple usage allowed) is a reference to the master’s address map for inclusion
in the bank. See 6.8.9.

4) memoryBlockData group contains information about usage, access, volatility and other param-
eters. See 6.8.4.

5) vendorExtensions adds any extra vendor-specific data related to this bank. See C.10.

See also: SCR 8.2.

6.8.5.3 Example

The following example shows a serial bank with four memory blocks of 1K units of 32-bit data. The only
address specified is 0x10000, but this causes address block ram0, ram1, ram2, and ram3 to be mapped
to addresses 0x10000, 0x11000, 0x11000 0x12000, and 0x13000 respectively.

<spirit:memoryMap>
<spirit:bank bankAlignment="serial">

<spirit:name>bank1</spirit:name>
<spirit:baseAddress>0x10000</spirit:baseAddress>
<spirit:addressBlock>

<spirit:name>ram0</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>

</spirit:addressBlock>
<spirit:addressBlock>

<spirit:name>ram1</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>

</spirit:addressBlock>
<spirit:addressBlock>

<spirit:name>ram2</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>

</spirit:addressBlock>
<spirit:addressBlock>

<spirit:name>ram3</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>

</spirit:addressBlock>
</spirit:bank>
<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:memoryMap>

6.8.6 Banked address block

6.8.6.1 Schema

The following schema details the information contained in the addressBlock element, which can appear in a
bank element. It is of type bankedBlockType.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 87
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 87
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.8.6.2 Description

The addressBlock element inside a bank element describes a single, contiguous block of memory that is
part of a bank. The addressBlock element contains an id (optional) attribute which assigns a unique
identifier to the containing element for reference throughout the containing description. addressBlock
contains the following mandatory and optional elements.

a) nameGroup group is defined in C.1. The name of the addressBlock, subspaceMap, and bank shall
be unique within the containing bank element.

b) blockSize group includes the following.

1) range (mandatory) gives the address range of an address block. This is expressed as the num-
ber of addressable units of the memory map. The size of an addressable unit is defined inside
the containing memoryMap/addressUnitBits or localMemoryMap/addressUnitBits ele-
ment. The type of this element is set to scaledPositiveInteger. The range element is config-
urable with attributes from long.prompt.att, see C.12.

2) width (mandatory) is the bit width of a row in the address block. The type of this element is set
to nonNegativeInteger. The width element is configurable with attributes from
long.prompt.att, see C.12.

c) memoryBlockData group contains information about usage, access, volatility and other parameters.
See 6.8.4.

d) registerData group contains information about the grouping of bits into registers and fields. See
6.10.2.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the address block. See
C.10.

NOTE—The bankedBlockType of an addressBlock element is almost identical to the addressBlockType of an address-
Block element (see 6.8.2); the only difference is there is no baseAddress and typeIdentifier in the bankedBlockType
version.
88 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

88 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
See also: SCR 7.5.

6.8.6.3 Example

See the example in 6.8.5.3.

6.8.7 Banked bank

6.8.7.1 Schema

The following schema details the information contained in the nested bank element, which can appear in
another bank element. It is of type bankBankType.

6.8.7.2 Description

The bank element allows multiple address blocks, banks, or subspaceMaps to be to be concatenated
together horizontally or vertically as a single entity. It contains the following attributes and elements.

a) bankAlignment (mandatory) attribute organizes the bank:

1) parallel specifies each item is located at the same base address with different bit offsets. The bit
offset of the first item in the bank always starts at 0, the offset of the next items in the bank is
equal to the widths of all the previous items.

2) serial specifies the first item is located at the bank’s base address. Each subsequent item is
located at the previous item’s address, plus the range of that item (adjusted for LAU and bus
width considerations, rounded up to the next whole multiple). This allows the user to specify
only a single base address for the bank and have each item assigned an address in sequence.

b) nameGroup group is defined in C.1. The name of the addressBlock, subspaceMap, and bank shall
be unique within the containing bank element.

c) The bank element of type bankedBankType contains the bankBase group. This group is defined
inside the bank element of type addressBankType. See 6.8.5. The effect of its inclusion here creates
recursion, where by banks maybe included inside banks included inside banks.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 89
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 89
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
NOTE—A banked bank is similar to a bank in a memory map (see 6.8.5); the only difference is there is no
baseAddress element in a bank of type bankedBankType.

See also: SCR 8.2.

6.8.7.3 Example

The following example shows a serial bank with 2 memory blocks of 1K units of 32-bit data. The only
address specified is 0x10000, but this causes address block ram0 and bankRam1 to be mapped to
addresses 0x10000 and 0x11000 respectively. The memory bank bankRam1 is made up of two parallel
memory blocks each with 16 bit of data.

<spirit:memoryMap>

<spirit:bank bankAlignment="serial">

<spirit:name>bank1</spirit:name>

<spirit:baseAddress>0x10000</spirit:baseAddress>

<spirit:addressBlock>

<spirit:name>ram0</spirit:name>

<spirit:range>0x1000</spirit:range>

<spirit:width>32</spirit:width>

</spirit:addressBlock>

<spirit:bank bankAlignment="parallel">

<spirit:name>bankRam1</spirit:name>

<spirit:addressBlock>

<spirit:name>ram1.0</spirit:name>

<spirit:range>0x1000</spirit:range>

<spirit:width>16</spirit:width>

</spirit:addressBlock>

<spirit:addressBlock>

<spirit:name>ram1.1</spirit:name>

<spirit:range>0x1000</spirit:range>

<spirit:width>16</spirit:width>

</spirit:addressBlock>

</spirit:bank>

</spirit:bank>

<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:memoryMap>

6.8.8 Banked subspace

6.8.8.1 Schema

The following schema details the information contained in the subspaceMap element, which can appear in
a bank element. It is of type bankSubspaceType.
90 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

90 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.8.8.2 Description

The subspaceMap element allows a bank to map the address space of a master interface into the bank. It
contains the following elements.

a) masterRef attribute contains the name of the master interface whose address space needs to be
mapped. This shall reference a bus interface name with an interface mode of master (see 6.5.3). The
master interface shall also be referenced by a second interface through a slave/bridge/masterRef
element and the bridge element shall also have the opaque attribute set to true.

b) nameGroupOptional group is defined in C.2. The name of the addressBlock, subspaceMap, and
bank shall be unique within the containing bank element.

c) parameters details any additional parameters that apply to the subspaceMap. See C.11.

d) vendorExtensions adds any extra vendor-specific data related to the subspaceMap. See C.10.

See also: SCR 8.2.

6.8.8.3 Example

The following example shows an address space from master M1 mapped into the slave interface S memory
map starting at address 0x0000. An address space from master M2 mapped into the slave interface S
memory map starting at address 0x1000.

<spirit:component>…
<spirit:busInterfaces>

<spirit:busInterface>
<spirit:name>M1</spirit:name>
<spirit:master>

<spirit:addressSpaceRef spirit:addressSpaceRef=”memAS1”\>
</spirit:master>

</spirit:busInterface>
<spirit:busInterface>

<spirit:name>M2</spirit:name>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 91
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 91
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:master>

<spirit:addressSpaceRef spirit:addressSpaceRef=”memAS2”\>

</spirit:master>

</spirit:busInterface>

<spirit:busInterface>

<spirit:name>S</spirit:name>

<spirit:slave>

<spirit:memoryMapRef spirit:memoryMapRef="memMap"/>

<spirit:bridge spirit:masterRef="M1" spirit:opaque="true"/>

<spirit:bridge spirit:masterRef="M2" spirit:opaque="true"/>

</spirit:slave>

</spirit:busInterface>

</spirit:busInterfaces>

<spirit:addressSpaces>

<spirit:addressSpace>

<spirit:name>memAS1</spirit:name>

<spirit:range>0x1000</spirit:range>

<spirit:width>32</spirit:width>

</spirit:addressSpace>

<spirit:addressSpace>

<spirit:name>memAS2</spirit:name>

<spirit:range>0x1000</spirit:range>

<spirit:width>32</spirit:width>

</spirit:addressSpace>

</spirit:addressSpaces>

<spirit:memoryMaps>

<spirit:memoryMap>

<spirit:name>memMap</spirit:name>

<spirit:bank bankAlignment="serial">

<spirit:name>memBank</spirit:name>

<spirit:baseAddr baseAddress>0x0000</spirit:baseAddress>

<spirit:subspaceMap spirit:masterRef="M1">

<spirit:name>submap1</spirit:name>

</spirit:subspaceMap>

<spirit:subspaceMap spirit:masterRef="M2">

<spirit:name>submap2</spirit:name>

</spirit:subspaceMap>

</spirit:bank>

</spirit:memoryMap>

</spirit:memoryMaps>

</spirit:component>

6.8.9 Subspace map

6.8.9.1 Schema

The following schema details the information contained in the subspaceMap element, which can appear in
a memoryMap element. It is of type subspaceRefType.
92 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

92 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.8.9.2 Description

The subspaceMap element maps the address space of a master interface from an opaque bus bridge into the
memory map. It contains the following elements.

a) masterRef (mandatory) attribute contains the name of the master interface whose address space
needs to be mapped. This shall reference a bus interface name with an interface mode of master (see
6.5.3). The master interface shall also be referenced by a second interface through an slave/bridge/
masterRef element and the bridge element shall also have the opaque attribute set to true.

b) segmentRef (optional) references a segment in the addressSpace referred by the masterRef
attribute. If the segmentRef attribute is not present, the entire addressSpace is presumed to be refer-
enced.

c) nameGroup group is defined in C.1. The name of the addressBlock, subspaceMap, bank, and
memoryRemap shall be unique within the containing memoryMap, localMemoryMap, or memo-
ryRemap element.

d) addressSpecifier group includes the following.

baseAddress (mandatory) specifies the starting address of the block. The baseAddress is expressed
in addressing units from the containing memoryMap/addressUnitBits or localMemoryMap/
addressUnitBits element. The type of this element is set to scaledNonNegativeInteger. The
baseAddress element is configurable with attributes from long.att, see C.12. The prompt attribute
allows the setting of a string for the configuration and has a default value of “Base Address:”.

e) parameters (optional) details any additional parameters that apply to the subspaceMap. See C.11.

f) vendorExtensions (optional) adds any extra vendor-specific data related to the subspaceMap. See
C.10.

See also: SCR 9.9 and SCR 3.19.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 93
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 93
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.8.9.3 Example

The following example shows an address space from master M1 mapped into the slave interface S memory
map starting at address 0x0000. An address space from master M2 mapped into the slave interface S
memory map starting at address 0x1000.

<spirit:component>…
<spirit:busInterfaces>

<spirit:busInterface>
<spirit:name>M1</spirit:name>
<spirit:master>

<spirit:addressSpaceRef spirit:addressSpaceRef=”memAS1”\>
</spirit:master>

</spirit:busInterface>
<spirit:busInterface>

<spirit:name>M2</spirit:name>
<spirit:master>

<spirit:addressSpaceRef spirit:addressSpaceRef=”memAS2”\>
</spirit:master>

</spirit:busInterface>
<spirit:busInterface>

<spirit:name>S</spirit:name>
<spirit:slave>

<spirit:memoryMapRef spirit:memoryMapRef="memMap"/>
<spirit:bridge spirit:masterRef="M1" spirit:opaque="true"/>
<spirit:bridge spirit:masterRef="M2" spirit:opaque="true"/>

</spirit:slave>
</spirit:busInterface>

</spirit:busInterfaces>
<spirit:addressSpaces>

<spirit:addressSpace>
<spirit:name>memAS1</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>

</spirit:addressSpace>
<spirit:addressSpace>

<spirit:name>memAS2</spirit:name>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>

</spirit:addressSpace>
</spirit:addressSpaces>
<spirit:memoryMaps>

<spirit:memoryMap>
<spirit:name>memMap</spirit:name>
<spirit:subspaceMap spirit:masterRef="M1">

<spirit:name>submap1</spirit:name>
<spirit:baseAddr baseAddress>0x0000</spirit:baseAddress>

</spirit:subspaceMap>
<spirit:subspaceMap spirit:masterRef="M2">

<spirit:name>submap2</spirit:name>
<spirit:baseAddress>0x1000</spirit:baseAddress>

</spirit:subspaceMap>
</spirit:memoryMap>

</spirit:memoryMaps>
</spirit:component>
94 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

94 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.9 Remapping

6.9.1 Memory remap

6.9.1.1 Schema

The following schema details the information contained in the memoryRemap element, which can appear
in a memoryMap element. It is of type memoryRemapType.

6.9.1.2 Description

The memoryRemap element describes additional addressBlocks, banks, and subspaceMaps that are
mapped on the referencing slave bus interface in a specific remap state. If multiple memoryRemap/state
attributes are active then the first memoryRemap listed shall be selected. The memoryRemap element
contains an id (optional) attribute which assigns a unique identifier to the containing element for reference
throughout the containing description. This element contains the following elements, attributes and groups.

a) state attribute (mandatory) identifies the remap state name for which the optional memory map ele-
ment are active. The state attribute shall reference a remapState/name in the containing descrip-
tion. The state attribute of all memoryRemap elements contained in a single memoryMap element
shall be unique. The state attribute is of type string. See 6.9.2.

b) nameGroup group is defined in C.1. The name of the addressBlock, subspaceMap, bank, and
memoryRemap shall be unique within the containing memoryMap element.

c) memoryMap group (optional) is any number of the following.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 95
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 95
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
1) addressBlock describes a single block. See 6.8.2.

2) bank represents a collections of address blocks, banks or subspace maps. See 6.8.5.

3) subspaceMap maps the address subspaces of master interfaces into the slave’s memory map.
See 6.8.9.

6.9.1.3 Example

This is an example of a memory that is read-write in the normal state, but in state lock is remapped to be a
read-only memory.

<spirit:memoryMaps>
<spirit:memoryMap>

<spirit:name>mmap1</spirit:name>
<spirit:memoryReMap spirit:state="normal">

<spirit:addressBlock>
<spirit:name>ab1</spirit:name>
<spirit:baseAddress>0x0000</spirit:baseAddress>
<spirit:range>4096</spirit:range>
<spirit:usage>memory</spirit:usage>
<spirit:access>read-write</spirit:access>

</spirit:addressBlock>
</spirit:memoryRemap >
<spirit:memoryReMap spirit:state="lock">

<spirit:addressBlock>
<spirit:name>ab1readonly</spirit:name>
<spirit:baseAddress>0x0000</spirit:baseAddress>
<spirit:range>4096</spirit:range>
<spirit:usage>memory</spirit:usage>
<spirit:access>read-only</spirit:access>

</spirit:addressBlock>
</spirit:memoryRemap >

</spirit:memoryMap>
</spirit:memoryMaps>

6.9.2 Remap states

6.9.2.1 Schema

The following schema details the information contained in the remapStates element, which may appear as
an element inside a component element. This element may contain one or more remapState elements.
96 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

96 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.9.2.2 Description

A remapStates element describes a set of one or more remapState elements. Each remapState element
defines a conditional remap state where each state is conditioned by a remap port specified with a
remapPort element. A remapState element does not specify remapping addresses. The remapping
addresses are defined by the memoryRemap element (of a memoryMap element) and its state attribute
refers to the remapState element’s name explained in this section.

remapState contains the following elements and attributes.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing
remapStates element.

b) remapPorts (optional) contains a list of remapPort elements. remapPort (mandatory) specifies
when the remap state gets effective. A collection of remapPort elements make up the condition for
this remap state. All elements shall be true for the remap state to be enabled. The type of this ele-
ment is of scaledNonNegativeInteger. This element contains the logical value of the single port bit
specified by the follow two attributes.

1) portNameRef (mandatory) attribute is the name of the port in the containing description for
which this logic value comparison is assigned. The portNameRef attribute is of type
NMTOKEN. See 6.11.3.

2) portIndex (optional) attribute references the index of a port in the containing description, when
the port being referenced is vectored. The portIndex attribute is of type nonNegativeInteger.

6.9.2.3 Example

This is an example of the remapState element with the state name of boot. The example specifies a remap
state called boot is in effect when the port named doRemap gets the logic value of 0x01, while another
remap state called normal is in effect when the port gets the logic value of 0x00.

<spirit:component>

<spirit:remapStates>

<spirit:remapState>

<spirit:name>boot</spirit:name>

<spirit:remapPorts>

<spirit:remapPort spirit:portNameRef="doRemap">0x01

</spirit:remapPort>

</spirit:remapPorts>

</spirit:remapState>

<spirit:remapState>

<spirit:name>normal</spirit:name>

<spirit:remapPorts>

<spirit:remapPort spirit:portNameRef="doRemap">0x00

</spirit:remapPort>

</spirit:remapPorts>

</spirit:remapState>

</spirit:remapStates >

</spirit:component>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 97
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 97
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.10 Registers

6.10.1 Register data

6.10.1.1 Schema

The following schema details the information contained in the registerData group that may appear as an
element inside the addressBlock element.

6.10.1.2 Description

The registerData group describes registers and register files. The containing register/name elements, the
register/alternateRegister/name elements and the registerFile/name elements shall be unique within the
containing addressBlock element. The registerData group contains these elements.

a) register (optional) defines a list of registers contained in this addressBlock. See 6.10.2.

b) registerFile (optional) defines a list of register files contained in this addressBlock. See 6.10.2.

6.10.2 Register

6.10.2.1 Schema

The following schema details the information contained in the register element, which is contained in the
registerData group that may appear as an element inside the addressBlock element. This element describes
a register.
98 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

98 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.10.2.2 Description

A register element describes a register in an address block or register file. The bits in the register are
numbered from size-1 down to 0, with bit zero (0) being the least significant bit. The register element
contains an id (optional) attribute which assigns a unique identifier to the containing element for reference
throughout the containing description. register contains the following elements.

a) nameGroup group is defined in C.1. The register/name, registerFile/name, and register/alterna-
teRegisters/alternateRegister/name element shall be unique within the containing addressBlock
or registerFile element.

b) dim (optional) assigns an unbounded dimension to the register, so it is repeated as many times as the
value of the dim elements. For multi-dimensional register arrays, the memory layout is presumed to
follow the IEEE Std 1666™-2005 (SystemC) language rules. The dim element is of type nonNega-
tiveInteger.

c) addressOffset (mandatory) describes the offset from the start of the containing addressBlock or
registerFile element. The addressOffset is expressed in addressing units from the containing mem-
oryMap/addressUnitBits or localMemoryMap/addressUnitBits element. The addressOffset ele-
ment is of type scaledNonNegativeInteger.

d) registerDefinitionGroup group describes additional elements for a register. See 6.10.3

e) alternateRegisters (optional) describes alternate description for the containing register. See 6.10.4
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 99
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 99
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
f) parameters (optional) describes any parameter names and types when the register width can be
parameterized. See C.11.

g) vendorExtensions (optional) adds any extra vendor-specific data related to this register. See C.10.

See also: SCR 7.1, SCR 7.2, SCR 7.3, SCR 7.4, SCR 7.5, SCR 7.7, SCR 7.8, SCR 7.9, SCR 7.13, SCR 8.3,
SCR 8.4, SCR 8.5, SCR 8.7, SCR 8.8, and SCR 8.9.

6.10.2.3 Example

The following example shows a register with its sub-elements.

<spirit:register>

<spirit:name>control</spirit:name>
<spirit:description>Control register</spirit:description>
<spirit:addressOffset>0x8</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:access>read-write</spirit:access>
<spirit:field>

<spirit:name>enable</spirit:name>
<spirit:description>Enables the receiver</spirit:description>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>

</spirit:field>
<spirit:field>
<!-- … -->
</spirit:field>

</spirit:register>

6.10.3 Register definition group

6.10.3.1 Schema

The following schema details the information contained in the registerDefinitionGroup group, which is
contained in the register element. This group describes register definition information.
100 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

100 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.10.3.2 Description

A registerDefinitionGroup group contains the following elements.

a) typeIdentifier (optional) indicates multiple register elements with the same typeIdentifier in the
same description contain the exact same information for the elements in the registerDefinitions-
Group.

b) size (mandatory) is the width of the register, counting in bits. The type of this element is set to posi-
tiveInteger. The size element is configurable with attributes from long.prompt.att, see C.12.

c) volatile (optional) when true indicates in the case of a write followed by read, or in the case of two
consecutive reads, there is no guarantee as to what is returned by the read on the second transaction
or that this return value is consistent with the write or read of the first transaction. The element
implies there is some additional mechanism by which this register can acquire new values other than
by reads/writes/resets and other access methods known to IP-XACT. If this element is not present,
no presumptions can be made about its value. The volatile element is of type Boolean.

d) access (optional) indicates the accessibility of the register. If this is not present, the access is inher-
ited from the containing addressBlock. There are several choices.

1) read-write: Both read and write transactions may have an effect on this register. Write transac-
tions may affect the contents of the register and read transactions return a value related to the
values in the register.

2) read-only: A read transaction to this address returns a value related to the values in the register.
A write transaction to this register has undefined results.

3) write-only: A write transaction to this address affects the contents of the register. A read trans-
action to this register has undefined results.

4) read-writeOnce: Both read and write transactions may have an effect on this register. Only the
first write transaction, after power up, may affect the contents of the register and read transac-
tions return a value related to the values in the register.

5) writeOnce: Only the first write transaction, after power up, to this address affects the contents
of the register. A read transaction to this register has undefined results.

e) reset (optional) indicates the value of the register’s contents when the device is reset. See 6.10.7.

f) field (optional) describes any bit-fields in a register. See 6.10.8.

See also: SCR 7.1, SCR 7.2, SCR 7.3, SCR 7.4, SCR 7.5, SCR 7.7, SCR 7.8, SCR 7.9, SCR 7.13, SCR 8.3,
SCR 8.4, SCR 8.5, SCR 8.7, SCR 8.8, SCR 8.9, SCR 8.11, SCR 8.12, SCR 8.14, and SCR 8.15.

6.10.3.3 Example

The following example shows a register with its sub-elements. The register contains a one bit field.

<spirit:register>

<spirit:name>status</spirit:name>
<spirit:description>Status register</spirit:description>
<spirit:addressOffset>0x4</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:access>read-only</spirit:access>
<spirit:field>

<spirit:name>dataReady</spirit:name>
<spirit:description>Indicates that new data is available in the

receiver holding register</spirit:description>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>
<spirit:volatile>true</spirit:volatile>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 101
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 101
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:field>

</spirit:register>

6.10.4 Alternate registers

6.10.4.1 Schema

The following schema details the information contained in the alternateRegisters element, which is
contained in the register element that may appear as an element inside the addressBlock element. This
element describes a list of alternate registers.

6.10.4.2 Description

The alternateRegisters (optional) element contains an unbounded list of alternateRegister elements An
alternateRegister element contains an alternate definition for the containing register. The
alternateRegister element contains an id (optional) attribute which assigns a unique identifier to the
containing element for reference throughout the containing description. alternateRegister contains the
following elements.

a) nameGroup group is defined in C.1. The register/name, registerFile/name, and register/alterna-
teRegisters/alternateRegister/name element shall be unique within the containing addressBlock
or registerFile element.

b) alternateGroups (mandatory) defines an unbounded list of grouping names for which this alternate
description belongs. alternateGroup (mandatory) defines a grouping name for this alternate regis-
ter description. All alternateGroup elements shall be unique for each containing register. The
alternateGroup element is of type Name.

c) alternateRegisterDefinitionGroup group describes additional elements for an alternate register. See
6.10.3

d) parameters (optional) describes any parameter names and types when the register width can be
parameterized. See C.11.

e) vendorExtensions (optional) adds any extra vendor-specific data related to this register. See C.10.

See also: SCR 7.1, SCR 7.2, SCR 7.3, SCR 7.4, SCR 7.7, SCR 7.8, SCR 7.9, SCR 7.13, SCR 8.3, SCR 8.4,
SCR 8.5, SCR 8.7, SCR 8.8, SCR 8.9, SCR 8.11, SCR 8.12, SCR 8.14, and SCR 8.15.
102 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

102 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.10.4.3 Example

The following example shows a register with an alternate register definition that is a group called transmit.

<spirit:register>
<spirit:name>control</spirit:name>
<spirit:addressOffset>0x8</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:access>read-write</spirit:access>
<spirit:field>

<spirit:name>enable</spirit:name>
<spirit:description>Enables the receiver</spirit:description>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>

</spirit:field>
<spirit:alternateRegisters>

<spirit:alternateRegister>
<spirit:name>control</spirit:name>
<spirit:access>read-only</spirit:access>
<spirit:field>

<spirit:name>enable</spirit:name>
<spirit:description>Enables the transmitter</

spirit:description>
<spirit:alternateGroups>

<spirit:alternateGroup>transmit</spirit:alternateGroup>
</spirit:alternateGroups>

</spirit:field>
</spirit:alternateRegister>

</spirit:alternateRegisters>
</spirit:register>

6.10.5 Alternate register definition group

6.10.5.1 Schema

The following schema details the information contained in the alternateRegisterDefinitionGroup group,
which is contained in the alternateRegister element. This group describes alternate register definition
information.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 103
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 103
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.10.5.2 Description

A alternateRegisterDefinitionGroup group contains the following elements.

a) typeIdentifier (optional) indicates multiple register elements with the same typeIdentifier in the
same description contain the exact same information for the elements in the alternateRegisterDefi-
nitionsGroup.

b) volatile (optional) when true indicates in the case of a write followed by read, or in the case of two
consecutive reads, there is no guarantee as to what is returned by the read on the second transaction
or that this return value is consistent with the write or read of the first transaction. The element
implies there is some additional mechanism by which this register can acquire new values other than
by reads/writes/resets and other access methods known to IP-XACT. If this element is not present,
no presumptions can be made about its value. The volatile element is of type Boolean.

c) access (optional) indicates the accessibility of the register. If this is not present, the access is inher-
ited from the containing addressBlock. There are several choices.

1) read-write: Both read and write transactions may have an effect on this register. Write transac-
tions may affect the contents of the register and read transactions return a value related to the
values in the register.

2) read-only: A read transaction to this address returns a value related to the values in the register.
A write transaction to this register has undefined results.

3) write-only: A write transaction to this address affects the contents of the register. A read trans-
action to this register has undefined results.

4) read-writeOnce: Both read and write transactions may have an effect on this register. Only the
first write transaction, after power up, may affect the contents of the register and read transac-
tions return a value related to the values in the register.

5) writeOnce: Only the first write transaction, after power up, to this address affects the contents
of the register. A read transaction to this register has undefined results.

d) reset (optional) indicates the value of the register’s contents when the device is reset. See 6.10.7.

e) field (optional) describes any bit-fields in a register. See 6.10.8.

See also: SCR 7.1, SCR 7.2, SCR 7.3, SCR 7.4, SCR 7.7, SCR 7.8, SCR 7.9, SCR 7.13, SCR 8.3, SCR 8.4,
SCR 8.5, SCR 8.7, SCR 8.8, and SCR 8.9.
104 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

104 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.10.6 Register file

6.10.6.1 Schema

The following schema details the information contained in the registerFile element, which is contained in
the registerData group that may appear as an element inside the addressBlock element. This element
describes a register file.

6.10.6.2 Description

A registerFile element describes a grouping of registers in an address block or register file. The registerFile
element contains an id (optional) attribute which assigns a unique identifier to the containing element for
reference throughout the containing description. registerFile contains the following elements.

a) nameGroup group is defined in C.1. The register/name, registerFile/name, and register/alterna-
teRegisters/alternateRegister/name element shall be unique within the containing addressBlock
or registerFile element.

b) dim (optional) assigns an unbounded dimension to the register, so it is repeated as many times as the
value of the dim elements. For multi-dimensional register arrays, the memory layout is presumed to
follow the IEEE Std 1666™-2005 (SystemC) language rules. The dim element is of type nonNega-
tiveInteger.

c) addressOffset (mandatory) describes the offset from the start of the containing addressBlock or
registerFile element. The addressOffset is expressed in addressing units from the containing mem-
oryMap/addressUnitBits or localMemoryMap/addressUnitBits element. The addressOffset ele-
ment is of type scaledNonNegativeInteger.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 105
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 105
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
d) registerFileDefinitionGroup group describes additional elements for a register file.

1) typeIdentifier (optional) indicates multiple register elements with the same typeIdentifier in
the same description contain the exact same information for the elements in the registerDefini-
tionsGroup.

2) range (mandatory) gives the range of a register file. This is expressed as the number of addres-
sable units of the register file. The size of an addressable unit is defined inside the containing
memoryMap/addressUnitBits element. The type of this element is set to scaledPositiveInte-
ger. The range element is configurable with attributes from long.prompt.att, see C.12.

3) registerData group contains information about the grouping of bits into registers and fields.
See 6.10.2.

e) parameters (optional) describes any parameter names and types when the register width can be
parameterized. See C.11.

f) vendorExtensions (optional) adds any extra vendor-specific data related to this register. See C.10.

See also: SCR 7.6, SCR 7.7, and SCR 7.14.

6.10.6.3 Example

The following example shows a register file within an address block starting at address 0x200. The register
file is 32 bytes in length and contains two registers at an absolute address of 0x200 and 0x204 within the
address block.

<spirit:addressBlock>
<spirit:name>abname</spirit:name>
<spirit:baseAddress>0x0</spirit:baseAddress>
<spirit:range>0x1000</spirit:range>
<spirit:width>32</spirit:width>
<spirit:registerFile>

<spirit:name>status</spirit:name>
<spirit:description>Status register</spirit:description>
<spirit:addressOffset>0x200</spirit:addressOffset>
<spirit:range>32</spirit:range>
<spirit:register>

<spirit:name>control</spirit:name>
<spirit:addressOffset>0x0</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:access>read-write</spirit:access>
<spirit:field>
<!-- ... -->
</spirit:field>

</spirit:register>
<spirit:register>

<spirit:name>status</spirit:name>
<spirit:addressOffset>0x4</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:access>read-only</spirit:access>
<spirit:field>
<!-- ... -->
</spirit:field>

</spirit:register>
</spirit:registerFile>
<spirit:addressUnitBits>8</spirit:addressUnitBits>

</spirit:addressBlock>
106 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

106 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.10.7 Register reset value

6.10.7.1 Schema

The following schema details the information contained in the reset element, which may appear as an
element inside the register element. This element describes the reset value of the register.

6.10.7.2 Description

The reset element describes the value of a register at reset. It has the following subelements.

a) value (mandatory) contains the actual reset value. The value element is of type scaledNonNega-
tiveInteger. The value element is configurable with attributes from long.prompt.att, see C.12.

b) mask (optional) defines which bits of the register have a known reset value. The mask element is of
type scaledNonNegativeInteger. The mask element is configurable with attributes from
long.prompt.att, see C.12.

A 1 bit in the mask means the corresponding bit of the register has a known reset value; a 0 bit
means it does not. All bits of the value which correspond to 0 bits of the mask are ignored. The
absence of a mask element is equivalent to a mask of the same size as the register consisting of all 1
bits.

6.10.7.3 Example

The following example shows a reset value. Any register with this reset value has bit 7 and bits 5 down to 1
set to logic 0, and bits 6 and 0 set to a logic 1 on reset.

<spirit:reset>

<spirit:value>0x41</spirit:value>

<spirit:mask>0xFF</spirit:mask>

</spirit:reset>

6.10.8 Register bit-fields

6.10.8.1 Schema

The following schema details the information contained in the field element, which may appear as an
element inside the register element. This element describes a bit field of a register.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 107
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 107
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.10.8.2 Description

A field element of a register describes a smaller bit-field of a register. The field element contains an id
(optional) attribute which assigns a unique identifier to the containing element for reference throughout the
containing description. field contains the following elements.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing regis-
ter or alternateRegister element.

b) bitOffset (mandatory) describes the offset (from bit 0 of the register) where this bit-field starts. The
bitOffset element is of type nonNegativeInteger.

c) fieldDefinitionGroup group describes additional elements for a field.

1) typeIdentifier (optional) indicates multiple fields elements with the same typeIdentifier in the
same description contain the exact same information for the elements in fieldDefinitions-
Group.

2) bitWidth (mandatory) is the width of the field, counting in bits. The bitWidth element is of
type postiveInteger. The bitWidth element is configurable with attributes from
long.prompt.att, see C.12.

3) fieldData group describes additional elements for a field. See 6.10.10.

d) parameters (optional) details any additional parameters that describe the field for generator usage.
See C.11.

e) vendorExtensions (optional) adds any extra vendor-specific data related to this field. See C.10.

See also: SCR 7.2, SCR 7.4, SCR 7.9, SCR 7.10, SCR 7.11, and SCR 7.12.

6.10.8.3 Example

The following example shows a one-bit field with its sub-elements.

<spirit:field>

<spirit:name>paritySelect</spirit:name>
108 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

108 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:displayName>Parity Select</spirit:displayName>
<spirit:description>Selects parity polarity (0=odd parity, 1=even
parity)</spirit:description>
<spirit:bitOffset>2</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>

</spirit:field>

6.10.9 Field data group

6.10.9.1 Schema

The following schema details the information contained in the fieldData group, which is contained inside
the field element. This group describes the optional properties of a field.

6.10.9.2 Description

The fieldData group contains the following elements.

a) volatile (optional) when true indicates in the case of a write followed by read, or in the case of two
consecutive reads, there is no guarantee as to what is returned by the read on the second transaction
or that this return value is consistent with the write or read of the first transaction. The element
implies there is some additional mechanism by which this field can acquire new values other than by
reads/writes/resets and other access methods known to IP-XACT. If this element is not present, it is
presumed to be false. The volatile element is of type Boolean.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 109
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 109
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
b) access (optional) indicates the accessibility of the field. If this is not present, the access is inherited
from the containing register. There are several choices.

1) read-write: Both read and write transactions may have an effect on this field. Write transac-
tions may affect the contents of the field and read transactions return a value related to the val-
ues in the field.

2) read-only: A read transaction to this address returns a value related to the values in the field. A
write transaction to this field has undefined results.

3) write-only: A write transaction to this address affects the contents of the field. A read transac-
tion to this field has undefined results.

4) read-writeOnce: Both read and write transactions may have an effect on this field. Only the
first write transaction, after power up, may affect the contents of the field and read transactions
return a value related to the values in the field.

5) writeOnce: Only the first write transaction, after power up, to this address affects the contents
of the field. A read transaction to this field has undefined results.

c) enumeratedValues (optional) describes a name for different values of a field. See 6.10.10.

d) modifiedWriteValue (optional) element to describe the manipulation of data written to a field. The
value shall be one of oneToClear, oneToSet, oneToToggle, zeroToClear, zeroToSet, zeroToTog-
gle, clear, set, or modify. If the modifiedWriteValue element is not specified, the value written to
the field is the value stored in the field.

oneToClear means in a bitwise fashion each write data bit of a one shall clear (set to zero) the corre-
sponding bit in the field.

oneToSet means in a bitwise fashion each write data bit of a one shall set (set to one) the corre-
sponding bit in the field.

oneToToggle means in a bitwise fashion each write data bit of a one shall toggle the corresponding
bit in the field.

zeroToClear means in a bitwise fashion each write data bit of a zero shall clear (set to zero) the cor-
responding bit in the field.

zeroToSet means in a bitwise fashion each write data bit of a zero shall set (set to one) the corre-
sponding bit in the field.

zeroToToggle means in a bitwise fashion each write data bit of a zero shall toggle the corresponding
bit in the field.

clear means after a write operation all bits in the field are cleared (set to zero).

set means that after a write operation all bits in the field are set (set to one).

modify means that after a write operation all bits in the field may be modified.

e) writeValueConstraint (optional) describes a set of constraint values that are the only values which
can be written to this field. If writeValueConstraint is not present, no constraint values are defined
for this field. See 6.10.11.

f) readAction (optional) describes an action that happens to a field after a read operation happens.
clear indicates the field is cleared after a read operation. set indicates the field is set after a read
operation. modify indicates the field is modified in some way after a read operation. If readAction
not specified, the field is not modified after a read operation.

g) testable (optional) defines if the field is testable by a simple automated register test. If this is not
present, testable is presumed to be true. The testable element is of type Boolean.

testConstraint (optional) attribute defines the constraint for the field during a simple automated
register test.

unConstrained (default) indicates there are no restrictions on the data that may be written or
read from the field. restore indicates the field’s value shall be restored to the original value
110 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

110 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
before accessing another register. writeAsRead indicates the field shall only be written to a
value just previously read from the field. readOnly indicates the field shall only be read.

6.10.9.3 Example

The following example describes a field with a write behavior that sets a field bit if the value written is a 1
and a read behavior that reads the written value and afterwards clears the register.

<spirit:field>
<spirit:name>interrupt</spirit:name>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>
<spirit:modifiedWriteValue>oneToSet</spirit:modifiedWriteValue>
<spirit:readAction>clear</spirit:readAction>

</spirit:field>

See also: SCR 7.2, SCR 7.4, SCR 7.9, SCR 7.10, SCR 7.11, and SCR 7.12.

6.10.10 Enumeration values

6.10.10.1 Schema

The following schema details the information contained in the enumeratedValues element, which may
appear as an element inside the field element.

6.10.10.2 Description

The enumeratedValues element describes a list of name and values pairs for the given field.

a) usage (optional) attribute defines the contains software access condition under which this name
value pair is valid. Possible values are read, write, and read-write (default).

b) nameGroup group is defined in C.1. All name elements shall be unique within the containing enu-
meratedValues element.

c) value (mandatory) defines the value to assign to the specified name. The value element is of type
scaledInteger.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 111
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 111
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
d) vendorExtensions (optional) adds any extra vendor-specific data related to this enumeration. See
C.10.

6.10.10.3 Example

The following example shows two enumerated values for a one-bit field: 0 for oddParity and 1 for
evenParity.

<spirit:enumeratedValues>
<spirit:enumeratedValue>

<spirit:name>oddParity</spirit:name>
<spirit:description>oddParity</spirit:description>
<spirit:value>0</spirit:value>

</spirit:enumeratedValue>
<spirit:enumeratedValue>

<spirit:name>evenParity</spirit:name>
<spirit:description>evenParity</spirit:description>
<spirit:value>1</spirit:value>

</spirit:enumeratedValue>
</spirit:enumeratedValues>

See also: SCR 7.10 and SCR 7.11.

6.10.11 Write value constraint

6.10.11.1 Schema

The following schema details the information contained in the writeValueConstraint element, which may
appear as an element inside the field element.

6.10.11.2 Description

The writeValueConstraint element describes a set of constraint values that are the only values which can be
written to this field. If writeValueConstraint is not present, the legal values for this field are not defined.

a) writeAsRead (mandatory) if true implies the only legal value to write to this field is a value previ-
ously read from this field. If writeAsRead is not present, it is presumed to be false. The writeAs-
Read element is of type Boolean.
112 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

112 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
b) useEnumeratedValues (mandatory) if true implies the only legal values to write to this field are the
values specified in the useEnumeratedValues element for this field. If useEnumeratedValues is
not present, it is presumed to be false. The useEnumeratedValues element is of type Boolean.

c) minimum (mandatory) contains the minimum value that may be written to this field. The minimum
element is of type scaledNonNegativeInteger.

d) maximum (mandatory) contains the maximum value that may be written to this field. The maxi-
mum element is of type scaledNonNegativeInteger.

See also: SCR 7.10 and SCR 7.11.

6.10.11.3 Example

The following example is for a two-bit field that only allows the values 0, 1, and 2 to be written.

<spirit:writeValueConstraint>
<spirit:minimum>0x0</spirit:minimum>
<spirit:maximum>0x2</spirit:maximum>

<spirit:writeValueConstraint>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 113
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 113
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.11 Models

6.11.1 Model

6.11.1.1 Schema

The following schema details the information contained in the model element, which may appear as an
element inside the component element.

6.11.1.2 Description

The model element describes the views, ports, and model-related parameters of a component. A model
element may contain the following.

a) views (optional) contains a list of all the views for this object. An object may have many different
views. An RTL view may describe the source hardware module/entity with its pin interface; a soft-
ware view may define the source device driver C file with its .h interface; a documentation view
may define the written specification of this IP. See 6.11.2.

b) ports (optional) contains the list of ports for this object. A ports is an external connection from the
object. An object may only have one set of ports that shall be valid for all views. See 6.11.3.

c) modelParameters (optional) contains a list of parameters that are needed to configure a model
implementation specified in a view. An object shall only have one set of model parameters that are
valid for all views. See 6.11.20.

6.11.2 Views

6.11.2.1 Schema

The following schema details the information contained in the views element, which may appear as an
element inside a model element. This element may contain one or more view elements.
114 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

114 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.2.2 Description

A views element describes an unbounded set of view elements. Each view element specifies a representation
level of a component. It contains the following elements.

a) nameGroupNMToken group is detailed in C.4. The name elements shall be unique within the con-
taining views element.

b) envIdentifier designates and qualifies information about how this model view is deployed in a par-
ticular tool environment. The format of the element is a string with three fields separated by two
colons [:] in the format of Language:Tool:VendorSpecific. The regular expression which is used to
check the string is [A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]* The sections are:

1) Language indicates this view may be compatible with a particular tool, but only if that lan-
guage is supported in that tool, e.g., different versions of some simulators may support two or
more languages. In some cases, knowing the tool compatibility is not enough and may be fur-
ther qualified by language compatibility, e.g., a compiled HDL model may work in a VHDL-
enabled version of a simulator, but not in a SystemC-enabled version of the same simulator.

2) Tool indicates this view contains information that is suitable for the named tool. This might be
used if this view references data that is tool-specific and would not work generically, e.g., HDL
models that use simulator-specific extensions.

Vendors shall publish lists of approved tool identification strings. These strings shall contain
the tool name, as well as the company’s domain name, separated by dots. Some examples of
well-formed tool entries are:

designcompiler.synopsys.com

ncsim.cadence.com

modelsim.mentor.com
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 115
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 115
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
This field can alternatively indicate generic tool family compatibility, including *Simula-
tion and *Synthesis. To support transportability of created data files, it is important to
use the published, generally recognized, tool designation when referencing a tool. See [B7].

3) VendorSpecific can be used to further qualify tool and language compatibility. This can be used
to indicate additional processing information may be required to use this model in a particular
environment. For instance, if the model is a SWIFT simulation model, the appropriate simula-
tor interface may need to be enabled and activated.

Any or all of the envIdentifier fields may be used. Where there are multiple environments for which
a particular view is applicable, multiple envIdentifier elements can be listed.

c) All of the information for a view shall be in the containing component. Specifically, the fileSets
that are referenced in a view shall contain entries for all of the required files. If a view in the compo-
nent contains a hierarchyRef, other views shall not assume the inclusion of files in a fileSet refer-
enced through that hierarchyRef. The implementation details for this view has two possibilities.

The first possibility is a hierarchical view which uses the hierarchyRef element. In this case:

hierarchyRef (mandatory) references a hierarchical design from a view of a component. This
element is required only if the view is used to reference a hierarchical design. The hierar-
chyRef element is of type libraryRefType, it contains four attributes to specify a unique
VLNV. See C.7.

d) The second possibility is a non-hierarchical view which references a file set. In this case:

1) language (optional) specifies the hardware description language used for a specific view, for
example, verilog or vhdl. The language element is of type token. This may have an
attribute strict (optional) of type Boolean; if true the language shall be strictly enforced. If this
attribute is not present, its effective value is false.

2) modelName (optional) is a language-specific identifier of the model. For Verilog or System-
Verilog, this is the module name. For VHDL, this is, with ()'s, the entity (architecture) name
pair or, without ()'s, a configuration name. For SystemC, this is the sc_module class name.
The modelName element is of type string.

3) defaultFileBuilder (optional) is an unbounded list of default file builder options for the
fileSets referenced in this view. This contains all the same elements as the element fileBuilder.
See 6.13.5.

4) fileSetRef (optional) is an unbounded list of references to fileSet names within the containing
document or another document referenced by the VLNV. See C.8.

5) constraintSetRef (optional) is an unbounded list of references to constraint sets, valid timing
constraints for a view. constraintsSets are only defined for wire style ports. The constraint-
SetRef element is of type NMTOKEN. See 6.11.9.

6) whiteboxElementRefs (optional) contains references to whitebox elements of a component
that are valid for this view. If the view contains an implementation of any of the whitebox ele-
ments for the component, the view section shall include a reference to that whitebox element,
with a string providing a language-dependent path to enable the DE to access the whitebox ele-
ment. See 6.15.

7) parameters (optional) details any additional parameters that describe the view. See C.11.

e) vendorExtensions (optional) adds any extra vendor-specific data related to the view. See C.10.

See also: SCR 14.3.

6.11.2.3 Example

The following is an example of a non-hierarchical view element with the name of vhdlsource.
116 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

116 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:views>
<spirit:view>

<spirit:name>vhdlsource</spirit:name>
<spirit:envIdentifier>:modelsim.mentor.com:</spirit:envIdentifier>
<spirit:envIdentifier>:ncsim.cadence.com:</spirit:envIdentifier>
<spirit:envIdentifier>:vcs.synopsys.com:</spirit:envIdentifier>
<spirit:envIdentifier>:designcompiler.synopsys.com:

</spirit:envIdentifier>
<spirit:language>vhdl</spirit:language>
<spirit:modelName>leon2_Uart(struct)</spirit:modelName>
<spirit:fileSetRef>fs-vhdlSource</spirit:fileSetRef>
<spirit:constraintSetRef>normal</spirit:constraintSetRef>

</spirit:view>
</spirit:views>

6.11.3 Component ports

6.11.3.1 Schema

The following schema defines the information contained in the ports element, which may appear within a
component.

6.11.3.2 Description

The ports element defines an unbounded list of port elements. Each port element describes a single
external port on the component.

a) nameGroupPort group is defined in C.4. The name elements shall be unique within the containing
ports element.

b) Each port shall be described as a wire or transactional port.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 117
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 117
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
1) wire (mandatory) defines ports that transport purely binary values or vectors of binary values.
See 6.11.4.2.

2) transactional (mandatory) defines all other styles of ports, typically used for transactional
level modeling (TLM). See 6.11.16.

c) access (optional) defines the access for a port.

1) portAccessType (optional) indicates to a netlister how to access the port. The portAccessType
has one of two possible values ref or ptr. If ref (the default), a netlister should access the port
directly and, if ptr, it should access the port with a pointer.

2) portAccessHandle (optional) indicates to a netlister the method to be used to access the object
representing the port. This is typically a function call or array element reference in IEEE Std
1666™-2005 (SystemC). The portAccessHandle is of type string.

d) vendorExtensions (optional) adds any extra vendor-specific data related to the port. See C.10.

6.11.3.3 Example

This example shows a component with a wire port (clk) and two transactional ports (initiator and
target).

<spirit:ports>
<spirit:port>

<spirit:name>clk</spirit:name>
<spirit:wire>

<spirit:direction>in</spirit:direction>
</spirit:wire>

</spirit:port>
<spirit:port>

<spirit:name>initiator</spirit:name>
<spirit:transactional>

<spirit:service>
<spirit:initiative>requires</spirit:initiative>
<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>
<spirit:typeName>read_write_if</spirit:typeName>

</spirit:serviceTypeDef>
/spirit:serviceTypeDefs>

</spirit:service>
</spirit:transactional>

</spirit:port>
<spirit:port>

<spirit:name>initiator</spirit:name>
<spirit:transactional>

<spirit:service>
<spirit:initiative>provides</spirit:initiative>

<spirit:serviceTypeDefs>
<spirit:serviceTypeDef>

<spirit:typeName>read_write_if
</spirit:typeName>

</spirit:serviceTypeDef>
</spirit:serviceTypeDefs>

</spirit:service>
</spirit:transactional>

</spirit:port>
</spirit:ports>
118 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

118 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.4 Component wire ports

6.11.4.1 Schema

The following schema details the information contained in the wire element, which may appear as an
element inside the top-level component/model/port element.

6.11.4.2 Description

The wire element describes the properties for ports that are of a wire style. A port can come in two different
styles, wire or transactional. A wire port applies for all scalar types (e.g., VHDL std_logic and Verilog
wire) and vectors of scalars. Scalar types in VHDL also include integer and enumeration values; however,
scalars in IP-XACT only include binary values that relate to a single wire in a hardware implementation.

A wire port transports purely binary values or vectors of binary values; IP-XACT does not support tri-state
or multiple strength values.

The wire element contains the following elements.

a) allLogicalDirectionsAllowed (optional) attribute defines whether the port may be mapped to a port
in an abstractionDefinition with a different direction. The default value is false. The allLogical-
DirectionsAllowed attribute is of type Boolean. See 5.3.

b) direction (mandatory) specifies the direction of this port: in for input ports, out for output ports, and
inout for bidirectional and tri-state ports. phantom can also be used to define a port which only
exists on the IP-XACT component, but not on the implementation referenced from the view.

c) vector (optional) determines if this port is a scalar port or a vectored port. The left and right vector
bounds elements inside the vector element are those specified in the implementation source. The
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 119
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 119
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
port width is max (left,right) - min (left,right) +1. The left and right elements are of type nonNega-
tiveInteger. The left and right elements are configurable with attributes from long.prompt.att, see
C.12.

The left element means first boundary, the right element, the second boundary. left may be larger
than right and left may be the MSB or LSB (right being the opposite). The left and right elements
are the (bit) rank of the left-most and right-most bits of the port.

When the vector element is present and the left and right elements are not equal, the port is defined
as a multi-bit vector port. When the vector element is present and the left and right elements are
equal, the port is defined as a single-bit vector port. When the vector element and the left and right
elements are not present, the port is defined as a scalar port.

d) wireTypeDefs (optional) describes the ports type as defined by the implementation, see 6.11.5.

e) driver (optional) defines a driver which may be attached to this port if no other object is connected
to this port. This allows the IP to define the default state of unconnected inputs. A wire style port
may only define a driver element for a port if the direction of the port is in or inout. See also 6.11.6

f) constraintSets (optional) defines multiple set of constraints on a port used for synthesis or other
operations. See 6.11.11.

See also: SCR 6.5, SCR 6.6, SCR 6.7, and SCR 6.12.

6.11.4.3 Example

The following examples show how the vector elements are used when mapping to an HDL language.

reset: in std_logic; -- VHDL

would be defined with no left or right elements under the vector element.

<spirit:wire>
<spirit:direction>in</spirit:direction>

</spirit:wire>

Whereas

data: out std_logic_vector(29 downto 3); -- VHDL

would be defined in IP-XACT as left=29 and right=3 with all bits in descending order.

<spirit:wire>
<spirit:direction>out</spirit:direction>
<spirit:vector>

<spirit:left>29</spirit:left>
<spirit:right>3</spirit:right>

</spirit:vector>
</spirit:wire>

6.11.5 Component wireTypeDef

6.11.5.1 Schema

The following schema details the information contained in the wireTypeDef element, which may appear as
an element inside the wire element of a top-level wire style port element. These elements define the
definition type name, where the type is defined, and which views of a component or an abstractor use this
type.
120 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

120 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.5.2 Description

The wireTypeDefs element describes the type properties for a port per view of a component or abstractor.
There can be an unbounded series of wireTypeDefs defined for each port, allowing the type properties to be
defined differently for each view. wireTypeDef contains the following elements.

a) typeName (mandatory) defines the name of the type for the port. For VHDL, some typical values
would be std_logic and std_ulogic.

constrained (optional) attribute indicates whether or not the number of bits in the type declaration is
fixed or not. If the number of bits is fixed (constrained == true) the bit indices are not required
when referencing the type. When constrained is false (the default), bit indices are required on all
references to the type definition. See 6.11.5.2.1 and 6.11.5.2.2.

b) typeDefinition (optional) contains a language-specific reference to where the given type is actually
defined. Table 4 shows some examples. There can be multiple typeDefinitions for each port. The
typeDefinition element is of type string.

c) viewNameRef (mandatory) indicates the view or views in which this type definition applies. Multi-
ple views can use the same set of type properties by specifying multiple viewNameRef elements.

Table 4—typeDefinition examples

Language Meaning

VHDL “Use” statement text (IEEE.std_logic_1164.all).

Verilog Nothing needed, no meaning.

SystemC Include file name (systemc.h).

SystemVerilog Include file name (if the name does not contain a :); import package name (if the
name contains a :).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 121
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 121
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
The viewNameRef shall match a view/name in the containing object. The viewNameRef element is
of type NMTOKEN. See 6.11.2.

6.11.5.2.1 Constrained array type

A constrained array type is a type for which the indices of the array have been specified in the definition.

type BYTE is array (7 downto 0) of std_logic;
entity example is
 port(
 A: out BYTE;
 B: in BYTE
);
end example;

Also, the definition of port A in an IP-XACT description contains the indices in XML to designate the width
so these types below can be mixed in the same component.

<spirit:port>
<spirit:name>A</spirit:name>
<spirit:wire>

<spirit:vector>
<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>

</spirit:vector>
<spirit:typeDefs>

<spirit:typeDef>
<spirit:typeName spirit:constrained="true">BYTE

</spirit:typeName>
<spirit:typeDefinition>MYLIB.MYPKG.all</spirit:typeDefinition>
<spirit:viewNameRef>VHDLsimView</spirit:viewNameRef>

</spirit:typeDef>
</spirit:typeDefs>

</spirit:wire>
<spirit:port>

6.11.5.2.2 Unconstrained array type

An unconstrained array type is a type for which the indices of the array have not been specified in the
definition, e.g.,

type std_logic_vector is array (NATURAL RANGE <>) of std_logic;

entity example is
 port(
 A: out std_logic_vector (7 downto 0);
 B: in std_logic_vector (7 downto 0)
);
end example;

could be described in IP-XACT as

<spirit:port>
<spirit:name>A</spirit:name>
<spirit:wire>

<spirit:vector>
<spirit:left>7</spirit:left>
122 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

122 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:right>0</spirit:right>

</spirit:vector>

<spirit:typeDefs>

<spirit:typeDef>

<spirit:typeName spirit:constrained=”false”>BYTE

</spirit:typeName>

<spirit:typeDefinition>MYLIB.MYPKG.all</spirit:typeDefinition>

<spirit:viewNameRef>VHDLsimView</spirit:viewNameRef>

</spirit:typeDef>

</spirit:wire>

<spirit:port>

6.11.5.2.3 Defaults

wireTypeDefs do not need to be defined for every view of a port. IP-XACT provides for these defaults
based on the language of the view, as shown in Table 5. For those languages not shown here, no defaults can
be presumed.

6.11.5.2.4 Rules

— A view name may only appear once in all the ports viewNameRef elements.

— If the view name is not found in a viewNameRef, the default type properties apply (see Table 5).

6.11.5.3 Example

See the examples in 6.11.5.2.2.

6.11.6 Component driver

6.11.6.1 Schema

The following schema details the information contained in the driver element, which may appear as an
element inside the wire element of a top-level wire style port element. This element defines the type and
value(s) to drive on this port when it is not connected in a design; it is only allowed on ports with the
direction in or inout.

Table 5—View defaults

Language Single bit Vectors

VHDL std_logic std_logic_vector

Verilog wire wire

SystemC sc_logic sc_lv

SystenVerilog logic logic
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 123
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 123
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.11.6.2 Description

The driver element shall contain one of three different types of drivers that can be applied to a wire port of
a component or abstractor.

a) defaultValue (optional) specifies a static logic value for this port. The defaultValue can specify a
simple one-bit wire port or a vectored wire port. The value shall be applied to this port when it is left
unconnected, independent of being part of a busInterface. This value shall also override a default
value from an abstraction definition. The defaultValue element is of type scaledNonNegativeInte-
ger. The defaultValue element is configurable with attributes from long.prompt.att, see C.12.

b) clockDriver (optional) specifies a repeating waveform for this port. See 6.11.7.

c) singleShotDriver (optional) specifies a non-repeating waveform for this port. See 6.11.8.

See also: SCR 6.26 and SCR 12.13.

6.11.6.3 Example

This example shows a default value of 0x0F set for a vectored wire port named scaler.

<spirit:port>
<spirit:name>scaler</spirit:name>
<spirit:wire>

<spirit:direction>in</spirit:direction>
<spirit:vector>

<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>

</spirit:vector>
<spirit:driver>

<spirit:defaultValue>0x0F</spirit:defaultValue>
</spirit:driver>

</spirit:wire>
</spirit:port>

6.11.7 Component driver/clockDriver

6.11.7.1 Schema

The following schema details the information contained in the clockDriver element, which may appear as an
element inside the top-level wire style port/wire/driver element. This element defines the properties of a
clock waveform. When this element is contained within a non-scalar wire port, the clock waveform shall ap-
ply to all bits of this port.
124 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

124 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.7.2 Description

The clockDriver element contains four elements that describe the properties of a clock waveform. These are
also depicted in Figure 11.

a) clockPeriod (mandatory) specifies the overall length (in time) of one cycle of the waveform. The
clockPeriod element is of type configurableDouble. The clockPeriod element is configurable with
attributes from float.prompt.att, see C.12. This element also contains a units (optional) attribute for
specifying the units of the time values: ns (the default) and ps.

ns stands for nanosecond and is equal to 10-9 seconds. ps stands for picosecond and is equal to 10-12

seconds.

b) clockPulseOffset (mandatory) specifies the time delay from the start of the waveform to the first
transition. The clockPulseOffset element is of type configurableDouble. The clockPulseOffset
element is configurable with attributes from float.prompt.att, see C.12. This element also contains a
units (optional) attribute for specifying the units of the time values: ns (the default) and ps.

c) clockPulseValue (mandatory) specifies the logic value to which the port transitions. This value is
also the opposite of the value from which the waveform starts. The value of this element shall be 0
or 1. The clockPulseValue element is of type scaledNonNegativeInteger. The clockPulseValue
element is configurable with attributes from long.prompt.att, see C.12.

d) clockPulseDuration (mandatory) specifies how long the waveform remains at the value specified
by clockPulseValue. The clockPulseDuration element is of type configurableDouble. The clock-
PulseDuration element is configurable with attributes from float.prompt.att, see C.12. This element
also contains a units (optional) attribute for specifying the units of the time values: ns (the default)
and ps.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 125
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 125
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
e) clockName (optional) attribute specifies a name for the clock driver. If this is not defined, the name
of the port to which this clockDriver is applied shall be used.

See also: SCR 12.9 and SCR 12.10.

Figure 11—clockDriver elements

6.11.7.3 Example

This is an example of a clock driver set on the wire port named clk. The clock starts off in the logic 0
state for 4 ns, then transitions to the logic 1 state for 4 ns. This cycle is the repeated forever.

<spirit:port>

<spirit:name>clk</spirit:name>

<spirit:wire>

<spirit:direction>in</spirit:direction>

<spirit:driver>

<spirit:clockDriver spirit:clockName="clk">

<spirit:clockPeriod>8</spirit:clockPeriod>

<spirit:clockPulseOffset>4</spirit:clockPulseOffset>

<spirit:clockPulseValue>1</spirit:clockPulseValue>

<spirit:clockPulseDuration>4</spirit:clockPulseDuration>

</spirit:clockDriver>

</spirit:driver>

</spirit:wire>

</spirit:port>

6.11.8 Component driver/singleShotDriver

6.11.8.1 Schema

The following schema details the information contained in the singleShotDriver element, which may
appear as an element inside the top-level wire style port/wire/driver element. This element defines the
properties of a single-shot waveform. When this element is contained within a non-scalar wire port, the
single-shot waveform shall apply to all bits of this port.
126 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

126 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.8.2 Description

The singleShotDriver element contains three elements that describe the properties of the waveform. These
are also depicted in Figure 12.

a) singleShotOffset (mandatory) specifies the time delay from the start of the waveform to the transi-
tion. The singleShotOffset element is of type configurableDouble. The singleShotOffset element
is configurable with attributes from float.prompt.att, see C.12. This element also contains a units
(optional) attribute for specifying the units of the time values: ns (the default) and ps.

ns stands for nanosecond and is equal to 10-9 seconds. ps stands for picosecond and is equal to 10-12

seconds.

b) singleShotValue (mandatory) specifies the logic value to which the port transitions. This value is
also the opposite of the value from which the waveform starts. The value of this element shall be 0
or 1. The singleShotValue element is of type scaledNonNegativeInteger. The singleShotValue ele-
ment is configurable with attributes from long.prompt.att, see C.12.

c) singleShotDuration (mandatory) specifies how long the waveform remains at the value specified
by singleShotValue. The singleShotDuration element is of type configurableDouble. The single-
ShotDuration element is configurable with attributes from float.prompt.att, see C.12. This element
also contains a units (optional) attribute for specifying the units of the time values: ns (the default)
and ps.

See also: SCR 12.11 and SCR 12.12.

Figure 12—singleShotDriver elements
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 127
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 127
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.11.8.3 Example

This is an example of a single-shot driver set on the wire port named reset. The waveform starts off in the
logic 0 state for 100 ns and then transitions to the logic 1 state for 100 ns.

<spirit:port>
<spirit:name>reset</spirit:name>
<spirit:wire>

<spirit:direction>in</spirit:direction>
<spirit:driver>

<spirit:singleShotDriver>
<spirit:singleShotOffset>100</spirit:singleShotOffset>
<spirit:singleShotValue>1</spirit:singleShotValue>
<spirit:singleShotDuration>100</spirit:singleShotDuration>

</spirit:singleShotDriver>
</spirit:driver>

</spirit:wire>
</spirit:port>

6.11.9 Implementation constraints

Implementation constraints can be defined to document requirements that need to be met by an
implementation of the component. Constraints are defined in groups called constraint sets (in the IP-XACT
element port/wire/constraintSets/constraintSet) so different constraints can be associated with different
views of the component. A particular set of constraints is tied to a component view by the constraintSetId
attribute in the constraint set and the matching constraintSetRef element in the view.

6.11.10 Component wire port constraints

6.11.10.1 Schema

The following schema defines the information contained in the constraintSets element, which may appear
within a wire element within a component port element (component/model/ports/port/wire).
128 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

128 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.10.2 Description

The constraintSets element is used to define technology independent implementation constraints associated
with the containing wire port of the component. The constraintSets element contains one or more
constraintSet elements which define a set of constraints for the port. If more than one constraintSet
element is present, each shall have a unique value for the constraintSetId attribute so each constraintSet
can be uniquely referenced from a view. constraintSet contains the following elements.

a) nameGroupOptional is defined in C.2.

b) vector (optional) determines to which bits of a vectored port the constraint applies. The left and
right vector bounds elements inside the vector element specify the bounds of the vector. The left
and right elements are of type nonNegativeInteger.

c) driveConstraint (optional) defines a drive constraint for this port. See 6.11.11 for details.

d) loadConstraint (optional) defines a load constraint for this port. See 6.11.12 for details.

e) timingConstraint (optional) defines a timing constraint relative to a clock for this port. See 6.11.13
for details.

NOTE—To specify technology-dependent constraints (which is not represented in the schema), use an SDC file and ref-
erence the file via fileSet.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 129
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 129
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.11.10.3 Example

This example shows a port containing a single timing constraint appearing in two different constraint sets.

<spirit:port>

<spirit:name>hgrant</spirit:name>

<spirit:wire>

<spirit:direction>in</spirit:direction>

<spirit:constraintSets>

<spirit:constraintSet spirit:constraintSetId=”timing”>

<spirit:timingConstraint spirit:clockName=”hclk”>40

</spirit:timingConstraint>

</spirit:constraintSet>

<spirit:constraintSet spirit:constraintSetId=”area”>

<spirit:timingConstraint spirit:clockName=”hclk”>50

</spirit:timingConstraint>

</spirit:constraintSet>

</spirit:constraintSets>

</spirit:wire>

</spirit:port>

6.11.11 Port drive constraints

6.11.11.1 Schema

The following schema defines the information contained in the driveConstraint element, which may appear
within a modeConstraints or mirroredModeConstraints element within a wire type port in an abstraction
definition or within a constraintSet element within a wire type port in a component.

6.11.11.2 Description

The driveConstraint element defines a technology-independent drive constraint associated with the
containing wire port of a component or the component port associated with the logical port within an
abstraction definition if the driveConstraint element is contained within an abstraction definition. The
actual constraint consists of a technology-independent specification of a library cell presumed to drive the
input port. The cellSpecification element defines the cell (see 6.11.14).

The driveConstraint element is not valid on an output port.

See also: SCR 12.1, SCR 12.3, and SCR 12.6.
130 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

130 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.11.3 Example

This example shows two different drive constraints. The first represents a median-strength D flop and the
second a low-strength sequential cell.

<spirit:driveConstraint>
<spirit:cellSpecification>

<spirit:cellFunction>dff</spirit:cellFunction>
</spirit:cellSpecification>

</spirit:driveConstraint>

<spirit:driveConstraint>
<spirit:cellSpecification>

<spirit:cellClass spirit:strength=”low”>sequential
</spirit:cellClass>

</spirit:cellSpecification>
</spirit:driveConstraint>

6.11.12 Port load constraints

6.11.12.1 Schema

The following schema element defines the information contained in the loadConstraint element, which
may appear within a modeConstraints or mirroredModeConstraints element within a wire type port in an
abstraction definition or within a constraintSet element within a wire type port in a component.

6.11.12.2 Description

The loadConstraint element defines a technology-independent load constraint associated with the
containing wire port of a component or the component port associated with the logical port within an
abstraction definition if the loadConstraint element is contained within an abstraction definition. The actual
constraint consists of two parts, the technology-independent specification of a library cell and a count.
loadConstraint also contains the following elements.

a) cellSpecification (mandatory) defines the library cell (see 6.11.14).

b) count (optional) indicates how many loads of the indicated type are modeled as if attached to the
output port. The default is three loads. The count element is of type positiveInteger.

The loadConstraint element is not valid on input ports.

See also: SCR 12.2, SCR 12.4, and SCR 12.5.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 131
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 131
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.11.12.3 Example

This example shows two different load constraints. The first is load consisting of three D flops of median
strength and the second is a load consisting of four low-strength sequential cells.

<spirit:loadConstraint>
<spirit:cellSpecification>

<spirit:cellFunction>dff</spirit:cellFunction>
</spirit:cellSpecification>

</spirit:loadConstraint>
<spirit:loadConstraint>

<spirit:cellSpecification>
<spirit:cellClass spirit:strength=”low”>sequential</spirit:cellClass>

</spirit:cellSpecification>
<spirit:count>4</spirit:count>

</spirit:loadConstraint>

6.11.13 Port timing constraints

6.11.13.1 Schema

The following schema defines the information contained in the timingConstraint element, which may
appear within a modeConstraints or mirroredModeConstraints element within a wire type port in an
abstraction definition or within a constraintSet element within a wire type port in a component.

6.11.13.2 Description

The timingConstraint element defines a technology-independent timing constraint associated with the
containing wire port of a component or abstraction definition. It is of type delayPercentageType, the value is
a floating point number between 0 and 100 which represents the percentage of the cycle time to be allocated
to the timing constraint on the port. If the component port is an input (or the port in an abstraction definition
ends up mapping to a physical port with direction in), the timing constraint represents an input delay
constraint; otherwise, it represents an output delay constraint. timingConstraint also contains the following
attributes.
132 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

132 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
a) clockEdge (optional) specifies to which edge of the clock the constraint is relative. The default
behavior is the constraint is relative to the rising edge of the clock. The clockEdge attribute may
have two values rise (the default) or fall.

b) delayType (optional) restricts the constraint to applying to only best-case (minimum) or worst-case
(maximum) timing analysis. By default, the constraint is applied to both. The delayType attribute
may have two values min or max.

c) clockName (mandatory) specifies the delay constraint relative to the clock. clockName shall be a
valid port name or another clock name in the containing description. The cycle time of the refer-
enced clock is what actually determines the actual magnitude of the delay constraint (<clock cycle
time> * 100 / <timing constraint element value>). The clockName element is of type Name.

See also: SCR 12.7 and SCR 12.8.

6.11.13.3 Example

This example shows three basic timing constraints. The first indicates a delay of 40% of the clock hclk,
relative to the rising edge of hclk, and applicable to both best and worst case timing analysis. The second
indicates a delay of 30% of the clock hclk, relative to the falling edge of hclk, and applicable to best case
timing. The third indicates a delay of 50% of the clock hclk, relative to the falling edge of hclk, and
applicable to worst case timing.

<spirit:timingConstraint

spirit:clockName=”hclk”>40</spirit:timingConstraint>

<spirit:timingConstraint spirit:clockName=”hclk”spirit:clockEdge=”fall”

spirit:delayType=”min”>30</spirit:timingConstraint>

<spirit:timingConstraint spirit:clockName=”hclk” spirit:clockEdge=”fall”

spirit:delayType=”max”>50</spirit:timingConstraint>

6.11.14 Load and drive constraint cell specification

6.11.14.1 Schema

The following schema defines the information contained in the cellSpecification element, which may
appear within a loadConstraint or driveConstraint element indicating the type of cell to use in the
constraint.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 133
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 133
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.11.14.2 Description

The cellSpecification element defines a cell in a technology-independent fashion such that drive and load
constraints can be defined without referencing a specific technology library. The cell is defined so a design
environment can map it to an appropriate cell in a specific library when the actual constraint is generated.
The cellSpecification element shall contain one of the following two elements.

a) cellFunction (mandatory) specifies a cell function from the user-defined library. The cellFunction
element shall be one of the following values: nd2, buf, inv, mux21, dff, latch or xor2. The cell-
Function element contains a cellStrength (optional) attribute that provides the cell strength specifi-
cation. The value shall be one of low, median (the default), or high. median implies the middle cell
of all the cells that match the desired function, sorted by drive or load strength (as appropriate for the
given constraint), is used.

b) cellClass (mandatory) specifies a cell class from the user-defined library. The cellClass element
shall be one of the following values: combinational or sequential. The cellClass element contains a
cellStrength (optional) attribute that provides the cell strength specification. The value shall be one
of low, median (the default), or high. median implies the middle cell of all the cells that match the
desired class, sorted by drive or load strength (as appropriate for the given constraint), is used.

6.11.14.3 Example

This example shows two different variations of cell specifications. The first indicates a median-strength D
flop cell and the latter a low-strength sequential cell.

<spirit:cellSpecification>
<spirit:cellFunction>dff</spirit:cellFunction>

</spirit:cellSpecification>
<spirit:cellSpecification>

<spirit:cellClass spirit:strength=”low”>sequential</spirit:cellClass>
</spirit:cellSpecification>

6.11.15 Other clock drivers

6.11.15.1 Schema

The following schema defines the information contained in the otherClockDrivers element, which may
appear within a component element.
134 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

134 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.15.2 Description

The otherClockDrivers element defines clocks within a component that are not directly associated with a
top-level port, e.g., virtual clocks and generated clocks. The otherClockDrivers element contains one or
more otherClockDriver elements, each of which represents a single clock. The otherClockDriver element
consists of a number of sub-elements which define the format of the clock waveform.

a) clockPeriod, clockPulseOffset, clockPulseValue and clockPulseDuration (all required) are all
detailed in the description of the element clockDriver. See 6.11.7.

b) clockName (mandatory) attribute indicating the name of the clock for reference by a constraint. The
clockName element is of type Name.

c) clockSource (optional) attribute defines the physical path and name of the clock generation cell.

6.11.15.3 Example

This example shows a virtual and a generated clock within the otherClockDrivers element.

<spirit:otherClockDrivers>
<spirit:otherClockDriver spirit:clockName=”virtClock”>

<spirit:clockPeriod>5</spirit:clockPeriod>
<spirit:clockPulsOffset>0</spirit:clockPulseOffset>
<spirit:clockPulseValue>1</spirit:clockPulseValue>
<spirit:clockPulseDuration>2.5</spirit:clockPulseDuration>

</spirit:otherClockDriver>
<spirit:otherClockDriver spirit:clockName=”genClock”

spirit:clockSource=”i_clkGen/clk1”>
<spirit:clockPeriod spirit:units=”ps”>10</spirit:clockPeriod>
<spirit:clockPulsOffset spirit:units=”ps”>2</spirit:clockPulseOffset>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 135
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 135
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:clockPulseValue>0</spirit:clockPulseValue>
<spirit:clockPulseDuration spirit:units=”ps”>5

</spirit:clockPulseDuration>
</spirit:otherClockDriver>

<spirit:otherClockDrivers>

6.11.16 Component transactional port type

6.11.16.1 Schema

The following schema defines the information contained in the transactional element (in a component/
model/ports/port element).

6.11.16.2 Description

A transactional element in a component model port defines a physical transactional port of the component,
which implements or uses a service. A service can be implemented with functions or methods. It contains
the following elements.

a) allLogicalInitiativesAllowed (optional) attribute defines whether the port may be mapped to a port
in an abstractionDefinition with a different initiative. The default value is false. The allLogicalIn-
itiativesAllowed attribute is of type Boolean. See 5.3.

b) transTypeDef (optional) defines the port type expressed in the default language for this port. See
6.11.17.

c) service (mandatory) describes the interface protocol associated with the transactional port. See
6.11.18.

d) connection (optional) defines the number of legal connections for a port.

1) maxConnections (optional) indicating the maximum number of connections that this port sup-
ports. Its default value is 0, which indicates an unbounded number of legal connections. The
maxConnections element is of type nonNegativeInteger.

2) minConnections (optional) indicating the minimum number of connections that this ports sup-
ports. Its default value is 1. The minConnections element is of type nonNegativeInteger.
136 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

136 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
See also: SCR 6.2, SCR 6.3, SCR 6.4, SCR 6.13, SCR 6.24, and SCR 6.25.

6.11.16.3 Example

This example shows a transactional port requiring a service of type tlm_interface and allowing only a
point-to-point connection.

<spirit:port> <spirit:name>tlm_initiator_port</spirit:name>

<spirit:transactional>

<spirit:transTypeDef>

<spirit:typeName>sc_port</spirit:typeName>

</spirit:transTypeDef>

<spirit:service>

<spirit:initiative>requires</spirit:initiative>

<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>

<spirit:typeName>tlm_interface</spirit:typeName>

</spirit:serviceTypeDef>

</spirit:serviceTypeDefs>

</spirit:service>

<spirit:connection>

<spirit:maxConnections>1</spirit:maxConnections>

</spirit:connection>

</spirit:transactional>

</spirit:port>

6.11.17 Component transactional port type definition

6.11.17.1 Schema

The following schema defines the information contained in the transTypeDef element (in a component/
model/ports/port/transactional element).
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 137
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 137
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.11.17.2 Description

A transTypeDef element defines the port type expressed in the default language for this port (e.g., SystemC
or SystemVerilog). It contains the following elements.

a) typeName (mandatory) defines the port type (such as sc_port/sc_export in SystemC or any
user-defined type, such as tlm_port). The typeName element may be associated with an optional
Boolean constrained attribute (the default value is false). If true this indicates that the port type
definition has constrained the number of bits in the vector.

b) typeDefinition (optional) contains a language-specific reference to where the given type is actually
defined. Table 4 shows some examples. There can be multiple typeDefinitions for each port. The
typeDefinition element is of type string.

6.11.17.3 Example

The following example shows the transactional type definition of a custom specific tlm_port, defined in
the include file tlm_port.h.

<spirit:transTypeDef>
<spirit:typeName>tlm_port</spirit:typeName>
<spirit:typeDefinition>tlm_port.h</spirit:typeDefinition>

</spirit:transTypeDef>

6.11.18 Component transactional port service

6.11.18.1 Schema

The following schema defines the information contained in the service element (in a component/model/
ports/port/transactional element).
138 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

138 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.11.18.2 Description

A service element describes the interface protocol associated with the transactional port. It contains the
following elements and attributes.

a) initiative (mandatory) defines the type of access: requires, provides, both, or phantom.

1) For example, a SystemC sc_port should be defined with the requires initiative, since it
requires a SystemC interface. A SystemC sc_export should be defined with the provides
initiative, since it provides a SystemC interface.

2) both indicates the type of access is both requires and provides.

3) phantom indicates a phantom port is being defined. See 6.11.19.

b) serviceTypeDefs (optional) contains one or more serviceTypeDef elements. This serviceTypeDef
element defines a single service type definition.

1) typeName (mandatory) defines the name of the service type (can be any predefined type, such
as Boolean or any user-defined type, such as addr_type). The typeName element may be
defined with two optional attributes: constrained (a Boolean indicating if the port type has
constrained the number of bits in the vector) and implicit (a Boolean indicating a netlister
should not declare this service in a language-specific, top-level netlist).

2) typeDefinition (optional) indicates a location where the type is defined,e.g., in SystemC and
SystemVerilog, this is the include file containing the type definition.

3) parameters (optional) specifies any service type parameters. See C.11.

c) vendorExtensions (optional) adds any extra vendor-specific data related to the service. See C.10.

6.11.18.3 Example

The following example shows the definition of the service provided by a SystemC port.

sc_export< pvt_if<ADDR, DATA> > pvt_port

<spirit:service>
<spirit:initiative>provides</spirit:initiative>
<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>
<spirit:typeName>pvt_if</spirit:typeName>
<spirit:parameters>

<spirit:parameter spirit:name=”addr” spirit:resolve=”user”>ADDR
</spirit:parameter>

<spirit:parameter spirit:name=”data” spirit:resolve=”user”>DATA
</spirit:parameter>

</spirit:parameters>
</spirit:serviceTypeDef>

</spirit:serviceTypeDefs>
</spirit:service>

6.11.19 Phantom ports

In some components, the RTL or TLM implementation of the component does not fully implement the
functionality of the component described by IP-XACT. In RTL components, this is typically because the
component has to work in design flows that only allow a signal to be routed though an RTL component if
there is some logic within the RTL component associated with that signal. This is particularly a problem for
components containing channels.

An IP-XACT channel is supposed to represent the complete bus infrastructure between the master, slave,
and system bus interfaces connected to the bus. As such, the component containing the channel should
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 139
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 139
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
contain everything that is needed to create this infrastructure. In many buses, however, some signals are
directly connected between the components attached to the bus, with no intervening logic. This is most often
the case with clock and reset signals. If the component is to be usable in a wide range of design flows these
signals cannot be included in the RTL of the component.

To fully describe such a channel component and allow netlisters that have no special knowledge of that bus
type to netlist designs containing it, IP-XACT describes these additional connections as phantom ports. Phan-
tom ports are additional ports included in the component’s port list, but marked as phantom. As with real
component ports, the mapping of a set of logical bus ports to that phantom port implies any design using that
component needs to connect those logical ports with no intervening logic. The difference is a real component
port needs to have a corresponding port in any RTL, TLM, or hierarchical IP-XACT implementation of the
component; whereas, for phantom ports there is no corresponding port in the implementation.

6.11.20 modelParameters

6.11.20.1 Schema

The following schema details the information contained in the modelParameters element, which may
appear as an element inside the top-level component/model or abstractor/model element.

6.11.20.2 Description

Model parameters are most often used in HDL languages to specify information that is passed to the model
to configure it for a process. The modelParameters element may contain any number modelParameter
elements. The modelParameter elements describe the properties for a single parameter that is applied to all
the models specified under the model/views element. It contains the following elements.

a) dataType (optional) attribute specifies the data type as it pertains to the language of the model. This
definition is used to define the type for component declaration and such and has no semantic mean-
ing. For example, systemC this could be int, double, char*, etc. For VHDL this could be
std_logic, std_logic_vector, integer, etc.
140 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

140 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
b) usageType (optional) attribute specifies how this parameter is used in different modeling languages:
nontyped (the default) and typed. See 6.11.20.2.1.

a) nameGroup group is defined in C.1.

b) value (mandatory) contains the actual value of the modelParameter. The value element is of type
string. The value element is configurable with attributes from string.prompt.att, see C.12.

c) vendorExtensions (optional) adds any extra vendor-specific data related to the modelParameter.
See C.10.

6.11.20.2.1 Typed and non-typed parameters classification

There are two categories of parameters: typed and non-typed.

The typed parameters (or declaration parameters) appear in object-oriented (OO) languages such a C++/
SystemC or SystemVerilog.

In C++/SystemC, these are named Class template parameters. Templates can be used to develop a generic
class prototype (specification) which can be instantiated with different data types. This is very useful when
the same kind of class is used with different data types for individual members of the class. Parameterized
types are used as data types and then a class can be instantiated, i.e., constructed and used by providing
arguments for the parameters of the class template. A class template is a specification of how a class should
be built (i.e., instantiated) given the data type or values of its parameters.

Class template parameters can have default arguments, which are used during class template instantiation
when arguments are not provided. Because the provided arguments are used starting from the far left
parameter, default arguments should be provided for the right-most parameters.

Example 1

template <typename T>
class FIFO {

FIFO();
T pull();
void push(T &x);

};

In SystemVerilog, typed parameters are named type parameters. Type parameters can be used in
SystemVerilog classes, interfaces, or modules to provide the basic function of C++ templates.

Example 2

typedef bit[32] DataT;
interface FIFO #(type T);

Method T pull();
Method push (T x);

endinterface: FIFO

The generic non-typed parameters (or initialization parameters) appear in all languages (procedural or OO)
and in particular in VHDL, Verilog, SystemC, and SystemVerilog. A non-typed parameter is like an
ordinary (function-parameter) declaration. In SystemC, it represents a constant in a class template definition
or a parameter in a class constructor, i.e., this can be determined at compilation time. In VHDL, it is
represented by generics. In Verilog or SystemVerilog, it is represented by parameters.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 141
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 141
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
Example 3

Here is an example of non-typed parameters usage on a simple GCD model expressed in various languages.

VHDL

entity GCD is
generic (Width: natural);
port (
Clock,Reset,Load: in std_logic;

A,B: in unsigned(Width-1 downto 0);
Done: out std_logic;
Y: out unsigned(Width-1 downto 0));

end entity GCD;

(System)Verilog

module GCD (Clock, Reset, Load, A, B, Done, Y);
parameter Width = 8;

input Clock, Reset, Load;
input [Width-1:0] A, B;
output Done;
output [Width-1:0] Y;

…
endmodule

SystemC

template <unsigned int Width = 8>
SC_MODULE (GCD) {

sc_in<bool> Clock, Reset, Load;
sc_in<sc_uint<Width> >a, b;
sc_out<bool> Done;
sc_out<sc_uint<Width> > y;
…

}

These two kinds of parameters (typed and non-typed) can be combined to model complex IP modules.

Example 4

In SystemC:

template <typename T> // type parameter
class testModule : public sc_module {
public:

testModule(sc_module_name modnamemodname, string
portname) :

// non type parameters
sc_module(modname),
testport(portname) {…}
sc_port<T> testport;

};

In a top SC netlist design, such a class is instantiated as follows.
142 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

142 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
testModule<bool> test(“myModuleName”,“port1”);

In IP-XACT, the testModule parameters are represented as follows.

<spirit:modelParameters>
<!-- template parameter -->
<spirit:modelParameter spirit:usageType="typed">

<spirit:name>T</spirit:name>
<spirit:value

spirit:choiceRef="typenameChoice"
spirit:configGroups="requiredConfig"
spirit:id="Tid"
spirit:prompt="T:"
spirit:resolve="user">boolean</spirit:value>

</spirit:modelParameter>
<!-- constructor parameters -->
<spirit:modelParameter spirit:usageType="nontyped">

<spirit:name>modname</spirit:name>
<spirit:value

spirit:choiceRef="modulenameChoice"
spirit:configGroups="requiredConfig"
spirit:id="modnameId"
spirit:prompt="moduleName:"
spirit:resolve="user">myModuleName</spirit:value>

</spirit:modelParameter>
<spirit:modelParameter spirit:usageType="nontyped">

<spirit:name>portname</spirit:name>
<spirit:value

spirit:choiceRef="portnameChoice"
spirit:configGroups="requiredConfig"
spirit:id="portnameid"
spirit:prompt="portName:"
spirit:resolve="user">port1</spirit:value>

</spirit:modelParameter>
</spirit:modelParameters>

6.11.20.2.2 Generic parameters mapping in different languages

Table 6 summarizes the two kind of parameters (initialization and declaration) expressed in the four most
commonly used hardware languages.

Table 6—Parameter mappings

Language Non-typed parameters
(initialization)

Typed parameters (declaration)

VHDL generics N.A

Verilog parameter N.A

SystemC constructor Template (constant or variable type)

SystemVerilog parameter parameter
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 143
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 143
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
A declaration parameter (e.g., int) shall be used when declaring an IP instance in a top netlist (e.g,. myIP
int myIntIP;). An initialization parameter (e.g., myName) shall be used when initializing the instance
of that IP (e.g., myIntIP(“myName”);).
144 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

144 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.12 Component generators

6.12.1 Schema

The following schema details the information contained in the componentGenerators element, which may
appear as an element inside the top-level component element.

6.12.2 Description

The componentGenerators element contains an unbounded list of componentGenerator elements. Each
componentGenerator element defines a generator that is assigned and may be run on this component.
componentGenerator contains two attributes: hidden and scope. The hidden (optional) attribute specifies,
when true, this generator shall not be run as a standalone generator and is required to be run as part of a
chain. This generator should not be presented to the user for direct invocation. If false (the default), this
generator may be run as a standalone generator or in a generator chain. This attribute is of type Boolean. The
scope (optional) attribute is an enumerated list of instance and entity. instance indicates this generator shall
be run once for all instances of this component. entity indicates this generator shall be run once for each
instance of this component.

componentGenerator contains the following elements.

a) nameGroup group is defined in C.1. The name elements shall be unique within the containing com-
ponentGenerators element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 145
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 145
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
b) phase (optional) determines the sequence in which generators are run. Generators are run in order
starting with zero (0). If two generators have the same phase number, the order shall be interpreted
as not important and the generators can be run in any order. If no phase number is given, the genera-
tor is considered in the “last” phase and these generators are run in any order after the last generator
with a phase number. The phase element is of type float and shall also be a positive number.

c) parameters (optional) specifies any componentGenerator parameters. See C.11.

d) apiType (optional) indicates the type of API used by the generator: an enumerated list of TGI or
none. TGI indicates the generator communicates with the DE using SOAP as defined by the IP-
XACT TGI. none indicates the generator does not communicate with the DE.

e) transportMethods (optional) defines alternate SOAP transport protocols that this generator can
support. The default SOAP transport protocol is HTTP if this element is not present.

1) transportMethod specifies an alternate transport protocol. This element is an enumerated list
of only one element file.

2) file indicates the SOAP transport protocol is transported to the DE via a file or file handle.

f) generatorExe (mandatory) contains an absolute or relative (to the location of the containing docu-
ment) path to the generator executable. The path may also contain environment variables from the
host system, which are used to abstract the location of the generator. The generatorExe element is
of type spiritURI.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the componentGenera-
tor. See C.11.

h) group (optional) is an unbounded list of names used to assign this generator to a group with other
generators. These group names are then referenced by a generator chain selector to forming a chain
of generators. See 9.1. The group element is of type Name.

6.12.3 Example

This example shows a component generator used to validate the connections to a component.

<spirit:componentGenerator>

<spirit:name>connectionRuleChecker<spirit:name>

<spirit:phase>100.0</spirit:phase>

<spirit:parameters>

<spirit:parameter>

<spirit:name>language<spirit:name>

<spirit:value spirit:id=”checker” spirit:resolve=”user”>strict</
spirit:value>

</spirit:parameter>

</spirit:parameters>

<spirit:apiType>TGI</spirit:apiType>

<spirit:generatorExe>../TGI/checker.tcl</spirit:generatorExe>

<spirit:group>checker</spirit:group>

</spirit:componentGenerator>
146 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

146 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.13 File sets

6.13.1 fileSets

6.13.1.1 Schema

The following schema details the information contained in the fileSets element, which may appear in a
component or an abstractor.

6.13.1.2 Description

The fileSets element contains one or more fileSet elements. A fileSet contains a list of files and directories
associated with a component and/or instructions for further processing. If compilation order is important
(e.g., for VHDL files), the files shall be listed in the order needed for compilation (the files to compile first
are listed first). fileSet has the following mandatory and optional elements.

a) nameGroup group is defined in C.1. The name elements shall be unique within the containing
fileSets element.

b) group (optional) describes the function or purpose of the file set with a single unbounded word
group name (e.g., diagnostics, interrupt, etc.). The group element is of type Name.

c) file (optional) references a single unbounded file or directory associated with the file set. If compila-
tion order is important (e.g., for VHDL files), the files shall be listed in the order needed for compi-
lation (see 6.13.2).

d) defaultFileBuilder (optional) specifies the unbounded default build commands for the files within
this file set. See 6.13.5.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 147
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 147
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
e) dependency (optional) is the path to a directory containing (include) files on which the file set
depends. The dependency element is of type spiritURI.

f) function (optional) specifies the unbounded information about a software function for a generator
(see 6.13.6).

g) vendorExtensions (optional) provides a place for any vendor-specific extensions. See C.10.

6.13.1.3 Example

The following is an example of a fileSet with two VHDL files.

<spirit:fileSets>
<spirit:fileSet

<spirit:name>fs-vhdlSource</spirit:name>
<spirit:file>

<spirit:name>hdlsrc/timers.vhd</spirit:name>
<spirit:fileType>vhdlSource</spirit:fileType>
<spirit:logicalName>leon2_timers</spirit:logicalName>

</spirit:file>
<spirit:file>

<spirit:name>hdlsrc/leon2_Timers.vhd</spirit:name>
<spirit:fileType>vhdlSource</spirit:fileType>
<spirit:logicalName>leon2_timers</spirit:logicalName>

</spirit:file>
</spirit:fileSet>

</spirit:fileSets>

6.13.2 file

6.13.2.1 Schema

The following schema details the information contained in the file element, which may appear as an element
inside the fileSet element.
148 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

148 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 149
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 149
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.13.2.2 Description

A file is a reference to a file or directory. It is an optional element of a fileSet. If compilation order is
important (e.g., for VHDL files), the files shall be listed in the order needed for compilation (the files to
compile first are listed first). The file element contains an attribute fileId (optional) which is used for
references to this file from inside the fileSet/function/fileRef element. The file element also allows for
vendor attributes to be applied. file contains the following elements.

a) name (mandatory) contains an absolute or relative (to the location of the containing document) path
to a file name or directory. The path may also contain environment variables from the host system,
used to abstract the location of files (see D.17). The name element is of type spiritURI. The name
element is configurable with attributes from string.prompt.att, see C.12.

b) fileType (mandatory) group contains one or more of the elements defined in C.9.

c) includeFile (optional) when true, declares the file as an include file. If this element is not present
the default value is false. includeFile is of type Boolean. includeFile has an attribute external-
Declarations (optional), when true, this indicates the include file is needed by users of any files in
this file set.

d) logicalName (optional) is the logical name for the file or directory, such as a VHDL library. The
logicalName element is of type Name. logicalName includes an attribute default (optional) which
means (when true) the logical name shall only be used as a default and another process may over-
ride this name. If false (the default), this logical name shall always be used. The default attribute is
of type Boolean.

e) exportedName (optional) defines any names that can be referenced externally. exportedName is of
type Name.

f) buildCommand (optional) contains flags or commands for building the containing source file.
These flags or commands override any flags or commands present in higher-level defaultFile-
Builder elements. See 6.13.3.

g) dependency (optional) is the path to a directory containing (include) files on which the file depends.
The dependency element is of type spiritURI.

h) define (optional) specifies the define symbols to use in the source file. See 6.13.4.

i) imageType (optional) relates the current file to an executable image type in the design.

j) description (optional) details the file for the user. The description element is of type string.

k) vendorExtensions (optional) provides a place for any vendor-specific extensions. See C.10.

See also SCR 14.1.

6.13.2.3 Example

The following is an example of two file sets. One with a Verilog file with a dependency on a directory and
one with a VHDL file.

<spirit:fileSets>
<spirit:fileSet>

<spirit:name>fs-verilogSource</spirit:name>
<spirit:file>

<spirit:name>data/i2c/RTL/i2c.v</spirit:name>
<spirit:fileType>verilogSource</spirit:fileType>
<spirit:logicalName>i2c_lib</spirit:logicalName>

</spirit:file>
<spirit:dependency>data/i2c/RTL</spirit:dependency>

</spirit:fileSet>
<spirit:fileSet>

<spirit:name>fs-vhdlWrapper</spirit:name>
150 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

150 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:file>
<spirit:name>data/i2c/RTL/i2c.vhd</spirit:name>
<spirit:fileType>vhdlSource</spirit:fileType>
<spirit:logicalName>i2c_lib</spirit:logicalName>

</spirit:file>
</spirit:fileSet>

</spirit:fileSets>

6.13.3 buildCommand

6.13.3.1 Schema

The following schema details the information contained in the buildCommand element, which may appear
as an element inside the file element.

6.13.3.2 Description

A buildCommand contains flags or commands for building the containing source file. These flags or
commands override any flags or commands present in higher-level defaultFileBuilder elements.

a) command (optional) element defines a compiler or assembler tool that processes files of this type.
The command element is of type string. The command element is configurable with attributes
from string.prompt.att, see C.12.

b) flags (optional) documents any flags to be passed along with the software tool command. The flag
element is of type string. The flags element is configurable with attributes from string.prompt.att,
see C.12. The flags element contains an attribute append (optional), which, when true indicates the
flags shall be appended to the current flags from the defaultFileBuilder (see 6.13.5), fileBuilder
(see 6.7.5), or the build script generator. If false, the flags shall replace the existing flags.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 151
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 151
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
c) replaceDefaultFlags (optional), when true, documents flags that replace any of the default flags
from the build script generator. If false, the flags are appended. If true and the flags element is
empty or not present, this has the effect of clearing all the flags.If this element is not present, its
effective value is false. The replaceDefaultFlags element is of type Boolean. The replaceDefault-
Flags element is configurable with attributes from bool.prompt.att, see C.12.

d) targetName (optional) defines the path to the file derived from the source file. The targetName ele-
ment is of type spiritURI. The targetName element is configurable with attributes from
string.prompt.att, see C.12.

6.13.3.3 Example

The following is an example specifies the build command for the containing file.

<spirit:buildCommand>
<spirit:command>g++</spirit:command>
<spirit:flags>-O</spirit:flags>
<spirit:targetName>compiled/model.o<spirit:targetName>

</spirit:buildCommand>

6.13.4 define

6.13.4.1 Schema

The following schema details the information contained in the define element, which may appear as an
element inside the file element.

6.13.4.2 Description

The define element specifies the define symbols to use in the source file. This define element allows for
vendor attributes to be applied.

a) nameGroupString group is defined in C.5.

b) value (mandatory) contains the value of the define symbol. The value element is of type string. The
value element is configurable with attributes from string.prompt.att, see C.12.

c) vendorExtensions (optional) provides a place for any vendor-specific extensions. See C.10.
152 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

152 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.13.4.3 Example

This example defines a symbol called PROCESSOR_ARCH to be equal to amrV5.

<spirit:define>
<spirit:name>PROCESSOR_ARCH</spirit:name>
<spirit:value>armV5</spirit:value>

</spirit:define>

6.13.5 defaultFileBuilder

6.13.5.1 Schema

The following schema details the information contained in the defaultFileBuilder element, which may
appear as an element inside the fileSet or view element.

6.13.5.2 Description

A defaultFileBuilder contains default flags or commands for building the containing source file types.
These flags or commands may be overridden by flags or commands present in lower-level
defaultFileBuilder or buildCommand elements.

a) fileType (mandatory) group contains one or more of the elements defined in C.9.

b) command (optional) element defines a compiler or assembler tool that processes files of this type.
The command element is of type string. The command element is configurable with attributes
from string.prompt.att, see C.12.

c) flags (optional) documents any flags to be passed along with the software tool command. The flag
element is of type string. The flags element is configurable with attributes from string.prompt.att,
see C.12.

d) replaceDefaultFlags (optional) when true indicates the flags shall be appended to the current flags.
If false, the flags shall replace the existing flags. The replaceDefaultFlags element is of type Bool-
ean. The replaceDefaultFlags element is configurable with attributes from bool.prompt.att, see
C.12.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 153
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 153
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.13.5.3 Example

The following is an example that specifies the default compiler command to use.

<spirit:defaultFileBuilder>
<spirit:fileType>cSource</spirit:fileType>
<spirit:command>g++</spirit:command>

</spirit:defaultFileBuilder>

6.13.6 function

6.13.6.1 Schema

The following schema details the information contained in the function element, which may appear as an
element inside the fileSet element.

6.13.6.2 Description

A function specifies information about a software function. function contains an attribute replicate
(optional), when set to true, the generator compiles a separate object module for each instance of the
component in the design. This allows the function to be called with different attributes for each instance
154 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

154 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
within the design (e.g., base address). The replicate attribute is of type Boolean and the default value is
false. function has the following elements.

a) entryPoint (optional) is the entry point name for the function or subroutine. The entryPoint ele-
ment is of type Name.

b) fileRef (mandatory) reference to the file that contains the entry point for the function. The value of
this element shall match an attribute in file/fileId. The fileRef element is of type IDREF. See
6.13.2.

c) returnType (optional) is an enumerated string type which indicates the return type for the function.
The two possible values are int and void.

d) argument (optional) lists any arguments passed when this function is called. All arguments shall be
passed in the order presented in this description. See 6.13.7.

e) disabled (optional) disables the software function. The disabled element is of type Boolean. When
true, the software function is not available for use. When false, the function is available. If this ele-
ment is not present, its effective value is false. The disabled element is configurable with attributes
from bool.prompt.att, see C.12.

f) sourceFile (optional) references any source files. The order of the source files may be important, as
this could indicate a compile order.

6.13.6.3 Example

The following example includes a file with a fileId and a function referencing that file.

<spirit:fileSets>

<spirit:fileSet spirit:fileSetId="fs-systemcSource">

<spirit:name>sourceFiles</spirit:name>

<spirit:file spirit:fileId="source">

<spirit:name>src/source.cc</spirit:name>

<spirit:fileType>systemCSource-2.1</spirit:fileType>

</spirit:file>

<spirit:function>

<spirit:fileRef>source</spirit:fileRef>

<spirit:returnType>void</spirit:returnType>

<spirit:argument spirit:dataType="int">

<spirit:name>argument_1</spirit:name>

<spirit:value>0</spirit:value>

</spirit:argument>

</spirit:function>

</spirit:fileSet>

</spirit:fileSets>

6.13.7 argument

6.13.7.1 Schema

The following schema details the information contained in the argument element, which may appear as an
element inside the function element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 155
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 155
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.13.7.2 Description

The argument element specifies the arguments passed to the function when making a call. All arguments
shall be passed in the order presented in this description. The dataType (mandatory) attribute specifies the
type for this argument, e.g., an int or Boolean. The argument element also allows for vendor attributes
to be applied.

a) nameGroupString group is defined in C.5.

b) value (mandatory) contains the value of the argument. The value element is of type string. The
value element is configurable with attributes from string.prompt.att, see C.12.

c) vendorExtensions (optional) provides a place for any vendor-specific extensions. See C.10.

6.13.7.3 Example

The following example includes a file with a fileId and a function referencing that file.

<spirit:fileSets>

<spirit:fileSet spirit:fileSetId="fs-systemcSource">
<spirit:name>sourceFiles</spirit:name>
<spirit:file spirit:fileId="source">

<spirit:name>src/source.cc</spirit:name>
<spirit:fileType>systemCSource-2.1</spirit:fileType>

</spirit:file>
<spirit:function>

<spirit:fileRef>source</spirit:fileRef>
<spirit:returnType>void</spirit:returnType>
<spirit:argument spirit:dataType="int">

<spirit:name>argument_1</spirit:name>
<spirit:value>0</spirit:value>

</spirit:argument>
</spirit:function>

</spirit:fileSet>
</spirit:fileSets>
156 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

156 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.13.8 sourceFile

6.13.8.1 Schema

The following schema details the information contained in the sourceFile element, which may appear as an
element inside the function element.

6.13.8.2 Description

The sourceFile element specifies the location of the source files for this function. All source files shall be
processed in the order presented in this description.

a) sourceName (mandatory) contains an absolute or relative (to the location of the containing docu-
ment) path to a file name or directory. The path may also contain environment variables from the
host system, used to abstract the location of files. The sourceName element is of type spiritURI.

b) fileType (mandatory) group contains one or more of the elements defined in C.9.

6.13.8.3 Example

The following example specifies the type and location of a source file.

<spirit:source spirit:fileId="source">
<spirit:sourceName>src/source.cc</spirit:sourceName>
<spirit:fileType>systemCSource-2.1</spirit:fileType>

</spirit:source>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 157
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 157
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.14 Choices

6.14.1 Schema

The following schema details the information contained in the choices element, which may appear as an
element inside the top-level component, abstractor, or generatorChain element.

6.14.2 Description

The choices element contains an unbounded list of choice elements. Each choice element is a list of items
used by a modelParameter element, parameter element, or any other configurable element with a
choiceRef attribute. These elements indicate they are using a choice element by setting the attribute
choiceRef. This choiceRef attribute shall reference a valid choice/name element in the containing
description.

The choice definition contains the following elements.

a) name (mandatory) specifies the name of this list and is used by other element for reference. The
name elements shall be unique within the containing choices element. The name element is of type
Name.

b) enumeration (mandatory) is an unbounded list of elements, where each holds a possible value that
the referencing element may contain. The enumeration element is of type string.

1) text (optional) attribute causes optional text to be displayed when choosing the choice value.
The resulting value stored in the configurable element corresponds to the enumeration value for
the choice. If the text attribute is not present, the enumeration value may be displayed. The
text element is of type string.

2) help (optional) attribute gives any additional information about this enumeration element. The
help element is of type string.

See also: SCR 5.12.

6.14.3 Example

This example shows the addressable size (width) and the word size (Dwidth) of a memory component.

<spirit:model>
 <spirit:modelparameters>
158 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

158 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:modelparameter>
<spirit:name>width</spirit:name>
<spirit:value spirit:format=”choice”

spirit:choiceRef="widthOptions">1</spirit:value>
</spirit:modelparameter>
<spirit:modelparameter>

<spirit:name>Dwidth</spirit:name>
<spirit:value spirit:format=”choice”

spirit:choiceRef="DwidthOptions">4</spirit:value>
</spirit:modelparameter>

</spirit:modelparameters>
</spirit:model>

<spirit:choices>
 <spirit:choice>
 <spirit:name>widthOptions</spirit:name>
 <spirit:enumeration spirit:text="8K">1</spirit:enumeration>
 <spirit:enumeration spirit:text="64K">2</spirit:enumeration>
 <spirit:enumeration spirit:text="256K">3</spirit:enumeration>

 </spirit:choice>
 <spirit:choice>
 <spirit:name>DwidthOptions</spirit:name>
 <spirit:enumeration spirit:text="2Bytes">4</spirit:enumeration>
 <spirit:enumeration spirit:text="4Bytes">5</spirit:enumeration>
 <spirit:enumeration spirit:text="8Bytes">6</spirit:enumeration>
 </spirit:choice>

</spirit:choices>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 159
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 159
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
6.15 Whitebox elements

Verification IP, with monitor bus interfaces, connect to an active bus interface to monitor only that
interface’s protocol for a variety of uses. Other verification tools may require access to component IP in a
design, at a level deeper than the interfaces defined for the component. A whitebox element provides such
access. This can be used in situations where internal registers, pins, signals, or whole IP-XACT interfaces
need to be monitored or driven by verification IP.

6.15.1 Schema

The following schema details the information contained in the whiteboxElements element, which may
appear as an element inside the top-level component element.

6.15.2 Description

The whiteboxElements element contains a list of one or more whiteboxElement elements. Each
whiteboxElement element contains the following elements.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing
whiteboxElements element.

b) whiteboxType (mandatory) documents this whitebox element’s referent: a register, pin, signal, or
interface within the component. register indicates a register definition (referenced by the register-
Ref element) in this component can be mapped to physical signals. pin indicates a port on an inter-
nal instance in this component can be mapped to physical signals. signal indicates a signal between
two internal instances in this component can be mapped to physical signals. interface indicates a
group of signals that can be addressed as a single name.

In each case, the view-specific path is contained in the matching model/view/whiteboxElementRef
element.
160 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

160 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
c) drivable (optional), when true, indicates the whitebox describes a point within the IP that can be
driven, i.e., forced to a new value. If false, the whitebox references a point that cannot be driven. If
this element is not present, its effective value is false. The drivable element is of type Boolean.

d) registerRef (optional) names the register indicated by this whitebox when the whiteboxType is reg-
ister. The registerRef is the full hierarchical path from the component’s top-level memory map to
the register, using / as a hierarchy separator. The registerRef element is of type string.

e) parameters (optional) specifies any parameter names and types for a whitebox that can be parame-
terized. See C.11.

f) vendorExtensions (optional) provides a space for any vendor-specific extensions. See C.10.

6.15.3 Example

The following example shows the definition of a register (status) that can be accessed (i.e., during
verification) within a component.

<spirit:whiteboxElements>
<spirit:whiteboxElement>

<spirit:name>Status</spirit:name>
<spirit:whiteboxType>register</spirit:whiteboxType>
<spirit:driveable>false</spirit:driveable>
<spirit:registerRef>mmname/abname/status</spirit:registerRef>

</spirit:whiteboxElement>
</spirit:whiteboxElements>

6.16 Whitebox element reference

6.16.1 Schema

The following schema details the information contained in the whiteboxElementRefs element, which may
appear as an element inside the component/model/views/view element.

6.16.2 Description

The whiteboxElementRefs element contains a list of one or more whiteboxElementRef elements. The
whiteboxElementRef makes a reference to a whiteboxElement of the component and defines the view
specific path to the element. name (mandatory) attribute identifies the whiteboxElement in the containing
component for which the following whiteboxPath applies. The name attribute is of type Name.
whiteboxElement element contains the following elements.

whiteboxPath (mandatory) contains unbounded elements to define the path in this view to the
above referenced whiteboxElement.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 161
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 161
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
1) pathName (mandatory) is the language and view specific path to the location of the whitebox-
Element. The pathName is of type string.

2) left (optional, paired with right) sets the element bounds of the pathName if required by the
language. The left element is of type nonNegativeInteger.

3) right (optional, paired with left) sets the element bounds of the pathName if required by the
language. The right element is of type nonNegativeInteger.

See also SCR 12.14 and SCR 12.15.

6.16.3 Example

The following example shows the definition of a the whitebox path to the status register bits in a component.

<spirit:whiteboxElementRefs>
<spirit:whiteboxElementRef spirit:name=”Status”>

<spirit:whiteboxPath>ucontrol/ureg/status</spirit:whiteboxPath>
<spirit:left>7</spirit:left>
<spirit:right>0</spirit:right>

</spirit:whiteboxElementRef>
</spirit:whiteboxElementRefs>
162 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

162 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
6.17 CPUs

6.17.1 Schema

The following schema details the information contained in the CPUs element, which may appear as an
element inside the top-level component element.

6.17.2 Description

The cpus element contains an unbounded list of cpu elements for the containing component. The cpu
element describes a containing component with a programmable core that has some sized address space.
That same address space may also be referenced by a master interface and used to create a link for the
programmable core to know from which interface transaction the software departs.

a) nameGroup group is defined in C.1. The name element shall be unique within the containing com-
ponent element.

b) addressSpaceRef (mandatory) contains an attribute to describe information about the range of
addresses with which the master interface related to this cpu can generate transactions.

addressSpaceRef (mandatory) attribute references a name of an address space defined in the
same component. The address space defines the range and width for transaction on this inter-
face. See 6.7.1.

c) parameters (optional) specifies any cpu-type parameters. See C.11.

d) vendorExtensions (optional) adds any extra vendor-specific data related to the cpu. See C.10.

6.17.3 Example

This example shows a simple cpu with a single addressMap reference.

<spirit:cpus>
 <spirit:cpu>
 <spirit:name>processor</spirit:name>
 <spirit:addressSpaceRef spirit:addressSpaceRef="main"/>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 163
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 163
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
 </spirit:cpu>
 </spirit:cpus>
164 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

164 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
7. Design descriptions

7.1 Design

An IP-XACT design is the central placeholder for the assembly of component objects meta-data. A design
describes a list of components referenced by this description, their configuration, and their interconnections
to each other. The interconnections may be between interfaces or between ports on a component. A design
description is analogous to a schematic of components.

While a design description, with referenced components and interconnections, describes most of the
information for a design, some information is missing, such as the exact port names used by a bus interface.
To resolve this a component description (referred to as a hierarchical component) is used. This component
description contains a view with a reference to the design description. Together, the component and
referenced design description form a complete single-level hierarchical description. From this point, it is
simple to create additional hierarchical descriptions by including hierarchical component description in
design descriptions.

7.1.1 Schema

The following schema details the information contained in the design element, which is one of the seven
top-level elements of the schema.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 165
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 165
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
7.1.2 Description

The design element describes a list of referenced components, their configuration and interconnections to
each other. Each element of a design is detailed in the rest of this clause; the main sections of a design are:

a) versionedIdentifier group provides a unique identifier, made up of 4 subelements for a top level IP-
XACT element. See C.6.

b) componentInstances (optional) contains the list of components that are instantiated (referenced)
inside the design (see 7.2).

c) interconnections (optional) contains the list of connections between bus interfaces of components
listed inside the design (see 7.3).

d) adHocConnections (optional) contains a list of connections between component ports listed inside
this design (see 7.5).

e) hierConnections (optional) contains a list of connections between a component instance’s bus
interface and a bus interface inside the encompassing component (see 7.6). See also: 6.11.2.

This element only allows making hierarchical reference between bus interfaces. Hierarchical refer-
ence between ports is made inside the adHocConnections element.

f) description (optional) allows a textual description of the design. The description element is of type
string.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the design. See C.10.

See also: SCR 1.9.

7.1.3 Example

The following example shows as sample design with 3 components.

<spirit:design xmlns:spirit="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.5" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5/index.xsd">
<spirit:vendor>spiritconsortium.org</spirit:vendor>
<spirit:library>work</spirit:library>
<spirit:name>design_MCS</spirit:name>
<spirit:version>1.0</spirit:version>
<spirit:componentInstances>

<spirit:componentInstance>
<spirit:instanceName>i_ahbMaster</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"

spirit:library="Addressing" spirit:name="ahbMaster" spirit:version="1.0"/
>

<spirit:configurableElementValues>
<spirit:configurableElementValue

spirit:referenceId="asBase">0</spirit:configurableElementValue>
</spirit:configurableElementValues>

</spirit:componentInstance>
<spirit:componentInstance>

<spirit:instanceName>i_ahbChannel12</spirit:instanceName>
<spirit:componentRef spirit:vendor="spiritconsortium.org"

spirit:library="Addressing" spirit:name="ahbChannel12"
spirit:version="1.0"/>

</spirit:componentInstance>
<spirit:componentInstance>

<spirit:instanceName>i_ahbSlave</spirit:instanceName>
166 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

166 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:componentRef spirit:vendor="spiritconsortium.org"
spirit:library="Addressing" spirit:name="ahbSlave" spirit:version="1.0"/>

</spirit:componentInstance>
</spirit:componentInstances>
<spirit:interconnections>

<spirit:interconnection>
<spirit:name>m2c</spirit:name>
<spirit:activeInterface spirit:componentRef="i_ahbMaster"

spirit:busRef="AHBMaster"/>
<spirit:activeInterface spirit:componentRef="i_ahbChannel12"

spirit:busRef="MirroredMaster0"/>
</spirit:interconnection>
<spirit:interconnection>

<spirit:name>c2s</spirit:name>
<spirit:activeInterface spirit:componentRef="i_ahbSlave"

spirit:busRef="AHBSlave"/>
<spirit:activeInterface spirit:componentRef="i_ahbChannel12"

spirit:busRef="MirroredSlave0"/>
</spirit:interconnection>

</spirit:interconnections>
<spirit:description>master-channel-slave</spirit:description>

</spirit:design>

7.2 Design component instances

7.2.1 Schema

The following schema details the information contained in the componentInstances element, which may
appear as an element inside the top-level design element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 167
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 167
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
7.2.2 Description

The componentInstances element contains an unbounded list of component instances that are described
inside the componentInstance element. This element contains the following subelements.

a) instanceName (mandatory) assigns a unique name for this instance of the component in this design.
The value of this element shall be unique inside a design element. The instanceName element is of
type Name.

b) displayName (optional) allows a short descriptive text to be associated with the instance. The dis-
playName is of type string.

c) description (optional) allows a textual description of the instance. The description is of type string.

d) componentRef (mandatory) is a reference to a component description (see 6.1) for this component
instance. The componentRef element is of type libraryRefType (see C.7), it contains four attributes
to specify a unique VLNV.

e) configurableElementValues (optional) specifies the configuration for a specific component
instance by providing the value of a specific component parameter. The configurableElementsVal-
ues is an unbounded list of configurableElementValue elements.

1) configurableElementValue (mandatory) is an unbounded list which specifies the value to
apply to a configurable element; in this instance, it is pointed to by the referenceId attribute.
The configurableElementValue is of type string.

2) The contained referenceId (mandatory) attribute is a reference to the id attribute of an element
in the component instance. The referenceId attribute is of type Name.

f) vendorExtensions (optional) adds any extra vendor-specific data related to the design. See C.10.

See also: SCR 1.8 and SCR 5.16.

7.2.3 Example

The following example shows two component instances of a design. The first one, i_timers, has a
configurable element attached to it while the second one, i_irqctrl, is not configurable. The
configurable element with the id equal to TPRESC has its value set to 22.

<spirit:componentInstances>

<spirit:componentInstance>

<spirit:instanceName>i_timers</spirit:instanceName>

<spirit:componentRef spirit:vendor="spiritconsortium.org"
 spirit:library="Leon2" spirit:name="timers"
spirit:version="1.5"/>

<spirit:configurableElementValues>

<spirit:configurableElementValue spirit:referenceId="TPRESC">22

</spirit:configurableElementValue>

</spirit:configurableElementValues>

</spirit:componentInstance>

<spirit:componentInstance>

<spirit:instanceName>i_irqctrl</spirit:instanceName>

<spirit:componentRef spirit:vendor="spiritconsortium.org"
 spirit:library="Leon2" spirit:name="irqctrl"
spirit:version="1.5"/>

</spirit:componentInstance>

</spirit:componentInstances>
168 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

168 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
7.3 Design interconnections

7.3.1 Schema

The following schema details the information contained in the interconnections element, which may appear
as an element inside the top-level design element.

7.3.2 Description

The interconnections element contains an unbounded list of interconnection and monitorInterconnection
elements. For further description on interface connections, see 6.3.4.

a) interconnection (optional) specifies a connection between one bus interface of a component and
another bus interface of a component. Each interconnection contain the following elements.

1) nameGroup group is defined in C.1. The name elements shall be unique within the containing
interconnections element.

2) activeInterface (mandatory) specifies the two bus interfaces that are part of the interconnec-
tion. Only connections between two bus interfaces are allowed; broadcasting of interconnec-
tions is not allowed. The activeInterface element is of type interface, see 7.4.

b) monitorInterconnection (optional) specifies the connection between a monitored active interface
on a component and a list of monitor interfaces on component instances.

1) nameGroup group is defined in C.1. The name elements shall be unique within the containing
interconnections element.

2) monitoredActiveInterface (mandatory) specifies the component bus interface to monitor.
Only one monitored active interface is allowed. The monitoredActiveInterface element is of
type hierInterface, see 7.4.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 169
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 169
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
3) monitorInterface (mandatory) specifies the component bus interface that will do the monitor-
ing. There may be one or more monitorInterface elements specified. The monitorInterface
element is of type hierInterface, see 7.4.

See also: SCR 6.9, SCR 6.10, and SCR 6.14 and the SCRs in Table B2 and Table B4.

7.3.3 Example

The following example shows two interconnections between three components: the interconnection
interco1 connects the interface ambaAPB on i_timers to the interface MirroredSlave0 on
i_apbbus while interco2 connects the interface ambaAPB on i_irqctrl to the interface
MirroredSlave1 on i_apbbus.

<spirit:interconnections>
<spirit:interconnection>

<spirit:name>interco1</spirit:name>
<spirit:activeInterface spirit:componentRef="i_timers"

 spirit:busRef="ambaAPB"/>
<spirit:activeInterface spirit:componentRef="i_apbbus"

spirit:busRef="MirroredSlave0"/>
</spirit:interconnection>
<spirit:interconnection>

<spirit:name>interco2</spirit:name>
<spirit:activeInterface spirit:componentRef="i_irqctrl"

spirit:busRef="ambaAPB"/>
<spirit:activeInterface spirit:componentRef="i_apbbus"

spirit:busRef="MirroredSlave1"/>
</spirit:interconnection>

</spirit:interconnections>

7.4 Active, monitored, and monitor interfaces

7.4.1 Schema

The following schema details the information contained in the activeInterface element, the
monitoredActiveInterface element, and the monitorInterface elements, which may appear as an element
inside the interconnection or monitorInterconnection element within the interconnections element.
170 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

170 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
7.4.2 Description

The activeInterface, monitoredInterface, or monitorInterface element specifies the bus interface of a
design component instance that is part of an interconnection or a monitor interconnection, respectively.
They all have the following attributes.

a) componentRef (mandatory) references the instance name of a component present in the design if
the path attribute is not present. This component instance name needs to exist in the specified
design. The componentRef attribute is of type Name. See 6.1.

b) busRef (mandatory) references one of the component bus interfaces. This specific bus interface
needs to exist on the specified component instance. The busRef attribute is of type Name. See 6.5.

The monitoredActiveInterface and monitorInterface elements have the following attribute.

path (optional) defines the hierarchical path of instance names to the design which contains the
component instance specified in the componentRef attribute. The path is a slash (/) separated list of
instance names. If the path attribute is not present, the component referenced by componentRef
needs to exist in the current design. The path attribute is of type instancePath. See D.5.

See also: SCR 2.1, SCR 2.16, SCR 4.1, and SCR 4.2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 171
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 171
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
7.4.3 Example

The following example shows a monitored interface referring to the ambaAPB bus interface on the
component instance i_timers in the design within the component with instance name apbsubsys/
group1 and a monitor interface referring to the ambaAPBMonitor bus interface on the monitor instance
i_monitor in the design within the component with instance name umon.

<spirit:monitoredInterface spirit:path="apbsubsys/group1"
spirit:componentRef="i_timers" spirit:busRef="ambaAPB"/>

<spirit:monitorInterface spirit:path="umon" spirit:componentRef="i_monitor"
spirit:busRef="ambaAPBMonitor"/>

7.5 Design ad-hoc connections

The name ad-hoc is used for connections that are made on a port-by-port basis and not done through the
higher-level bus interface. The same ports which make up a busInterface can be used in ad-hoc
connections.

IP-XACT supports two cases of ad-hoc connections: the wire connection (between ports having a wire style)
and the transactional connection (between ports having a transactional style). The direct connection between
a wire-style port and a transactional-style port is not allowed; a specific adapter component needs to be
inserted in between them.

7.5.1 Schema

The following schema details the information contained in the adHocConnections element, which may
appear as an element inside the top-level design element.
172 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

172 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
7.5.2 Description

The adHocConnections element contains an unbounded list of adHocConnection elements. An
adHocConnection specifies connections between component instance ports or between component instance
ports and ports of the encompassing component (in the case of a hierarchical component). Each
adHocConnection element has a tiedValue (optional) attribute that specifies a fixed logic (1 and 0) value
for this connection. The tiedValue attribute is of type scaledNonNegativeInteger. The adHocConnection
element contains the following subelements.

a) nameGroup group is defined in C.1. The name elements shall be unique within the containing
adHocConnections element.

b) internalPortReference (mandatory) references the port of a component instance. This element has
four attributes.

1) componentRef (mandatory) references the component instance name for the port. The compo-
nentRef attribute is of type Name. See 6.1.

2) portRef (mandatory) references the port name on the specific component instance. The por-
tRef attribute is of type Name. See 6.11.3.

3) left and right (optional) specify a portion of the port range. The left and right attributes are of
type nonNegativeInteger.

c) externalPortReference (optional) references a port of the encompassing component where this
design is referred (for hierarchical ad-hoc connections). This element has three attributes.

1) portRef (mandatory) references the port name on the encompassing component. The portRef
attribute is of type Name. See 6.11.3.

2) left and right (optional) specify a portion of the port range. The left and right attribute is of
type nonNegativeInteger.

See also: SCR 6.14.

7.5.3 Example

The following example shows two ad-hoc connections. The first one, d1e1074, connects port irlin on
component instance i_irqctrl and port irqvec on component instance i_leon2Proc. The second
one, i_leon2Proc_mresult, connects port mresult on component instance i_leon2Proc and
port i_leon2Proc_mresult of the encompassing component.

<spirit:adHocConnections>
<spirit:adHocConnection>

<spirit:name>d1e1074</spirit:name>
<spirit:internalPortReference spirit:componentRef="i_irqctrl"

spirit:portRef="irlin" spirit:left="3"
 spirit:right="0"/>

<spirit:internalPortReference spirit:componentRef="i_leon2Proc"
spirit:portRef="irqvec"
 spirit:left="3" spirit:right="0"/>

</spirit:adHocConnection>
<spirit:adHocConnection>

<spirit:name>i_leon2Proc_mresult</spirit:name>
<spirit:internalPortReference spirit:componentRef="i_leon2Proc"

spirit:portRef="mresult"
 spirit:left="31" spirit:right="0"/>

<spirit:externalPortReference spirit:portRef="i_leon2Proc_mresult"/
>

</spirit:adHocConnection>
</spirit:adHocConnections>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 173
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 173
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
7.5.4 Ad-hoc wire connection

For ad-hoc connections between wire-style ports, IP-XACT requires:

— The style of each port be the same style (i.e., wire).

— The bits of the ports are connected from left-to-right. In the internalPortReference element, left and
right define the actual bits to connect.

See also: SCR 6.9 and SCR 6.27.

Example

This is an example of these rules being applied.

<spirit:adHocConnection>
</spirit:internalPortReference componentRef="U1" portRef="A"

left="8" right="1">
</spirit:internalPortReferencenal componentRef="U2" portRef="B"

left="7" right="0">
</spirit:adHocConnection>

Implies these connections:

U1/A[8] = U2/B[7]
U1/A[7] = U2/B[6]
U1/A[6] = U2/B[5]
U1/A[5] = U2/B[4]
U1/A[4] = U2/B[3]
U1/A[3] = U2/B[2]
U1/A[2] = U2/B[1]
U1/A[1] = U2/B[0]

NOTE—The typeNames do not have to match between the two ports, it is up to the DE or simulator to potentially
resolve unmatching types, e.g., it is possible to connect a VHDL std_logic port to a SystemC sc_logic port.

7.5.5 Ad-hoc transactional connection

For ad-hoc transactional connections, IP-XACT requires:

— The style of each port be the same style (i.e., transactional).

— If defined, the transTypeDef/typeName name of each port are the same (e.g., sc_tlm_port).

— The service/serviceTypeDef/typeNames match.

Also, two ports with a requires initiative can be connected. This means they would both connect to a
mediated link (e.g., a wire, buffer, FIFO, or any complex link) in a top SystemC or SystemVerilog netlist.
This mediated link provides the protocol interfaces required by each port. The name, type, and parameters of
this mediated link are not defined by IP-XACT, but could be given as input to a netlister generator.

See also: SCR 6.10.

7.6 Design hierarchical connections

7.6.1 Schema

The following schema details the information contained in the hierConnections element, which may appear
as an element inside the top-level design element.
174 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

174 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
7.6.2 Description

The hierConnections element contains an unbounded list of hierConnection elements. hierConnection
represents a hierarchical interface connection between a bus interface on the encompassing component and a
bus interface on a component instance of the design. hierConnection contains an interfaceRef (mandatory)
attribute that provides one end of the interconnection; it is the name of the bus interface on the encompassing

component (see 6.5.1). The interfaceRef attribute is of type Name. The name of the ports and the mapping
to this interface are defined in the referencing hierarchical component. The hierConnection element
contains the following elements and attributes.

a) interface (mandatory) specifies the component instance bus interface for connection to the encom-
passing component; only one interface is allowed. The interface element may reference an active

interface or a monitor interface. The interface element is of type interface, see 7.4.

b) vendorExtensions (optional) adds any extra vendor-specific data related to the hierarchical inter-
face connection. See C.10.

See also: The SCRs in Table B10 and Table B11.

7.6.3 Example

The following example shows a hierarchical interconnection between the AHBReset_1 bus interface on
the encompassing component and the AHBReset bus interface on the i_ahbbus component instance.

<spirit:hierConnections>

<spirit:hierConnection spirit:interfaceRef="AHBReset_1">

<spirit:activeInterface spirit:componentRef="i_ahbbus"
spirit:busRef="AHBReset"/>

</spirit:hierConnection>

</spirit:hierConnections>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 175
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 175
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
176 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

176 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
8. Abstractor descriptions

Designs that incorporate IP models using different interface modeling styles (e.g., TLM and RTL modeling
styles) may contain interconnections between such component interfaces using different abstractions of the
same bus type. An IP-XACT description may describe how such interconnections are to be made using a
special-purpose object called an abstractor. An abstractor is used to connect between two different
abstractions of the same bus type (e.g., an APB_RTL and an APB_TLM). An abstractor shall only contain
two interfaces, which shall be of the same bus definition and different abstraction definitions.

Unlike a component, an abstractor is not referenced from a design description, but instead is referenced from
a design configuration description. See Clause 10.

8.1 Abstractor

8.1.1 Schema

The following schema details the information contained in the abstractor element, which is one of the
seven top-level elements in the IP-XACT specification used to describe an abstractor.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 177
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 177
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
8.1.2 Description

Each element of an abstractor is detailed in the rest of this clause; the main sections of an abstractor are:

a) versionedIdentifier group provides a unique identifier, made up of four subelements for a top-level
IP-XACT element. See C.6.

b) busType (mandatory) specifies the bus definition this bus interface references. A bus definition (see
5.2) describes the high-level attributes of a bus description. The busType element is of type
libraryRefType (see C.7); it contains four attributes to specify the referenced VLNV.

c) abstractorMode (mandatory) determines the mode of the two interfaces contained in abstrac-
torInterfaces. The abstractor can be inserted in a connection between two instances or between an
instance and an exported interface. The abstractorMode element can take one of the following four
values.

1) master specifies for an

i) master to mirrored-master connection—the first interface connects to the master interface,
the second connects to the mirrored-master interface;

ii) exported master connection—the first interface connects to the master interface, the sec-
ond connects to the exported interface;

iii) exported mirrored-master connection—the first interface connects to the exported inter-
face, the second connects to the mirrored-master interface.

2) slave specifies for an

i) mirrored-slave to slave connection—the first interface connects to the mirrored-slave
interface, the second connects to the slave interface;

ii) exported slave connection—the first interface connects to the exported interface, the sec-
ond connects to the slave interface;

iii) exported mirrored-slave connection—the first interface connects to the mirrored-slave
interface, the second connects to the exported interface.

3) direct specifies the first interface connects to the master interface, the second connects to the
slave interface. This option is not allowed for an exported interface.

4) system specifies for an

i) system to mirrored-system connection—the first interface connects to the system inter-
face, the second connects to the mirrored-system interface;

ii) exported system connection—the first interface connects to the system interface, the sec-
ond connects to the exported interface;

iii) exported mirrored-system connection—the first interface connects to the exported inter-
face, the second connects to the mirrored-system interface.

The group (mandatory, when abstractorMode=”system”) attribute defines the name of the
group to which this system interface belongs. This attribute is of type Name, which indicates
the value of this group shall be unique inside the abstractor element. The specified value of
group needs to be a group defined in the referenced abstraction definition. A connection
between a system and mirroredSystem interfaces shall have matching group names.

d) abstractorInterfaces (mandatory) are interfaces having the same bus type, but differing abstraction
types. See 8.2.

e) model (optional) specifies all the different views, ports, and model configuration parameters of the
abstractor. See 8.3.

f) abstractorGenerators (optional) specifies a list of generator programs attached to this abstractor.
See 8.7.

g) choices (optional) specifies multiple enumerated lists, which are referenced by other sections of this
abstractor description. See 6.14.
178 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

178 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
h) fileSets (optional) specifies groups of files and possibly their function for reference by other sec-
tions of this abstractor description. See 6.13.

i) description (optional) allows a textual description of the abstractor. The description element is of
type string.

j) parameters (optional) describes any parameter that can be used to configure or hold information
related to this abstractor. See C.11.

k) vendorExtensions (optional) contains any extra vendor-specific data related to the abstractor. See
C.10.

See also: SCR 1.9, SCR 1.10, and SCR 3.17.

8.1.3 Example

The following example shows a simple slave abstractor having AHB UT and AHB LT interfaces.

<spirit:abstractor>

<spirit:vendor>spiritconsortium.org</spirit:vendor>

<spirit:library>Leon2</spirit:library>

<spirit:name>pv2rtl</spirit:name>

<spirit:version>1.5</spirit:version>

<spirit:abstractorMode>slave</spirit:abstractorMode>

<spirit:busType spirit:vendor="amba.com" spirit:library="AMBA2"

spirit:name="AHB" spirit:version="r2p0_5"/>

<spirit:abstractorInterfaces>

<spirit:abstractorInterface>

<spirit:name>UTinterface</spirit:name>

<spirit:abstractionType

spirit:vendor="spiritconsortium.org"

spirit:library="Leon2"

spirit:name="AHB_UT"

spirit:version="1.0"/>

</spirit:abstractorInterface>

<spirit:abstractorInterface>

<spirit:name>LTinterface</spirit:name>

<spirit:abstractionType

spirit:vendor="spiritconsortium.org"

spirit:library="Leon2"

spirit:name="AHB_LT"

spirit:version="1.0"/>

</spirit:abstractorInterface>

</spirit:abstractorInterfaces>

</spirit:abstractor>

8.2 Abstractor interfaces

8.2.1 Schema

The following schema defines the information contained in the abstractorInterfaces element, which
appears within an abstractor description.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 179
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 179
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
8.2.2 Description

The abstractorInterfaces element contains a list of two abstractorInterface elements. Each
abstractorInterface element defines properties of this specific interface in an abstractor. The
abstractorInterface element also allows for vendor attributes to be applied. Each abstractorInterface
contains the following elements.

a) nameGroup group is defined in C.1. The name elements shall be unique within the containing
abstractor element.

b) abstractionType (mandatory) specifies the abstraction definition where this bus interface is refer-
enced. An abstraction definition describes the low-level attributes of a bus description (see 5.3). The
abstractionType element is of type libraryRefType (see C.7); it contains four attributes to specify
the referenced VLNV.

c) portMaps (optional) describes the mapping between the abstraction definition’s logical ports and
the abstractor’s physical ports. See 6.5.6.

d) parameters (optional) specifies any parameter data value(s) for this bus interface. See C.11.

e) vendorExtensions (optional) holds any vendor-specific data from other name spaces which is appli-
cable to this bus interface. See C.10.

8.2.3 Example

This example shows an abstractorInterface of type AHB_PV which includes a single portMap between
the logical port PV_TRANS and the abstractor physical port ahb_slave_port.

<spirit:abstractorInterface>
180 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

180 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:name>PVinterface</spirit:name>
<spirit:abstractionType

spirit:vendor="spiritconsortium.org"
spirit:library="Leon2"
spirit:name="AHB_PV"
spirit:version="1.0"/>

<spirit:portMaps>
<spirit:portMap>

<spirit:logicalPort>
<spirit:name>PV_TRANS</spirit:name>

</spirit:logicalPort>
<spirit:physicalPort>

<spirit:name>ahb_slave_port</spirit:name>
</spirit:physicalPort>

</spirit:portMap>
</spirit:portMaps>

</spirit:abstractorInterface>

8.3 Abstractor models

8.3.1 Schema

The following schema defines the information contained in the abstractor model element, which may appear
within an abstractor description.

8.3.2 Description

The model element describes the views, ports, and model related parameters of an abstractor. A model
element may contain the following.

a) views (optional) contains a list of all the views for this object. An object may have many different
views. An RTL view may describe the source hardware module/entity with its pin interface; a soft-
ware view may define the source device driver C file with its .h interface; a documentation view
may define the written specification of this IP. See 8.4.

b) ports (optional) contains the list of ports for this object. A ports is an external connection from the
object. An object may only have one set of ports that shall be valid for all views. See 8.5.

c) modelParameters (optional) contains a list of parameters that are needed to configure a model
implementation. The same set of model parameters shall be valid for all views. See 6.11.20.

8.3.3 Example

The following example shows an abstractor model with a single SystemC view, two transactional ports, and
a constructor model parameter.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 181
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 181
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:model>
<spirit:views>

<spirit:view>
<spirit:name>systemCView</spirit:name>
<spirit:envIdentifier>:*Simulation:</spirit:envIdentifier>
<spirit:language>systemc2.1</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>abstractorFileSetRef</spirit:fileSetRef>

</spirit:view>
</spirit:views>
<spirit:ports>

<spirit:port>
<spirit:name>pv_slave</spirit:name>
<spirit:transactional>

<spirit:service>
<spirit:initiative>provides</spirit:initiative>
<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>
<spirit:typeName>trans_if</spirit:typeName>

</spirit:serviceTypeDef>
</spirit:serviceTypeDefs>

</spirit:service>
</spirit:transactional>

</spirit:port>
<spirit:port>

<spirit:name>pvt_master</spirit:name>
<spirit:transactional>

<spirit:service>
<spirit:initiative>requires</spirit:initiative>
<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>
<spirit:typeName>req_rsp_if</spirit:typeName>

</spirit:serviceTypeDef>
</spirit:serviceTypeDefs>

</spirit:service>
</spirit:transactional>

</spirit:port>
</spirit:ports>
<spirit:modelParameters>

<spirit:modelParameter spirit:usageType="nontyped">
<spirit:name>moduleName</spirit:name>
<spirit:value spirit:id="moduleNameId"

spirit:resolve="user">ABSTRACTOR_PV2PVT</spirit:value>
</spirit:modelParameter>

</spirit:modelParameters>
</spirit:model>

8.4 Abstractor views

8.4.1 Schema

The following schema defines the information contained in the views element, which appears within the
model element of an abstractor description.

This schema is almost identical to the component/views/view element (see 6.11.2), except:
182 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

182 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
— Abstractors have no hierarchyRef elements.

— Abstractors have no constraintSetRef elements.

— Abstractors have no whiteboxElementRefs elements.

8.4.2 Description

A views element describes an unbounded set of view elements. Each view element specifies a representation
level of an abstractor. It contains the following elements.

a) nameGroupNMToken group is defined in C.4. The name elements shall be unique within the con-
taining views element.

b) envIdentifier designates and qualifies information about how this model view is deployed in a par-
ticular tool environment. The format of the element is a string with three fields separated by two
colons [:] in the format of Language:Tool:VendorSpecific. The regular expression which is used to
check the string is [A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]*:[A-Za-z0-9_+*\.]* The sections are:

1) Language indicates this view may be compatible with a particular tool, but only if that lan-
guage is supported in that tool, e.g., different versions of some simulators may support two or
more languages. In some cases, knowing the tool compatibility is not enough and may be fur-
ther qualified by language compatibility, e.g., a compiled HDL model may work in a VHDL-
enabled version of a simulator, but not in a SystemC-enabled version of the same simulator.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 183
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 183
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
2) Tool indicates this view contains information that is suitable for the named tool. This might be
used if this view references data that is tool-specific and would not work generically, e.g., HDL
models that use simulator-specific extensions.

Vendors shall publish lists of approved tool identification strings. These strings shall contain
the tool name, as well as the company’s domain name, separated by dots. Some examples of
well-formed tool entries are:

designcompiler.synopsys.com

ncsim.cadence.com

modelsim.mentor.com

This field can alternatively indicate generic tool family compatibility, such as *Simulation
or *Synthesis. To support transportability of created data files, it is important to use the
published, generally recognized, tool designation when referencing a tool. See [B7].

3) VendorSpecific can be used to further qualify tool and language compatibility. This can be used
to indicate additional processing information may be required to use this model in a particular
environment. For instance, if the model is a SWIFT simulation model, the appropriate simula-
tor interface may need to be enabled and activated.

Any or all of the envIdentifier fields may be used. Where there are multiple environments for which
a particular view is applicable, multiple envIdentifier elements can be listed.

c) language (optional) specifies the hardware description language used for a specific view, e.g.,
verilog, vhdl, or SystemC. The language element needs to support a mix of the two abstrac-
tion definitions described in the abstractor (e.g., a TLM to RTL abstractor would need a language,
such as SystemC, supporting both a transactional abstract level description and an RTL description).
The language element is of type token. This may have an attribute strict (optional) of type Boolean;
if true the language shall be strictly enforced. The default is false.

d) modelName (optional) is a language-specific identifier of the model. For Verilog or SystemVerilog,
this is the module name. For VHDL, this is, with ()'s, the entity (architecture) name pair or, with-
out()'s, a configuration name. For SystemC, this is the sc_module class name. The modelName
element is of type string.

e) defaultFileBuilder (optional) is an unbounded list of default file builder options for the fileSets ref-
erenced in this view. See 6.13.5.

f) fileSetRef (optional) is an unbounded list of references to a fileSet name within the containing doc-
ument or another document referenced by the VLNV. See C.8.

g) parameters (optional) details any additional parameters that describe the view for generator usage.
See C.11.

h) vendorExtensions (optional) adds any extra vendor-specific data related to the view. See C.10.

8.4.3 Example

This example shows two abstractor views: a SystemC view and a SystemVerilog view. Such a configuration
assumes the abstractor ports can be expressed with a generic typeDef that is supported in both languages.

<spirit:views>
<spirit:view>

<spirit:name>systemCView</spirit:name>
<spirit:envIdentifier>:*Simulation:</spirit:envIdentifier>
<spirit:language>systemc2.1</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>scFileSetRef</spirit:fileSetRef>

</spirit:view>
<spirit:view>

<spirit:name>systemVView</spirit:name>
184 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

184 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:envIdentifier>:*Simulation:</spirit:envIdentifier>
<spirit:language>systemVerilog</spirit:language>
<spirit:modelName>pv2pvt</spirit:modelName>
<spirit:fileSetRef>svFileSetRef</spirit:fileSetRef>

</spirit:view>
</spirit:views>

8.5 Abstractor ports

8.5.1 Schema

An abstractor’s ports are almost identical to a component’s ports; the abstractor transactional ports are
exactly the same as the component transactional ports. The access methods are the same for an abstractor
or component port. The abstractor wire ports defined here only differ from component wire ports by the
absence of the constraintSet element, because implementation constraints are not needed for abstractors.

The following schema defines the information contained in the ports element, which may appear within an
abstractor.

8.5.2 Description

The ports element defines an unbounded list of port elements. Each port element describe a single external
port on the abstractor.

a) nameGroupPort group is defined in C.4. The name elements shall be unique within the containing
ports element.

b) Each port shall be described as a wire or transactional port.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 185
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 185
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
1) wire (mandatory) defines ports that transport purely binary values or vectors of binary values.
A wire port in an abstractor contains most of the same elements and attributes as a wire port in
a component, except for the contraintSet element. See 8.6.

2) transactional (mandatory) defines all other style ports, typically used for transactional-level
modeling (TLM). A transactional port in an abstractor contains all the same elements and
attributes as a transactional port in a component. See 6.11.16.

c) access (optional) defines the access for a port.

1) portAccessType (optional) indicates to a netlister how to access the port. The portAccessType
shall have one of two possible values ref or ptr. If ref (the default), a netlister should access the
port directly and, if ptr, it should access the port with a pointer.

2) portAccessHandle (optional) indicates to a netlister the method to be used to access the object
representing the port. This is typically a function call or array element reference in IEEE Std
1666™-2005 (SystemC). The portAccessHandle is of type string.

d) vendorExtensions (optional) adds any extra vendor-specific data related to the port. See C.10.

8.5.3 Example

The following example shows a simple address port with a transactional interface.

<spirit:ports>

<spirit:port>

<spirit:name>paddr</spirit:name>

<spirit:transactional>

<spirit:service>

 <spirit:initiative>provides</spirit:initiative>

<spirit:serviceTypeDefs>

<spirit:serviceTypeDef>

<spirit:typeName>trans_if</spirit:typeName>

<spirit:parameters>

<spirit:parameter name=”addr” resolve=”user”>ADDR

</spirit:parameter>

</spirit:parameters>

</spirit:serviceTypeDef>

</spirit:serviceTypeDefs>

</spirit:service>

</spirit:transactional>

</spirit:port>

</spirit:ports>

8.6 Abstractor wire ports

8.6.1 Schema

The abstractor wire ports defined here only differ from component wire ports by the absence of the
constraintSet element, because implementation constraints are not needed for abstractors.

The following schema element defines the information contained in the wire element, which appears within
an abstractor port.
186 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

186 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
8.6.2 Description

The wire element describes the properties for ports that are of a wire style. A port can come in two different
styles, wire or transactional. A wire port applies for all scalar types (e.g., VHDL std_logic and Verilog
wire) and vectors of scalars. A wire port transports purely binary values or vectors of binary values.

— Scalar types in VHDL also include integer and enumeration values. Scalars in IP-XACT only
include binary values that relate to a single wire in a hardware implementation.

— Since wire ports allow only binary values, IP-XACT does not support tri-state or multiple strength
values.

The wire element contains the following elements.

a) allLogicalDirectionsAllowed (optional) attribute defines whether the port may be mapped to a port
in an abstractionDefinition with a different direction. The default value is false. The allLogical-
DirectionsAllowed attribute is of type Boolean. See 5.3.

b) direction (mandatory) specifies the direction of this port: in for input ports, out for output ports, and
inout for bidirectional and tri-state ports. phantom can also be used to define a port which only
exists on the IP-XACT component, but not on the implementation referenced from the view.

c) vector (optional) determines if this port is a scalar port or a vectored port. The left and right vector
bounds elements inside the vector element are those specified in the implementation source. The
port width is max(left,right) - min(left,right) +1. The left and right elements are of type nonNega-
tiveInteger. The left and right elements are configurable with attributes from long.prompt.att, see
C.12.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 187
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 187
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
1) The left element means first boundary, the right element, the second boundary. left may be
larger than right and that left may be the MSB or LSB (right being the opposite). The left and
right elements are the (bit) rank of the left-most and right-most bits of the port.

2) When the vector element is present and the left and right elements are not equal, the port is
defined as a multi-bit vector port. When the vector element is present and the left and right
elements are equal, the port is defined as a single-bit vector port. When the vector element and
the left and right elements are not present, the port is defined as a scalar port.

d) wireTypeDefs (optional) describes the ports type as defined by the implementation, see 6.11.5.

e) driver (optional) defines a driver which may be attached to this port if no other object is connected
to this port. This allows the IP to define the default state of unconnected inputs. A wire style port
may only define a driver element for a port if the direction of the port is in or inout. See also 6.11.6.

See also: SCR 6.5, SCR 6.6, SCR 6.7, and SCR 6.12.

8.6.3 Example

The following example shows a simple address port of 32 bits.

<spirit:port>
<spirit:name>paddr</spirit:name>
<spirit:wire>

<spirit:direction>in</spirit:direction>
<spirit:vector>

<spirit:left>31</spirit:left>
<spirit:right>0</spirit:right>

</spirit:vector>
</spirit:wire>

</spirit:port>

8.7 Abstractor generators

8.7.1 Schema

The following schema defines the information contained in the abstractorGenerators element, which may
appear within an abstractor object.
188 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

188 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
8.7.2 Description

The abstractorGenerators element contains an unbounded list of abstractorGenerator elements. Each
abstractorGenerator element defines a generator that are assigned and may be run on this abstractor. The
abstractorGenerator has exactly the same schema definition as a componentGenerator. See 6.12.

8.7.3 Example

The following example shows a document generator attached to an abstractor. This generator is a TCL script
which can be executed as tclsh ../bin/absDocGen.tcl -url file (and useDefaultValues
is true). Here, the parameter is a configurable parameter named useDefaultValues which can be
configured by the user. This generator uses the TGI API with a SOAP transport protocol based on file.

<spirit:abstractorGenerator>
<spirit:name>genAbstractorDoc</spirit:name>
<spirit:parameters>

<spirit:parameter>
<spirit:name>useDefaultValues</spirit:name>
<spirit:value spirit:id="sdvId" spirit:resolve="user">true</

spirit:value>
</spirit:parameter>

</spirit:parameters>
<spirit:apiType>TGI</spirit:apiType>
<spirit:transportMethods>

<spirit:transportMethod>file</spirit:transportMethod>
</spirit:transportMethods>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 189
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 189
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:generatorExe>../bin/absDocGen.tcl</spirit:generatorExe>
<spirit:group>genDocs</spirit:group>

</spirit:abstractorGenerator>
190 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

190 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
9. Generator chain descriptions

9.1 generatorChain

In IP-XACT, a design flow can be represented as a generator chain. A generator chain is an ordered
sequence of named tasks. Each named task can be represented as a single generator or as another generator
chain. This way, design flow hierarchies can be constructed and executed from within a given DE. The DE
itself is responsible for understanding the semantics of the specified chain described in the generator chain
description.

9.1.1 Schema

The following schema details the information contained in the generatorChain element, which is one of the
seven top-level elements in the IP-XACT specification.

9.1.2 Description

The generatorChain element describes a single generator chain. The generatorChain element contains a
hidden (optional) attribute that, when true, indicates this generator chain is not presented to the user of a
DE. This may be the case if the chain is part of another chain and has no useful meaning when invoked as
standalone. The default is false. The hidden attribute is of type Boolean. The generatorChain element
contains the following elements.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 191
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 191
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
a) versionedIdentifier group provides a unique identifier; it consists of four subelements for a top-level
IP-XACT element. See C.6.

b) One or more of the following three elements.

1) generatorChainSelector (optional) is a selection criteria for selecting one or more generator-
Chains or a reference to another generatorChain (see 9.2).

2) componentGeneratorSelector (optional) is a selection criteria for selecting one or more com-
ponent generators (see 9.3).

3) generator (optional) defines the generator (see 9.4).

c) chainGroup (optional) is an unbounded list of names to which this chain belongs. The group names
are referenced in the generatorChainSelector element and can be used to organize the inclusion of
generators. The chainGroup element is of type Name.

d) description (optional) allows a textual description of the generator chain. The description element
is of type string.

e) choices (optional) specifies multiple enumerated lists, which are referenced by other sections of this
generator chain description. See 6.14.

f) vendorExtensions (optional) contains any extra vendor-specific data related to the generator-
Chain. See C.10.

See also: SCR 1.9.

9.1.3 Example

The following example defines a generator chain with a group name of
MY_HW_SW_COMPILATION_CHAIN, which is intended to specify a sequence of four simulation tasks
(e.g., INIT, CONFIG, BUILD, and COMPILE) for both hardware and software compilation.

<?xml version="1.0" encoding="UTF-8"?>
<spirit:generatorChain

xmlns:xs=http://www.w3.org/2001/XMLSchema
xmlns:spirit=http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5
xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5
http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.5/index.xsd">
<spirit:vendor>spiritconsortium.org</spirit:vendor>
<spirit:library>buildChain</spirit:library>
<spirit:name>CompleteBuild</spirit:name>
<spirit:version>1.0</spirit:version>
<spirit:generatorChainSelector>

<spirit:groupSelector>
<spirit:name>INIT</spirit:name>

</spirit:groupSelector>
</spirit:generatorChainSelector>
<spirit:generatorChainSelector>

<spirit:groupSelector>
<spirit:name>CONFIG</spirit:name>

</spirit:groupSelector>
</spirit:generatorChainSelector>
<spirit:generatorChainSelector>

<spirit:groupSelector>
<spirit:name>BUILD</spirit:name>

</spirit:groupSelector>
</spirit:generatorChainSelector>
<spirit:generatorChainSelector>

<spirit:groupSelector>
<spirit:name>COMPILE</spirit:name>
192 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

192 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:groupSelector>
</spirit:generatorChainSelector>
<spirit:chainGroup>MY_HW_SW_COMPILATION_CHAIN</spirit:chainGroup>

</spirit:generatorChain>

9.2 generatorChainSelector

9.2.1 Schema

The following schema defines the information contained in the generatorChainSelector element, which
may appear within a generatorChain.

9.2.2 Description

The generatorChainSelector element defines which generator(s) to invoke based on a selection criteria.
The generatorChainSelector element contains a unique (optional) attribute that, when true, indicates the
generatorChainSelector shall resolve to a single generator. If more than one generator is selected, the DE
shall resolve the selection to a single generator. The unique attribute default is false and is of type Boolean.
The generatorChainSelector element can specify the selection criteria in one of two ways: as a selection
based on the chainGroup names via the groupSelector element or as a direct VLNV reference via the
generatorChainRef element. The generatorChainSelector element shall contain one of the groupSelector
or generatorChainRef elements.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 193
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 193
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
a) groupSelector (mandatory) is a container for an unbounded list of chain group name elements.

1) When more than one name element is specified, the multipleGroupSelectorOperator
(optional) attribute can specify if the selection applies when one of the generator group names
matches (multipleGroupSelectorOperator equals or) or all the generator group names match
(multipleGroupSelectorOperator equals and).

2) name (mandatory) is an unbounded list of selection names. The names are compared to the
generatorChain/chainGroup elements within all generator chains visible to the DE. The
name element is of type Name.

b) generatorChainRef (mandatory) specifies a reference to another generator chain description for
inclusion in this generator chain. The generatorChainRef element is of type libraryRefType (see
C.7); it contains four attributes to specify a unique VLNV.

See also: SCR 1.7.

9.2.3 Example

Assume three generatorChains X, Y, and Z have been created with the chainGroup names {A, B}, {A,
C}, and {B, C}, respectively. This example shows how a new generatorChain object can select Y.

<spirit:generatorChainSelector>
<spirit:groupSelector spirit:multipleGroupSelectionOperation=”and“>

<spirit:name>A</spirit:name>
<spirit:name>C</spirit:name>

</spirit:groupSelector>
</spirit:generatorChainSelector>

9.3 generatorChain component selector

9.3.1 Schema

The following schema defines the information contained in the componentGeneratorSelector element,
which may appear within a generatorChain.

9.3.2 Description

Similar to the generatorChainSelector, componentGeneratorSelector selects a component generator or a
list of component generators based on the assigned group name. The componentGeneratorSelector contains
the groupSelector element.

groupSelector (mandatory) is a container for an unbounded list of chain group name elements.
194 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

194 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
1) When more than one name element is specified, the multipleGroupSelectorOperator
(optional) attribute can specify if the selection applies when one of the generator group names
matches (multipleGroupSelectorOperator equals or) or all the generator group names match
(multipleGroupSelectorOperator equals and).

2) name (mandatory) is an unbounded list of selection names. The names are compared to the
componentGenerator/group elements within all components in the current design. The name
element is of type Name.

9.3.3 Example

The following example shows a generatorChain selecting all the component generators whose group
element matches the name docGen.

<spirit:componentGeneratorSelector>
<spirit:groupSelector>

<spirit:name>docGen</spirit:name>
</spirit:groupSelector>

</spirit:componentGeneratorSelector>

9.4 generatorChain generator

9.4.1 Schema

The following schema defines the information contained in the generator element, which may appear
within a generatorChain.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 195
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 195
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
9.4.2 Description

The generator element defines a specific generator executable. The generator element contains a hidden
attribute. The hidden (optional) attribute specifies, when true, this generator shall not be run as a standalone
generator and is required to be run as part of a chain. This generator is not presented to the user. If false (the
default), this generator may be run as a standalone generator or in a generator chain. The hidden attribute is
of type Boolean. generator contains the following elements.

a) nameGroup group is defined in C.1.

b) phase (optional) determines the sequence in which a generators are run. Generators are run in order
starting with zero (0). If two generators have the same phase numbers, the order shall be interpreted
as not important and the generators can be run in any order. If no phase number is given the genera-
tor is considered in the “last” phase and these generators are run in any order after the last generator
with a phase number. The phase element is of type float and shall also be a positive number.

c) parameters (optional) specifies any generator type parameters. See C.11.

d) apiType (optional) indicates the type of API used by the generator: an enumerated list of TGI or
none. TGI indicates the generator uses communication to the design environment compliant with
the TGI. none indicates the generator does not use any communication with the DE.
196 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

196 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
e) transportMethods (optional) defines alternate SOAP transport protocol that this generator can sup-
port. The default SOAP transport protocol is HTTP if this element is not present.

transportMethod specifies the alternate transport protocol. This element is an enumerated list
of only one element file. file indicates the SOAP transport protocol is transported to the DE via
a file or file handle.

f) generatorExe (mandatory) contains an absolute or relative (to the location of the containing
description) path to the generator executable. The path may also contain environment variables from
the host system, which are used to abstract the location of the generator. The generatorExe element
is of type spiritURI.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the generator. See
C.10.

9.4.3 Example

The following example shows a netlist generator.

<spirit:generator>
<spirit:name>generateNetlist<spirit:name>
<spirit:phase>100.0</spirit:phase>
<spirit:parameters>

<spirit:parameter>
<spirit:name>language<spirit:name>
<spirit:value

spirit:id=netlistGenLangId
spirit:resolve=user
spirit:choiceRef= netlistGenLangChoicesId>vhdl</spirit:value>

</spirit:parameter>
</spirit:parameters>
<spirit:apiType>TGI</spirit:apiType>
<spirit:generatorExe>tclsh ../generic_netlister.tcl</spirit:generatorExe>

</spirit:generator>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 197
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 197
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
198 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

198 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
10. Design configuration descriptions

10.1 Design configuration

An IP-XACT design configuration is a placeholder for additional configuration information of a design or
generator chain description. Design configuration information is useful when transporting designs between
design environments and automating generator chain execution for a design, by storing information that
would otherwise have to be re-entered by the designer.

The design configuration description contains the following configuration information:

— configurable information for parameters defined in generators within generator chains; this informa-
tion is not referenced via the design description;

— the active view or current view selected for instances in the design description;

— the configuration information for interconnections between the same bus types with differing
abstraction types (i.e., abstractor reference, parameter configuration, and view selection). See also
Clause 8.

A design configuration applies to a single design, but a design may have multiple design configuration
descriptions.

10.2 designConfiguration

10.2.1 Schema

The following schema details the information contained in the designConfiguration element, which is one
of the seven top-level elements of the schema
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 199
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 199
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
10.2.2 Description

The designConfiguration element details the configuration for a design or generator chain description. The
designConfiguration element contains the following mandatory and optional elements.

a) The versionedIdentifier group provides a unique identifier, made up of four subelements for a top-
level IP-XACT element. See C.6.

b) designRef (mandatory) specifies the design description for this design configuration. The design-
Ref element is of type libraryRefType (see C.7); it contains four attributes to specify the referenced
VLNV.

c) generatorChainConfiguration (optional) is an unbounded list of configuration information associ-
ated with a generatorChain or a generator defined within a generatorChain. See 10.3.

d) interconnectionConfiguration (optional) is an unbounded list of information associated with inter-
face interconnections. Any abstractors required for the connection of two interfaces are specified
here. See 10.4.
200 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

200 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
e) viewConfiguration (optional) lists the active view for an instance of the design. It has the following
subelements.

1) instanceName (mandatory) specifies the component instance name for which the view is being
selected. This instance name shall be unique within the containing design configuration
description. The instanceName element is of type Name.

2) viewName (mandatory) defines the current valid view for the selected component instance.
The viewName element is of type NMTOKEN.

f) description (optional) allows a textual description of the design configuration. The description ele-
ment is of type string.

g) vendorExtensions (optional) adds any extra vendor-specific data related to the design configura-
tion. See C.10.

See also: SCR 1.5, SCR 1.9, SCR 13.2, SCR 13.3, and SCR 13.5.

10.2.3 Example

The following example shows a designConfiguration containing a generator chain configuration: one
abstractor configuration in an interconnectionConfiguration and one instance view configuration.

<spirit:designConfiguration xmlns:spirit="http://www.spiritconsortium.org/
XMLSchema/SPIRIT/1.5" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.spiritconsortium.org/XMLSchema/
SPIRIT/1.5/index.xsd">
<spirit:vendor>spiritconsortium.org</spirit:vendor>
<spirit:library>Library</spirit:library>
<spirit:name>Configs</spirit:name>
<spirit:version>1.0</spirit:version>
<spirit:designRef spirit:vendor="spiritconsortium.org"
spirit:library="DesignLibrary" spirit:name="Design1"
spirit:version="1.0"/>
<spirit:generatorChainConfiguration>

<spirit:generatorChainRef spirit:vendor="spiritconsortium.org"
spirit:library="generatorLibrary" spirit:name="generator1"
spirit:version="1.0"/>

<spirit:configurableElementValues>
<spirit:configurableElementValue spirit:referenceId="tmpDir">

my_temp_dir</spirit:configurableElementValue>
</spirit:configurableElementValues>

</spirit:generatorChainConfiguration>
<spirit:interconnectionConfiguration>

<spirit:interconnectionRef>connection1</spirit:interconnectionRef>
<spirit:abstractors>

<spirit:abstractor>
<spirit:instanceName>a1</spirit:instanceName>
<spirit:abstractorRef

 spirit:vendor="spiritconsortium.org"
 spirit:library="AbstractorLibrary"
 spirit:name="AHBPvToRtl"
 spirit:version="1.0"/>

<spirit:viewName>verilog</spirit:viewName>
</spirit:abstractor>

</spirit:abstractors>
</spirit:interconnectionConfiguration>
<spirit:viewConfiguration>

<spirit:instanceName>instance_1</spirit:instanceName>
<spirit:viewName>verilog</spirit:viewName>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 201
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 201
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
</spirit:viewConfiguration>

</spirit:designConfiguration>

10.3 generatorChainConfiguration

10.3.1 Schema

The following schema defines information contained in generatorChainConfiguration, which may appear
as an element inside the designConfiguration element.

10.3.2 Description

The generatorChainConfiguration element contains the configurable information associated with a
generatorChain and its generators. It is up to the DE to decide how and when this configuration
information is applied. Configurable information for any generators defined in a component or abstractor is
stored in the design description with the associated instance’s configuration. The
generatorChainConfiguration element contains the following elements.

a) generatorChainRef (mandatory) specifies the generator chain description for this configuration
information. The generatorChainRef element is of type libraryRefType (see C.7); it contains four
attributes to specify the referenced VLNV.

b) configurableElementValues (optional) lists the generator chain’s configurable parameter values.
The configurableElementValues includes an unbounded list of configurableElementsValue ele-
ments.

1) configurableElementValue (mandatory) is an unbounded list which specifies the value to
apply to a configurable element; in this instance, it is pointed to by the referenceId attribute.
The configurableElementValue is of type string.

2) The contained referenceId (mandatory) attribute is a reference to the id attribute of a config-
urable parameter value in the generator definition. The referenceId attribute is of type Name.

See also: SCR 1.6, SCR 5.14, and SCR 13.8.
202 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

202 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
10.3.3 Example

The following example shows the configurable information for a generatorChain. Here parameters inside
the referenced generatorChain are configured.

<spirit:generatorChainConfiguration>
<spirit:generatorChainRef spirit:vendor="spiritconsortium.org"
spirit:library="generatorLibrary" spirit:name="generator1"
spirit:version="1.0"/>

<spirit:configurableElementValues>
<spirit:configurableElementValue spirit:referenceId="tmpDir">

my_temp_dir</spirit:configurableElementValue>
<spirit:configurableElementValue

spirit:referenceId="verbose_level">1</spirit:configurableElementValue>
<spirit:configurableElementValue spirit:referenceId="dump_log">

true</spirit:configurableElementValue>
</spirit:configurableElementValues>

</spirit:generatorChainConfiguration>

10.4 interconnectionConfiguration

10.4.1 Schema

The following schema defines information contained in interconnectionConfiguration element, which
may appear as an element inside the designConfiguration element.

10.4.2 Description

The interconnectionConfiguration element contains information about the abstractors used to connect
two interfaces having the same busDefinition types, but different abstractionDefinition types. The
interconnectonConfiguration element contains the following elements.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 203
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 203
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
a) interconnectionRef (mandatory) contains a reference to a design interconnection/name name,
design monitorInterconnection/name name, or a design hierConnection/interfaceRef name. All
interconnectionRef elements shall be unique within the containing design configuration descrip-
tion. The interconnectionRef element is of type Name.

b) abstractors (mandatory) contains an unbounded list of abstractor elements. The list of abstractor
elements is an ordered list for chaining the abstractors together to bridge from one abstraction to
another. This element has the following subelements.

1) instanceName (mandatory) assigns a unique name for this instance of the abstractor in this
design. The value of this element shall be unique inside the designConfiguration and the refer-
enced design element. The instanceName element is of type Name.

2) displayName (optional) allows a short descriptive text to be associated with the instance. The
displayName is of type string.

3) description (optional) allows a textual description of the instance. The description is of type
string.

4) abstractorRef (mandatory) is a reference to an abstractor description for this abstractor
instance. The abstractorRef element is of type libraryRefType (see C.7); it contains four
attributes to specify a unique VLNV.

5) configurableElementValues (optional) lists the abstractor instance’s configurable parameter
values. The configurableElementValues is an unbounded list of configurableElementsValue
elements.

i) configurableElementValue (mandatory) is an unbounded list which specifies the value to
apply to a configurable element; in this instance, it is pointed to by the referenceId
attribute. The configurableElementValue is of type string.

ii) The contained referenceId (mandatory) attribute is a reference to the id attribute of a con-
figurable parameter value in the abstractor instance. The referenceId attribute is of type
Name.

6) viewName (mandatory) defines the current valid view for the selected abstractor instance. The
viewName element is of type NMTOKEN.

See also: SCR 1.12, SCR 3.7, SCR 3.8, SCR 3.9, SCR 3.10, SCR 3.11, SCR 3.12, SCR 3.13, SCR 3.14,
SCR 3.15, SCR 5.15, SCR 13.4, and SCR 13.6.

10.4.3 Example

The following example shows the configuration of the connection1 interconnection, with the definition
of a chain of two abstractors to insert between the two component busInterfaces. The abstractor instances
are abstraction1 and abstraction2, which convert from abstraction interface PV to PVT and PVT
to RTL, respectively. The active views of these abstractor instances are systemc and systemc_view,
respectively. The abstractor VLNVs are defined in the abstractorRef elements.

<spirit:interconnectionConfiguration>
<spirit:interconnectionRef>connection1</spirit:interconnectionRef>
<spirit:abstractors>

<spirit:abstractor>
<spirit:instanceName>abstractor1</spirit:instanceName>
<spirit:abstractorRef

 spirit:vendor="spiritconsortium.org"
 spirit:library="AbstractorLibrary"
 spirit:name="AHBPvToAHBPvt"
 spirit:version="1.0" />

<spirit:viewName>systemc</spirit:viewName>
</spirit:abstractor>
<spirit:abstractor>
204 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

204 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:instanceName>abstractor2</spirit:instanceName>
<spirit:abstractorRef

 spirit:vendor="spiritconsortium.org"
 spirit:library="AbstractorLibrary"
 spirit:name="AHBPvtToRtl"
 spirit:version="1.0" />

<spirit:viewName>systemc_view</spirit:viewName>
</spirit:abstractor>

</spirit:abstractors>
</spirit:interconnectionConfiguration>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 205
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 205
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
206 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

206 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
11. Addressing and data visibility

This chapter describes how addresses are transformed between a slave’s memory map and a master’s
address space. It also describes how to determine which bits of the memory map are visible in the master’s
address space.

The addressing descriptions here presume each bus interface only maps a single logical address port (a port
with an isAddress qualifier) and a single logical data port (a port with an isData data qualifier). See also: 5.6
and 5.10.

If a bus interface maps more than one address or data port, then each combination of address and data ports
implies a separate addressing and data visibility calculation. To calculate the address map for a particular
type of transaction, the data and address ports that transaction uses need to be known first.

The most common case for multiple data ports in a single bus interface is where there are separate read and
write data ports; however, their relevant properties of the read and write data ports are typically identical—
giving identical read and write address maps.

11.1 Calculating the bit address of a bit in a memory map

A memory map consists of a set of address blocks, subspace maps, and banks containing further address
blocks, subspace maps, and banks (to any number of levels). To calculate the address of a bit within an
address block or subspace map relative to the containing memory map, its bit address needs to be calculated
relative to its parent. If that parent is a bank, how that bank modifies the address needs to be calculated first,
and then continue working up the bank structure until the memory map is reached. To do so, the following
formulas apply.

— For a bit in an address block directly in a memory map:

(1)

— For a bit in a subspace map:

(2)

For an address block or subspace map within a bank, the local bit address of a bit is simply its bit number.
However, the following formulas need to be used on any containing banks.

a) For an item (bank, subspace map, or address block) within a serial bank:

(3)

(4)

i.e., the effective range of an item is its range rounded up to the nearest complete row.

The item.range of an item is calculated depending on its type:

1) for an address block or subspace map, the range is the value of the range sub-element;

2) for a serial bank, the range is the sum of the effective ranges of the sub-items;

3) for a parallel bank, the range is the (largest item.rows of all the sub-items) X (bank width/
addressUnitBits).

memory_map_bit_address bit_number_in_address_block addressBlock.baseAddress
memoryMap.addressUnitBits

+=

memory_map_bit_address bit_number_in_subspace_map subspaceMap.baseAddress
memoryMap.addressUnitBits

+=

item.rows item.range memoryMap.addressUnitBits  item.width=

item.effective_range item.rows item.width=
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 207
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 207
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
The item.width of an item is calculated depending on its type:

4) for an address block, the width is defined as the value of the width sub-element;

5) for a subspace map, the width is the width of the address space of the referenced bus interface;

6) for a serial bank, the width is the width of the widest sub-item;

7) for a parallel bank, the width is the sum of the widths of the sub-items.

b) For a bit within item n in a serial bank:

(5)

c) For a bit within item n in a parallel bank containing m items:

(6)

(7)

(8)

Once the bit address within a top-level bank has been calculated, the bit address within the memory map can
be derived from the following formula:

(9)

11.2 Calculating the bus address at the slave bus interface

The bus address of a bit at the slave bus interface can be derived from the following formula:

(10)

(11)

On a bus, the bus address is the address carried by the address lines; the bit offset gives the offset within the
least addressable unit of the bit using the following formula:

(12)

where slave_mapped_address_bits is a mask derived from the set of address bits mapped in the
slave.

11.3 Address modifications of an interconnection

The bus address is carried between adjacent bus interfaces (slave and mirrored slave, master and mirrored
master, or master and slave) on the bus’s isAddress logical port. If this port is a wire port, the address is

parent_bit_address child_bit_address itemi.effective_range

i 1=

n 1–

+ memoryMap.addressUnitBits=

bit_offset_in_row child_bit_address mod itemn.width itemi.width

i 1=

n 1–

+=

row_offset itemi.width child_bit_address itemn.width  
i 1=

m

=

parent_bit_address bit_offset_in_row row_offset+=

memory_map_bit_address bank_bit_address bank.baseAddress
memoryMap.addressUnitBits

+=

slave_bus_address memory_map_bit_address slave.bitsInLau=

bus_bit_offset memory_map_bit_address mod slave.bitsInLau=

slave_bus_address memory_map_bit_address slave.bitsInLau & slave_mapped_address_bits=
208 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

208 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
always carried as parallel bits with the least significant bit of the address on logical bit 0 of the port.10 The
interconnection can modify the address in two ways:

a) If some address bits are not connected, addresses with those bits set are not accessible from the mas-
ter.

1) Examine the logical vectors in the port maps to determine which address bits are connected.

2) Transactional ports always carry all address bits across the interconnection.

b) If the value of bitsInLau differs on the two sides of the interconnection, the interpretation of the
address as a bit address can vary by the ratio of the interfaces’ bitsInLau. This, however, does not
alter the actual bus address.

11.4 Address modifications of a channel

The address at the mirrored slave interface can be derived from the following formula:

(13)

where slave_interconnection_address_bits is a mask derived from the set of address bits connected
between the slave and the mirrored slave.

This is then modified by the remap address:

(14)

where remapAddress is the remap address for the current state of the channel.

How addresses are modified within a channel depends on the value of bitSteering in the mirrored slave
interface. It also depends on the relative width of the mirrored master and mirrored slave data ports, where
this width is defined to be the total number of bits of the logical data port that are mapped in the bus
interface. If bitSteering is true, or the slave is wider than or the same width as the master, the addresses are
simply modified to take into account any change in bitsInLau between the mirrored slave and the mirrored
master, as shown in the following formula:

(15)

If bitSteering is false and the mirrored slave is narrower the mirrored master, the address is adapted so all
locations in the slave’s memory map are visible:

(16)

(17)

10 This gives a little-endian description of the address, which may differ from the address port description in the bus’s documentation.

mirrored_slave_bus_address slave_bus_address & slave_interconnection_address_bits=

mirrored_slave_row_address

mirrored_slave_bus_address
mirroredSlave.baseAddress.remapAddress

mirroredSlave.bitsInLau
--+

=

mirrored_master_bus_address floor
mirrored_slave_row_address mirroredSlave.bitsInLau

mirroredMaster.bitsInLau
-- 
 

& mirrored_master_mapped_address_bits

=

mirrored_slave_bit_address mirrored_slave_row_address mirroredSlave.bitsInLau=

mirrored_master_bit_address mirrored_slave_bit_address mod mirroredSlave.width

floor
mirrored_slave_bit_address

mirroredSlave.width
-- 
  mirroredMaster.width

+=
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 209
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 209
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
(18)

where mirrored_master_mapped_address_bits is a mask derived from the set of address bits
mapped in the mirrored master port.

Finally, bitSteering has a different meaning in a mirrored slave interface than in a master or slave interface.
In a master or slave interface, it means the component shall modify which bit lanes are used for data when
accessing narrow devices. In a mirrored slave interface, it means the addresses from a mirrored master
interface are not modified for transfers to a narrower mirrored slave data port.

11.5 Addressing in the master

The bus address at the master bus interface can be derived from the following formula:

(19)

where master_interconnection_address_bits is a mask derived from the set of address bits con-
nected between the master and the mirrored master.

This gives a bit address of

(20)

The bit address may then be converted to an addressing unit address and offset using the formulas:

(21)

(22)

11.6 Visibility of bits

A bit in the slave’s memory map is visible in the master’s address space if:

— it is in an address range visible to the master;

— the master and slave agree on which bit lane the bit should appear and this bit lane is connected
between the master and the slave.

11.6.1 Visible address ranges

Two conditions need to be fulfilled for an address in the slave to be visible to the master.

a) The address at the mirrored slave shall be within the range supported by the mirrored slave interface:

(23)

b) The address in the address space shall be within the range supported by the master address space for
that bus interface:

mirrored_master_bus_address floor
mirrored_master_bit_address

mirroredMaster.bitsInLau
-- 
 

& mirrored_master_mapped_address_bits

=

master_bus_address mirrored_master_bus_address & master_interconnection_address_bits=

master_bit_address
mirroredMaster.addressSpaceRef.baseAddress addressSpace.addressUnitBits
master_bus_address master.bitsInLau bus_bit_offset+

+
=

address master_bit_address addressSpace.addressUnitBits=

offset master_bit_address mod addressSpace.addressUnitBits=

mirrored_slave_bus_address mirroredSlave.baseAddress.range
210 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

210 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
(24)

11.6.2 Bit lanes in memory maps

The local bit lane of a bit in an address block is:

(25)

Similarly, in a subspace map the bit lane is:

(26)

where the width of a subspace map is the width of the address space of the referenced master bus
interface.

If the address block or subspace map is at the top-level of the memory map or only within serial banks, the
bit lane in the memory map is the local bit lane.

If it is item n in a parallel bank, then:

(27)

If it is in multiple hierarchical parallel banks, this formula is applied at each higher level with the lower-level
bank_bit_lane replacing local_bit_lane.

The bit lane in the memory map is the top-level bank_bit_lane.

11.6.3 Bit lanes in address spaces

The bit lane in an address space can be derived from the following formula:

(28)

11.6.4 Bit lanes in bus interfaces

In a bus interface, the logical bit numbers of the data port carry the corresponding bit lanes. For example, if
a slave bus interface has a data port with a logical vector of [15:8], this port can access bit lanes 15 to 8
of the memory map and logical bit lanes 15 to 8 in the connected mirrored slave or master interface.

11.6.5 Bit lanes in channels

All bus interfaces on a channel shall use the same logical numbering of data port bits. This means data bits
can not be moved between bit lanes in a channel by giving the mirrored bus interfaces different logical to
physical mappings on their data ports.

11.6.6 Bit-steering in masters and slaves

Bit-steering only takes effect when the master and the slave have data ports of different widths. If they do
and bit steering is enabled (i.e., bitSteering is true in the master or slave interface) for the bus interface with
the wider data port, then this data port shall move its copy of output data to the correct bit lanes for the
narrower port and read its input data from the correct bit lanes for the narrower port.

0 master_bit_address addressSpace.range addressSpace.addressUnitBits

local_bit_lane bit_offset_in_address_block mod addressBlock.width=

local_bit_lane bit_offset_in_subspace_map mod subspaceMap.width=

bank_bit_lane itemi.width local_bit_lane+

i 1=

n 1–

=

address_space_bit_lane address_space_bit_address mod addressSpace.width=
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 211
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 211
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
If bit steering is disabled in the wider port, the master can only access data at a particular address when the
bit lane for that address in the address space is connected (through the bus interfaces and a channel) to the bit
lane for the corresponding address in the memory map.

The following also apply.

— The bitSteering value has a different meaning in mirrored slaves. See 11.4.

— Some buses with bit steering may only support certain data port widths. Describing which widths are
supported is outside the scope of IP-XACT.

— Bit steering allows software or hardware away from the bus interface to work without knowing the
width of devices on the far side of the bus. To provide this functionality, a bus supporting bit steer-
ing normally gives the same address bits to all devices, irrespective of their widths, and does not
adapt addresses to the width of the slave bus interfaces (i.e., bitSteering is true in the mirrored slave
bus interfaces). Thus, a non-bit-steering master on such a bus only has access to some of the mem-
ory rows of narrower slaves.

11.7 Address translation in a bridge

The address at the master interface for a bridge can be derived from the following formulas:

a) The bus address at the master bus interface is:

(29)

where master_interconnection_address_bits is a mask derived from the set of address bits con-
nected between the master and the slave.

This gives a bit address of

(30)

The master bit address (also equal to the address space bit address) may be converted to an addressing unit
address and offset of the addressSpace using the formulas:

(31)

(32)

b) The bit address may also be converted to the address of the bridged slave interface by using the fol-
lowing formulas.

1) For a transparent bridge:

(33)

2) For an opaque bridge:

(34)

master_bus_address slave_bus_address & master_interconnection_address_bits=

master_bit_address master_bus_address master.bitsInLau
master.addressSpaceRef.baseAddress addressSpace.addressUnitBits

+=

address_space_address master_bit_address addressSpace.addressUnitBits=

address_space_offset master_bit_address mod addressSpace.addressUnitBits=

bridge_slave_address
address_space_address addressSpace.addressUnitBits bridged_slave.bitsInLau 

& bridged_slave_mapped_address_bits

=

bridge_slave_address address_space_address segmentAddressOffset– 
addressSpace.addressUnitBits


bridged_slave.bitsInLau bridge_slave.baseAddress+ 




& bridged_slave_mapped_address_bits

=

212 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

212 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Annex A

(informative)

Bibliography

[B1] Bradner, S., IETF RFC 2119 “Key words for use in RFCs to Indicate Requirement Levels.” Best Cur-
rent Practice: 14 (See http://www.ietf.org/rfc/rfc2119.txt).

[B2] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. New York: Insti-
tute of Electrical and Electronics Engineers, Inc.

[B3] IP-XACT Leon Register Transfer Examples, v1.5, see http://www.spiritconsortium.org/
doc_downloads/.

[B4] IP-XACT Leon Transaction Level Examples, v1.5, see http://www.spiritconsortium.org/
doc_downloads/.

[B5] IP-XACT Schema on-line documentation, v1.5, see http://www.spiritconsortium.org/doc_downloads/.

[B6] The Transaction Level Model of SystemC, see http://www.systemc.org.

[B7] IP-XACT standard tool names for envIdentifier, see http://www.spiritconsortium.org/tech/refs/
toolnames.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 213
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 213
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
214 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

214 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Annex B

(normative)

Semantic consistency rules (SCRs)

For an IP-XACT document or a set of IP-XACT documents, to be valid they shall, in addition to conforming
to the IP-XACT schema, obey certain semantic rules. While many of these are described informally in other
sections of this document, this chapter defines them formally. Tools generating IP-XACT documents shall
ensure these rules are obeyed. Tools reading IP-XACT documents shall report any breaches of these rules to
the user.

B.1 SCR definitions

The following definitions apply when determining a semantic consistency rule (SCR) interpretation.

B.1.1 Compatibility of busDefinitions

a) A busDefinition A is an extension of busDefinition B if A contains an extension element that refer-
ences B or an extension of B.

b) A busDefinition is compatible with itself.

c) If A is an extension of B, then A and B are compatible.

d) No other pairs of busDefinitions are compatible.

e) A set of busDefinitions {A, B, C, ...} is compatible if every possible pair of busDefinitions
from the set ({ A, B }, { A, C }, { B, C } ...) is compatible.

B.1.2 Interface mode of a bus interface

Specifies whether the bus interface is a master, slave, system, mirroredMaster, mirroredSlave,
mirroredSystem, or monitor interface.

B.1.3 Compatibility of abstractionDefinitions

a) An abstractionDefinition A is an extension of abstractionDefinition B if A contains an extension
element that references B or an extension of B.

b) An abstractionDefinition is compatible with itself.

c) If A is an extension of B, then A and B are compatible.

d) No other pairs of abstractionDefinitions are compatible.

B.1.4 Configurable element

Some elements in a component, abstractor, or generator chain description are defined as being configurable.
See C.12.

Note—This is different from a configurableElement element, which is an element that references and sets the value of
a configurable element.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 215
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 215
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.1.5 Element referenced by configurableElement element

Every configurableElement element references a component document and is contained within a
componentInstance element. The element referenced by a configurableElement element is the configurable
element in that component document with an id attribute matching the referenceId of the
configurableElement element.

B.1.6 Memory mapping

If an access is not specified, the value defaults to the value from the level above. If the top-level is not
specified, the access defaults to read-write.

B.1.7 Port connection equivalence class

The port connection equivalence class of a (logical or component) port is the set of model and logical ports
that can be reached from that port through any sequence of:

a) bus interfaces' logical to physical port maps

b) interconnections between logical ports implied by interconnections between bus interfaces using the
same abstraction of the bus

c) ad-hoc connections.

B.1.8 Logical and physical ports

a) If a wire port element in a component has a vector sub-element, its range shall be [left:right], where
left and right are the left and right values of the vector sub-element. If it does not have a vector sub-
element, its range shall be [0:0].

b) If a physicalPort element has a vector sub-element, its range shall be [left:right], where left and
right are the left and right values of the vector sub-element. If a physicalPort element does not have
a vector sub-element and it references a wire port, then its range shall be the range of the referenced
model port.

c) If a logicalPort element has a vector sub-element, its range shall be [left:right], where left and
right are the left and right values of the vector sub-element. If a logicalPort element does not have a
vector sub-element and the physicalPort element in the same portMap references a wire port, then
its physical range shall be taken as [abs(physical.left - physical.right):0], where
physical.left and physical.right are the left and right values of the physical port’s
range.

d) A logical bit of a port is mapped if it is included in the range of a logicalPort element referencing
that bus interface port.

B.1.9 Addressable bus interface

A bus interface shall be addressable if the isAddressable element of the bus definition it references has the
value true.

B.2 Rule listings

Most of the semantic rules listed here can be checked purely by manually examining a set of IP-XACT
documents. A few, listed in Table B14, need some external knowledge, so they cannot be checked this way.
In Table B1 — Table B14, Single doc check indicates a rule can be checked purely by manually examining a
216 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

216 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
single IP-XACT document. Rules for which Single doc check is No require the examination of the
relationships between IP-XACT documents.

NOTE—Where these tables contain references to the values of elements and those elements are configurable in IP-
XACT, then the values used are the configured values (not the XML element values).

B.2.1 Cross-references and VLNVs

Table B1—Cross-references and VLNVs

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes

SCR 1.1 1 Every IP-XACT document visible to a tool
shall have a unique VLNV.

No Only applies only to
those documents visi-
ble to a particular tool
or DE at one time. In
particular, users are
likely to store multi-
ple versions of the
same documents,
with the same
VLNVs, in source
control systems. See
also: C.6.2 and C.6.4.

SCR 1.2 2 Any VLNV in an IP-XACT document used
to reference another IP-XACT document
shall precisely match the identifying VLNV
of an existing IP-XACT document.

No In the schema, such
references always use
the attribute group
versionedIdentifier.
See also: C.6.2 and
C.6.4.

SCR 1.3 3 The VLNV in an extends element in a bus
definition shall be a reference to a bus defi-
nition.

No See also: 5.2.2.

SCR 1.4 4 The VLNV in a busType element in a bus
interface or abstraction definition shall be a
reference to a bus definition.

No See also: 6.5.1.

SCR 1.5 5 The VLNV in a designRef element in a
design configuration shall be a reference to
a design.

No See also: 10.2.2.

SCR 1.6 7 The VLNV in a generatorChainRef ele-
ment in a design configuration shall be a ref-
erence to a generator chain.

No See also: 10.2.2 and
10.3.2.

SCR 1.7 9 The VLNV in a generatorChainRef sub-
element of the element generatorChainSe-
lector in a generator chain shall be a refer-
ence to a generator chain.

No See also: 9.2.2.

SCR 1.8 11 The VLNV in a componentRef element in a
design shall be a reference to a component.

No See also: 7.2.2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 217
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 217
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.2.2 Interconnections

SCR 1.9 The XML document element of an IP-
XACT document shall be an abstractor,
abstractionDefinition, busDefinition,
component, design, designConfiguration
or generatorChain element.

Yes See also: 5.2.2, 5.3,
6.1.2, 7.1.2, 8.1.2,
9.1.2, and 10.2.2.

SCR 1.10 The VLNV in an abstractionType element
in a component or abstractor shall reference
an abstractionDefiniton.

No See also: 8.1.2.

SCR 1.11 If a bus interface contains an abstraction-
Type sub-element, the abstraction defini-
tion’s busType element and the bus
interface’s busType element shall reference
the same bus definition.

No I.e., the abstraction
referenced shall be an
abstraction of the ref-
erenced bus. See also:
5.2.2, 5.3.2, and
6.5.1.2.

SCR 1.12 The VLNV in an abstractorRef in a
designConfiguration shall reference an
abstractor.

No See also: 10.4.2.

SCR 1.13 The VLNV in an extends element in an
abstraction definition shall be a reference to
an abstraction definition.

No See also: 5.3.2.

Table B2—Interconnections

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 2.1 12. In the attributes of an activeInterface, mon-
itoredActiveInterface or monitorInterface
element, the value of the busRef attribute
shall be the name of a busInterface in the
component description referenced by the
VLNV of the component instance named in
componentRef and optional path attributes.

No See also: 7.3.2 and
7.4.2.

SCR 2.2 13. In the sub-elements of an interconnection,
the bus interfaces referenced by the two
activeInterface sub-elements shall be com-
patible, i.e., the VLNVs of the busType ele-
ments within the two busInterface elements
shall reference compatible busDefinitions.

No See also: 6.3.1, 6.3.2,
6.3.3, and 7.3.2.

SCR 2.3 14. A particular component/bus interface com-
bination shall appear in only one intercon-
nection element in a design.

Yes See also: 7.3.2.

Table B1—Cross-references and VLNVs (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
218 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

218 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
SCR 2.4 15. An interconnection element shall only con-
nect a master interface to a slave interface or
a mirrored-master interface.

No See also: 7.3.2.

SCR 2.5 16. An interconnection element shall only con-
nect a mirrored-master interface to a master
interface.

No See also: 7.3.2.

SCR 2.6 17. An interconnection element shall only con-
nect a slave interface to a master interface or
a mirrored-slave interface.

No See also: 7.3.2.

SCR 2.7 18. An interconnection element shall only con-
nect a mirrored-slave interface to a slave
interface.

No See also: 7.3.2.

SCR 2.8 19. An interconnection element shall only con-
nect a direct system interface to a mirrored-
system interface.

No See also: 7.3.2.

SCR 2.9 20. An interconnection element shall only con-
nect a mirrored-system interface to a direct
system interface.

No See also: 7.3.2.

SCR 2.10 21. In a direct master to slave connection, the
value of bitsInLAU in the master's bus
interface shall match the value of bitsIn-
LAU in the slave's bus interface.

No See also: 6.3.1 and
7.3.2.

SCR 2.11 23. In a direct master to slave connection, the
busDefinitions referenced by the busInter-
faces shall have a directConnection ele-
ment with the value true.

No See also: 6.3.1 and
7.3.2.

SCR 2.12 24. In a connection between a system interface
and a mirrored-system interface, the values
of the group elements of the two bus inter-
faces shall be identical.

No See also: 6.3.1, 6.3.2,
6.5.2.2, and 7.3.2.

SCR 2.13 If the same logical port is mapped in the port
maps of both ends of a direct master to slave
connection, then both bus interfaces shall
map the same set of bits of that logical port.

No Logical ports can
only be identified
with one another if
the two bus interfaces
reference the same
abstraction definition.
See also: 6.3.1 and
7.3.2.

SCR 2.14 The endianess in the two bus interfaces shall
match for any interconnection using an
addressable bus. If the endianess is not spec-
ified at either bus interface, it is presumed to
be little endian.

No See also: 6.3.1, 6.3.2,
6.5.1.2, and 7.3.2.

Table B2—Interconnections (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 219
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 219
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.2.3 Channels, bridges, and abstractors

SCR 2.15 If a design contains a component with a
busInterface which has a connectionRe-
quired element with the value true, that
busInterface shall be included in an inter-
connection of the design.

No See also: 6.5.1.2 and
7.3.2.

SCR 2.16 A monitorInterconnection with interfaces
that contain a path attribute with a compon-
etRef and busRef shall exist in all hierarchi-
cal views.

No See also: 7.4.

Table B3—Channels, bridges, and abstractors

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes

SCR 3.1 25. Within a channel element, all the busInter-
faceRef elements shall refer to compatible
abstraction definitions, i.e., the VLNVs of
the abstractionType elements within the
busInterface elements shall reference com-
patible abstractionDefinitions.

No Compatibility of the
abstraction defini-
tions implies compat-
ibility of their
associated bus defini-
tions. See also: 5.3.2
and 6.6.2.

SCR 3.2 26. All bus interfaces referenced by a channel
shall be mirrored interfaces.

Yes See also: 6.4.1 and
6.6.2.

SCR 3.3 27. A channel can be connected to no more mir-
rored-master busInterfaces than the least
value of maxMasters in the bus definitions
referenced by the connected bus interfaces
(whether these interfaces are mirrored-mas-
ter or mirrored-slave interfaces).

No A channel may con-
nect ports with differ-
ent bus definitions,
and hence different
values of maxMas-
ters, as long as the
bus definitions are
compatible. See also:
6.6.2.

SCR 3.4 28. A channel can be connected to no more mir-
rored-slave bus interfaces than the least
value of maxSlaves in the bus definitions
referenced by the connected bus interfaces
(whether these interfaces are mirrored-mas-
ter or mirrored-slave interfaces).

No A channel may con-
nect ports with differ-
ent bus definitions,
and hence different
values of max-
Slaves, as long as the
bus definitions are
compatible. See also:
6.6.2.

SCR 3.5 29. Each bus interface on a component shall
connect to only one channel of that channel
component.

Yes See also: 6.6.2.

Table B2—Interconnections (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
220 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

220 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
SCR 3.6 30. The interface referenced by masterRef sub-
element of a bridge element shall be a mas-
ter.

Yes See also: 6.5.4.2.

SCR 3.7 The value of the interconnectionRef sub-
element of an interconnectionConfigura-
tion element shall precisely match a design
interconnection/name, a design moni-
torInterconnection/name, or a design
hierConnection/interfaceRef of an inter-
connection described in the design refer-
enced by the containing design
configuration.

No See also: 10.4.2.

SCR 3.8 An interconnectionConfiguration element
of a design configuration document that ref-
erences a master to mirrored-master inter-
connection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of master.

No See also: 10.4.2.

SCR 3.9 An interconnectionConfiguration element
of a design configuration document that ref-
erences a slave to mirrored-slave intercon-
nection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of slave.

No See also: 10.4.2.

SCR 3.10 An interconnectionConfiguration element
of a design configuration document that ref-
erences a system to mirrored-system inter-
connection in the corresponding design shall
only reference abstractors with an abstrac-
torMode of system.

No See also: 10.4.2.

SCR 3.11 An interconnectionConfiguration element
of a design configuration document that ref-
erences a master to slave interconnection in
the corresponding design shall only refer-
ence abstractors with an abstractorMode of
direct.

No See also: 10.4.2.

SCR 3.12 An interconnectionConfiguration element
shall not reference an interconnection in
which the abstraction types referenced by
the two endpoints are identical.

No See also: 10.4.2.

SCR 3.13 In the list of abstractors referenced by an
interconnectionConfiguration element,
the first abstractionType element of the
first referenced abstractor shall be compati-
ble with the abstractionType element of the
master, system, or mirrored-slave endpoint
of the interconnection.

No SCR 3.13 - SCR 3.15
mean the abstractors
associated with an
interconnection need
to form a non-looping
chain between the
two ends. See also:
10.4.2.

Table B3—Channels, bridges, and abstractors (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 221
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 221
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
SCR 3.14 In the list of abstractors referenced by an
interconnectionConfiguration element,
the second abstractionType element of the
last referenced abstractor shall be compati-
ble with the abstractionType element of the
mirrored-master, mirrored-system, or slave
endpoint of the interconnection.

No See also: 10.4.2.

SCR 3.15 In the list of abstractors referenced by an
interconnectionConfiguration element,
the first abstractionType element of every
referenced abstractor, except the first, shall
be compatible with the second abstraction-
Type element of the previous abstractor in
the interconnectionConfiguration list.

No See also: 10.4.2.

SCR 3.16 In the list of abstractors referenced by an
interconnectionConfiguration element, no
two abstractionType elements in the refer-
enced abstractors shall have the same value.

No See also: 10.4.2.

SCR 3.17 The VLNVs in the busType elements of
both abstraction definitions referenced by an
abstractor shall exactly match the VLNV in
the busType element of the abstractor.

No See also: 5.3.2 and
8.1.2.

SCR 3.18 If abstraction definition AA is an abstraction
of bus definition A and abstraction defini-
tion AB is an abstraction of bus definition B,
then abstraction definition AA shall only
contain an extends element referencing
abstraction definition AB if bus definition A
contains an extends element referencing bus
definition B.

No If abstraction defini-
tion AA extends
abstraction definition
AB, AA and AB need
to be abstractions of
different buses. See
also: 5.3.2.

SCR 3.19 The interface referenced by the masterRef
attribute of a subspaceMap element shall
be a master interface that is bridged from a
slave interface with a valid memory map
referenced by its memoryMapRef element.

Yes See also: 6.8.9.2.

Table B3—Channels, bridges, and abstractors (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
222 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

222 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
B.2.4 Monitor interfaces and monitor interconnections

Table B4—Monitor interfaces and monitor interconnections

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 4.1 32. An activeInterface or monitoredAc-
tiveInterface element shall reference a
master, slave, system, mirroredMaster,
mirroredSlave, or mirroredSystem inter-
face.

No See also: 6.3.3, 7.3.2,
7.4.2, and 7.6.2.

SCR 4.2 33. The monitorInterface sub-elements of a
monitorInterconnection element shall ref-
erence a monitor bus interface.

No See also: 6.3.3 and
7.3.2.

SCR 4.3 34. In a monitorInterconnection element, the
value of the interfaceMode of the monitor
interfaces shall match the mode of the mon-
itoredActiveInterface.

No This means all the
monitor interfaces
shall have the same
interface mode. See
also: 6.3.3, 6.5.2.2,
and 7.3.2.

SCR 4.4 35. A monitor interface shall only be connected
to a system or mirroredSystem interface if
it has a group sub-element and the value of
this element matches the value of the group
sub-element of the system or mirroredSys-
tem interface.

No See also: 6.3.3,
6.5.2.2, and 7.3.2.

SCR 4.5 36. A particular componentRef/busRef combi-
nation shall only appear in one moni-
torInterconnection element.

No This applies to both
monitor and active
interfaces; however, a
single monitorInter-
connection element
can connect an active
interface to many
monitor interfaces.
The same active
interface can also
appear in at most one
interconnection ele-
ment. See also: 6.3.3
and 7.3.2.

SCR 4.6 All ports mapped in a busInterface with a
mode of monitor shall have a direction of in
for wire type ports or requires for transac-
tional type ports.

Yes See also: 6.3.3.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 223
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 223
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.2.5 Configurable elements

Table B5—Configurable elements

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 5.1 37. A configurable element shall have a depen-
dency attribute if and only if it has a resolve
attribute with the value dependent.

Yes See also: C.13—
C.17.

SCR 5.2 38. The value of a dependency attribute shall
be an XPATH expression. This XPATH
expression shall only reference items in the
containing document.

Yes See also: C.13—
C.17.

SCR 5.3 39. The XPATH expression in a dependency
attribute shall not reference configurable
elements having a resolve attribute value of
dependent or generated.

Yes See also: C.13—
C.17.

SCR 5.4 40. Any parameters used within all dependent
parameter's XPATH id() calls shall exist.

Yes See also: C.13—
C.17.

SCR 5.5 41. All references to elements in dependency
XPATH expressions shall be by id. Depen-
dency XPATH expressions shall not use
document navigation to reference other ele-
ments.

Yes This rule allows
XPATH expressions
to remain valid
through schema or
design changes. DEs
reading IP-XACT
documents should
treat breaches of this
rule as minor errors,
and attempt to inter-
pret any XPATH
expressions in the
document. See also:
C.13—C.17.

SCR 5.6 42. An id attribute is required in any element
with a resolve attribute value of user or
generated.

Yes See also: C.13—
C.17.

SCR 5.7 43. configurableElement elements within
componentInstance elements shall only
reference configurable elements that exist in
the component referenced by the enclosing
componentInstance element; the value of
the referenceId attribute of the config-
urableElement element shall match the
value of the id attribute of some config-
urable element of the component.

No The schema guaran-
tees uniqueness of id
values in a compo-
nent. See also:
C.13—C.17.

SCR 5.8 44. configurableElement elements shall only
reference configurable elements with a
resolve attribute value of user or gener-
ated.

No See also: C.13—
C.17.
224 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

224 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
SCR 5.9 45. If a configurableElement element refer-
ences an element with a formatType
attribute value of float or long and contains
a minimum attribute, the value of the con-
figurableElementValue element shall be
greater or equal to the specified value of the
minimum attribute.

No See also: C.13—
C.17.

SCR 5.10 46. If a configurableElement element refer-
ences an element with a format attribute
value of float or long and contains a maxi-
mum attribute, the value of the config-
urableElementValue sub-element shall be
less than or equal to the specified value of
the maximum attribute.

No See also: C.13—
C.17.

SCR 5.11 47. If an element has a format attribute with a
value of choice, it also needs a choiceRef
attribute.

Yes See also: 6.14.2 and
C.13—C.17.

SCR 5.12 48. If a configurableElement element refer-
ences an element with a choiceRef attribute,
the value for configurableElementValue
sub-element shall be one of the values listed
in the choice element referenced by the
choiceRef attribute.

No See also: 6.14.2 and
C.13—C.17.

SCR 5.13 configurableElement elements within gen-
eratorChain elements in design configura-
tion documents shall only reference
configurable elements that exist in the gen-
erator chain referenced by the enclosing
generatorChain element; the value of the
referenceId attribute of the config-
urableElement element shall match the
value of the id attribute of some config-
urable element of the generator chain.

No The schema guaran-
tees uniqueness of id
values in a generator
chain. See also:
10.3.2.

SCR 5.14 configurableElement elements within gen-
eratorChainConfiguration elements in
design configuration documents’ elements
shall only reference configurable elements
that exist in the generator chain referenced
by the generatorChainRef element; the
value of the referenceId attribute of the
configurableElement element shall match
the value of the id attribute of some config-
urable element of a generator in the genera-
tor chain.

No The schema guaran-
tees uniqueness of id
values in a generator
chain. See also:
10.3.2.

Table B5—Configurable elements (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 225
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 225
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
SCR 5.15 configurableElement elements within
abstractor elements in design configuration
documents elements shall only reference
configurable elements that exist in the
abstractor referenced by the enclosing
abstractor element; the value of the refer-
enceId attribute of the configurableEle-
ment element shall match the value of the id
attribute of some configurable element of
the abstractor.

No The schema guaran-
tees uniqueness of id
values in an abstrac-
tor. See also: 10.4.2.

SCR 5.16 A parameter’s value or a configurable ele-
ment’s value shall match the element’s for-
mat attribute.

See
note.

Yes for a parameter’s
value and No for a
configurable ele-
ment’s value. See
also: 7.2, C.13, C.14,
C.15, C.16, and C.17.

SCR 5.17 A configurable element shall have a bit-
StringLength attribute if and only if it has a
format attribute with the value bitString.

Yes See also: C.13, C.14,
C.15, C.16, and C.17.

Table B5—Configurable elements (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
226 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

226 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
B.2.6 Ports

Table B6—Ports

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 6.1 49. The value of the name sub-element of any
logicalPort element within a busInterface
or abstractorInterface element shall match
the value of a logicalName element of the
abstraction definition referenced by the bus-
Interface element.

No This implies a bus
interface that does
not have an abstrac-
tionType element
shall not contain a
portMaps element,
since there are no
legal names for the
logicalPorts within
it. See also: 6.5.6.2.

SCR 6.2 If the abstraction definition referenced by a
bus interface or abstractor interface speci-
fies an initiative value for a logical transac-
tional port of requires for that interface
mode of bus interface, the port map shall
only map that logical port to a component
port with an initiative value of requires,
both, or phantom, or to a component port
with an allLogicalInitiativesAllowed
attribute with the value true.
For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus interfaces or abstractor interfaces.
For mirrored interfaces, the bus port initia-
tive values needs to be reversed before
doing the comparison.

No See also: 5.11.2,
6.5.6.2, and
6.11.16.2.

SCR 6.3 If the abstraction bus definition referenced
by a bus or abstractor interface specifies an
initiative value for a logical transactional
port of provides for that interface mode of
bus or abstractor interface, the port map
shall only map that logical port to a compo-
nent port with an initiative value of pro-
vides, both, or phantom, or to a component
port with an allLogicalInitiativesAllowed
attribute with the value true.
For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus or abstractor interfaces.
For mirrored interfaces, the bus port initia-
tive values shall be reversed before doing
the comparison. Mirrored bus and abstractor
interface shall be looked up as if they were
not mirrored.

No See also: 5.11.2,
6.5.6.2, and
6.11.16.2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 227
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 227
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
SCR 6.4 If the abstraction definition referenced by a
bus or abstraction interface specifies an ini-
tiative value for a logical transactional port
of both for that interface mode of the bus or
abstraction interface, and the bus interface
has a port map, the port map shall only map
that logical port to a component port with an
initiative value of both or phantom, or to a
component port with an allLogicalInitia-
tivesAllowed attribute with the value true.
For system interfaces, the port initiative val-
ues shall be looked up from the onSystem
element with the group name matching that
of the bus or abstraction interfaces.
For mirrored interfaces, the bus port initia-
tive values shall be reversed before doing
the comparison. Mirrored bus and abstrac-
tion interfaces shall be looked up as if they
were not mirrored.

No See also: 5.11.2,
6.5.6.2, and
6.11.16.2.

SCR 6.5 If the abstraction definition referenced by a
bus or abstraction interface specifies a direc-
tion for a logical wire port of in for that
interface mode of bus interface, the port
map shall only map that logical port to a
component port with a direction of in,
inout, or phantom, or to a component port
with an allLogicalDirectionsAllowed
attribute with the value true.
For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.
For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

No See also: 5.7.2,
6.5.6.2, 6.11.4.2, and
and 8.6.2.

SCR 6.6 If the abstraction definition referenced by a
bus or abstraction interface specifies a direc-
tion for a logical wire port of out for that
interface mode of bus interface, the port
map shall only map that logical port to a
component port with a direction of out,
inout, or phantom, or to a component port
with an allLogicalDirectionsAllowed
attribute with the value true.
For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus or abstraction interfaces.
For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

No See also: 5.7.2,
6.5.6.2, 6.11.4.2, and
and 8.6.2.

Table B6—Ports (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
228 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

228 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
SCR 6.7 If the abstraction definition referenced by a
bus or abstraction interface specifies a direc-
tion for a logical wire port of inout for that
interface mode of bus interface, the port
map shall only map that logical port to a
component port with a direction of inout or
phantom, or to a component port with an
allLogicalDirectionsAllowed attribute with
the value true.
For system interfaces, the port directions
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus or abstraction interfaces.
For mirrored interfaces, the bus port direc-
tions shall be reversed before doing the
comparison.

No See also: 5.7.2,
6.5.6.2, 6.11.4.2, and
and 8.6.2.

SCR 6.8 If the abstraction definition referenced by a
bus or abstraction interface specifies, for a
port, a presence value of required for that
interface mode of bus interface, and the bus
interface has a port map, the port shall be in
that port map.
For system interfaces, the port presence
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus interfaces.
Mirrored bus interfaces shall be looked up
as if they were not mirrored.

No Port maps are
optional, even on
buses with required
ports. See also
SCR 6.18. The third
possible presence
value (optional) nei-
ther forces nor for-
bids the inclusion of
the port in the port
map. See also: 5.11.2.

SCR 6.9 Only one component port in a port connec-
tion equivalence class may have the direc-
tion out.

No See also: 7.3.2 and
7.5.4.

SCR 6.10 Only one component port in a port connec-
tion equivalence class may have the initia-
tive provides.

No See also: 7.3.2 and
7.5.5.

SCR 6.11 If abstraction definition A extends abstrac-
tion definition B, then abstraction definition
A needs to have port elements for every port
declared in abstraction definition B.

No If a port in abstrac-
tion definition B is
not used in bus inter-
faces using abstrac-
tion definition A,
then, in abstraction
definition A, that port
shall have a presence
value of illegal for all
bus interface modes.
See also: 5.3.2 and
Table 2.

SCR 6.12 If the abstraction definition referenced by a
bus or abstraction interface specifies a port
is a wire port (i.e., the port element contains
a wire sub-element), the port map shall only
map that logical port to a wire component
port.

No See also: 5.5.2,
6.5.6.2, 6.11.4.2, and
and 8.6.2.

Table B6—Ports (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 229
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 229
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
SCR 6.13 If the abstraction definition referenced by a
bus or abstraction interface specifies a port
is a transactional port (i.e., the port element
contains a transactional sub-element), the
port map shall only map that logical port to
a transactional component port.

No See also: 5.10.2,
6.5.6.2, and
6.11.16.2.

SCR 6.14 At most one logical port of a port equiva-
lence class shall be a port of a bus interface
that participates in an interconnection to a
bus interface using a different abstraction.

No This rule prevents
shared ports from
crossing abstraction
boundaries, since
abstractors cannot
describe the handling
of such ports. See
also: 5.10.2, 7.3.2,
and 7.5.2.

SCR 6.15 The value of the group sub-element of an
onSystem element shall match the value of
one of the system group names referenced in
the bus definition referenced by the abstrac-
tion definition containing the onSystem ele-
ment.

No See also: 5.5.2 and
5.10.2.

SCR 6.16 The value of the group sub-element of a
system element shall match the value of one
of the system group names referenced in the
bus definition referenced by the bus inter-
face containing the onSystem element.

No See also: 6.5.2.2.

SCR 6.17 If an abstraction definition’s busType ele-
ment references an addressable bus, the
abstraction definition shall contain at least
one port element with an isAddress sub-
element.

No See also: 5.2.2, 5.6.2,
and 5.10.2.

SCR 6.18 If the abstraction definition referenced by a
bus interface specifies, for a port, a presence
value of illegal for that interface mode of
bus or abstraction interface, and the bus
interface has a port map, the port shall not
be in that port map.
For system interfaces, the port presence
shall be looked up from the onSystem ele-
ment with the group name matching that of
the bus or abstraction interfaces.
Mirrored bus and abstraction interfaces shall
be looked up as if they were not mirrored.

No Port maps are
optional, even on
buses with required
ports. See also
SCR 6.8. The third
possible presence
value (optional) nei-
ther forces nor for-
bids the inclusion of
the port in the port
map. See also: 5.7.2
and 5.11.2.

SCR 6.19 The range of a physicalPort shall be a sub-
set of the range of the referenced port in the
component's model element.

Yes See also: 6.5.6.2 and
B.1.7.

SCR 6.20 Within any portMap, the sizes of the ranges
of the physicalPort and the logicalPort
shall be equal.

Yes See also: 6.5.6.2.

Table B6—Ports (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
230 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

230 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
SCR 6.21 If the abstraction definition port referenced
by a logicalPort has a width defined, the
upper limit of the range of the logical port
shall be less than the width.

No See also: 6.5.6.2.

SCR 6.22 Within a single bus interface no logical bit
may be mapped more than once. I.e., if two
or more logicalPort elements for that bus
interface reference the same bus definition
port, their ranges shall not overlap.

Yes See also: 6.5.6.2.

SCR 6.23 If an abstraction definition port has a width
defined, any bus interface containing a port
map referencing that port needs to map all
the bits of that port. I.e., every bit in the
range [width-1:0] shall be mapped pre-
cisely once in the port maps of that bus
interface.

No This implies if there
is only a single logi-
calPort referencing
that bus port, its vec-
tor shall be [width-
1:0] or [0:width-
1]. See also: 6.5.6.2.

SCR 6.24 If a transactional port in a component is
mapped in a bus interface to a transactional
port in an abstraction definition, then the set
of names of serviceTypeDef elements in
component port shall match the set of type-
Names in the ServiceType element of the
abstraction definition's port.

No See also: 6.5.6.2 and
6.11.16.2.

SCR 6.25 Transactional ports shall only be connected
together (by an ad-hoc connection or
through an interconnection) if neither of
them contains a serviceTypeDefs element
or they both contain identical serviceType-
Defs elements.

No See also: 6.5.6.2 and
6.11.16.2.

SCR 6.26 A wire port with a direction of out shall not
have a driver element.

Yes See also: 6.11.6.2.

SCR 6.27 All ports referenced in an ad-hoc connection
shall have the same width; i.e., the absolute
sizes of their ranges shall be identical.

No See also: 7.5.4.

Table B6—Ports (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 231
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 231
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.2.7 Registers

Table B7—Registers

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 7.1 50. No register shall have an addressOffset that
falls within the address range of another reg-
ister in the same address block, unless one
of the registers and their alternateRegisters
have non-conflicting access elements. Non-
conflicting access elements have a value of
read-only, write-only, or writeOnce.
The address range of a register is the range
[addressOffset, addressOff-
set+ ((size + addressBitU-
nits-1) ÷ addressBitUnits-
1)*dim[n-1...0], where dim is the
maximum number of elements for each of n
dimensions.

Yes I.e., registers shall not
overlap, unless one is
only visible when
reading and the other
is only visible when
writing. See also:
6.10.2.2.

SCR 7.2 51. No bit field shall have a bitOffset value that
falls within the bit range of another bit field,
unless one of the registers has an access ele-
ment with the value read-only and the other
has an access element with the value write-
only or writeOnce. The range of a bit field
is the range [bitOffset, bitOff-
set + width-1].

Yes I.e., bit fields shall
not overlap, unless
one is only visible
when reading and the
other is only visible
when writing. See
also: 6.10.2.2 and
6.10.8.2.

SCR 7.3 52. Any register in an address block shall fall
entirely within that address block. I.e., for
every register 0 <= addressOff-
set < addressBlockRange - reg-
isterSize; where addressBlockRange
is the range of the address block and regis-
terSize is the size of the register in least
addressable units. This is equal to
(((size + addressBitUnits-1)
÷ addressBitUnits))* dim[n-
1...0], where dim is the maximum num-
ber of elements for each of n dimensions.

Yes See also: 6.10.2.2.

SCR 7.4 53. Any bit field in a register shall fall entirely
within that register. I.e., for every bit field 0
<= bitOffset <= RegisterSize –
bitFieldWidth; where RegisterSize is
the size (in bits) of the register, and bit-
FieldWidth is the width of bit field.

Yes See also: 6.10.2.2 and
6.10.8.2.

SCR 7.5 The size of any register shall be no greater
than the width of the containing address
block.

Yes See also: 6.8.6.2.
232 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

232 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
SCR 7.6 Any register in a register file shall fall
entirely within that register file.
I.e., for every register 0 <= regis-
ter.addressOffset < register-
FileRange - registerSize, where
registerFileRange is the range of the regis-
ter file and registerSize is the size of the
register in least addressable units. This is
equal to (((size + addressBitU-
nits-1) ÷ addressBitUnits))*
dim[n-1...0], where dim is the maxi-
mum number of elements for each of n
dimensions.

Yes See also: 6.10.2,
6.10.3, and 6.10.6.

SCR 7.7 Any register file in an address block shall
fall entirely within that address block.
I.e., for every register file 0 <=
registerFile.addressOffset <
addressBlockRange - register-
FileSize, where registerBlockRange is
the range of the address block and register-
FileSize is the size of the register in least
addressable units. This is equal to regis-
terFile.range * dim[n-1...0],
where dim is the maximum number of ele-
ments for each of n dimensions.

Yes See also: 6.8.2.

SCR 7.8 volatile can not be set to false for an
addressBlock where any containing regis-
ter or field already has volatile set to true.

Yes See also:6.10.2,
6.10.3, 6.10.8, 6.10.9,
and 6.8.3.

SCR 7.9 volatile can not be set to false for a register
where any containing field already has vola-
tile set to true.

Yes See also:6.10.2,
6.10.3, 6.10.8, and
6.10.9

SCR 7.10 When a field has writeValueConstraint/
useEnumeratedValues set to true, it also
needs to have at least one enumerated-
Value with the attribute usage set to write
or read-write.

Yes See also: 6.10.8,
6.10.9, and 6.10.10.

SCR 7.11 When a field has a writeValueConstraint/
minimum value and has a writeValueCon-
straint/maximum value, the value of maxi-
mum shall be greater than or equal to the
value of minimum.

Yes See also: 6.10.8,
6.10.9, and 6.10.10.

SCR 7.12 When multiple field elements have the same
typeIdentifier, the field object shall contain
the same contents for the elements in field-
DefinitionGroup.

Yes See also: 6.10.8 and
6.10.9.

SCR 7.13 When multiple register or alternateRegis-
ter elements have the same typeIdentifier,
the register object shall contain the same
contents for the elements in the registerDef-
initionGroup or alternateRegisterDefini-
tionGroup.

Yes See also: 6.10.3 and
6.10.5.

Table B7—Registers (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 233
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 233
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.2.8 Memory maps

SCR 7.14 When multiple registerFile elements have
the same typeIdentifier, the register file
object shall contain the same contents for
the elements in the registerFileDefinition-
Group.

Yes See also: 6.10.6.

SCR 7.15 When multiple addressBlock elements have
the same typeIdentifier, the address block
object shall contain the same contents for
the elements in the addressBlockDefini-
tionGroup.

Yes See also: 6.8.3.

Table B8—Memory maps

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 8.1 54. The width of an address block included in a
memory map shall be a multiple of the
memory map's addressUnitBits.

Yes See also: 6.8.2.2.

SCR 8.2 55. Neither a parallel bank, nor banks within a
parallel bank, shall contain subspace maps.

Yes See also: 6.8.5.2,
6.8.7.2, and 6.8.8.2.

SCR 8.3 A read-only bank shall only contain read-
only addressBlocks or banks.

Yes See also: 6.8.4.2 and
6.10.2.2.

SCR 8.4 A read-only addressBlock shall only con-
tain read-only registers.

Yes See also: 6.8.4.2 and
6.10.2.2.

SCR 8.5 A read-only register shall only contain
read-only fields.

Yes See also: 6.10.2.2.

SCR 8.6 A write-only bank shall only contain
write-only or writeOnce addressBlocks or
banks.

Yes See also: 6.8.4.2 and
6.10.2.2.

SCR 8.7 A write-only addressBlock shall only con-
tain write-only or writeOnce registers.

Yes See also: 6.8.4.2 and
6.10.2.2.

SCR 8.8 A write-only register shall only contain
write-only or writeOnce fields.

Yes See also: 6.10.2.2.

SCR 8.9 A register shall only appear in an address-
Block of usage register.

Yes See also: 6.8.4.2 and
6.10.2.2.

SCR 8.10 A read-writeOnce bank shall only contain
read-only, read-writeOnce, or writeOnce
addressBlocks or banks.

Yes See also: 6.8.4.2 and
6.10.2.2.

Table B7—Registers (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
234 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

234 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
B.2.9 Addressing

SCR 8.11 A read-writeOnce addressBlock shall only
contain read-only, read-writeOnce, or
writeOnce registers.

Yes See also: 6.8.4.2 and
6.10.2.2.

SCR 8.12 A read-writeOnce register shall only con-
tain read-only, read-writeOnce, or writ-
eOnce fields.

Yes See also: 6.10.2.2.

SCR 8.13 A writeOnce bank shall only contain writ-
eOnce addressBlocks or banks.

Yes See also: 6.8.4.2 and
6.10.2.2.

SCR 8.14 A writeOnce addressBlock shall only con-
tain writeOnce registers.

Yes See also: 6.8.4.2 and
6.10.2.2.

SCR 8.15 A writeOnce register shall only contain
writeOnce fields.

Yes See also: 6.10.2.2.

SCR 8.16 Two addressBlock elements in the same
memoryMap shall not overlap.

Yes See also: 6.8.2.2.

Table B9—Addressing

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 9.1 57. A non-hierarchical addressable master bus
interface shall have an addressSpaceRef
sub-element.

No Since there are poten-
tially useful applica-
tions of IP-XACT
that do not require
addressing informa-
tion, failure to obey
this rule should be
treated as a warning
rather than an error.
See also: 5.6.2 and
6.5.3.

SCR 9.2 58. A non-hierarchical addressable slave bus
interface shall have a memoryMapRef sub-
element or one or more bridge sub-elements
referencing addressable master bus inter-
faces.

No Since there are poten-
tially useful applica-
tions of IP-XACT
that do not require
addressing informa-
tion, failure to obey
this rule should be
treated as a warning
rather than an error.
See also: 5.6.2 and
6.5.4.2.

Table B8—Memory maps (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 235
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 235
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.2.10 Hierarchy

SCR 9.3 Only an address space referenced by the
addressSpaceRef sub-element of a cpu ele-
ment may contain an exectutableImage
sub-element.

No See also: 6.7.1.2 and
6.7.3.2.

SCR 9.4 bitSteering is not allowed in mirrored-mas-
ters, system or mirrored-system interface
modes.

Yes See also: 6.5.1.2.

SCR 9.5 Data widths in a channel shall all be a power
2 multiple of their bitsInLau.

Yes See also: 6.5.1.2.

SCR 9.6 bitsInLau in a channel shall all be a power
2 multiple of the smallest bitsInLau.

Yes See also: 6.5.1.2.

SCR 9.7 If a languageTools element contains a link-
erFlags element or a linkerCommandFile
element, it shall also contain a linker ele-
ment.

Yes See also: 6.7.4.2.

SCR 9.8 For each segment within an addressSpace,
everything between offsetAddress and off-
setAddress + range shall be contained
within the range of that addressSpace.

Yes See also: 6.7.1.2 and
6.7.2.2.

SCR 9.9 The segmentRef needs to reference an
existing segment of the addressSpace in
the master referenced by the masterRef.

Yes See also: 6.8.9.2.

Table B10—Hierarchy

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 10.1 59. All members of a hierarchical family of bus
interfaces shall reference the same busDefi-
nition in their busType sub-elements

No They need not refer-
ence the same
abstraction defini-
tions in their abstrac-
tionType elements.
See also: 7.6.2.

SCR 10.2 60. All members of a hierarchical family of bus
interfaces shall have the same interface
mode (master, slave, system, etc.)

No See also: 7.6.2.

SCR 10.3 61 If any member of a hierarchical family of
bus interfaces has a connectionRequired
element with a value of true, they all shall
have this value.

No See also: 7.6.2.

Table B9—Addressing (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
236 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

236 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
SCR 10.4 63. If any member of a hierarchical family of
bus interfaces has a bitSteering element
with a value of true, they all shall have this
value.

No See also: 7.6.2.

SCR 10.5 64. If any member of a hierarchical family of
bus interfaces has a portMap sub-element,
they all shall.

No See also: 7.6.2.

SCR 10.6 65. If any two bus interfaces in a hierarchical
family of bus interfaces reference the same
abstraction definitions, their portMaps shall
also reference the same set of logical ports.

No See also: 7.6.2.

SCR 10.7 66. In a hierarchical family of bus interfaces, all
ports in the portMaps referencing the same
bus port shall map the same set of bits from
that logical port.

No See also: 7.6.2.

SCR 10.8 67. In a hierarchical family of bus interfaces, the
physicalPort/name of all ports in the port-
Map referencing the same logical port shall
reference ports with the same direction.

No See also: 7.6.2.

SCR 10.9 68. In a hierarchical family of bus interfaces, if
the component ports referenced by the
physicalPort/name of all ports in the port-
Maps referencing the same logical port
have default values, they shall have identical
default values.

No I.e., it is legal for any
descriptions of a port
to have default val-
ues, but those that
have default values
shall have identical
default values. See
also: 7.6.2.

SCR 10.10 69. In a hierarchical family of bus interfaces, the
physicalPort/name of all ports in the port-
Map referencing the logical bus port shall
reference ports with identical clockDriver
sub-elements.

No See also: 7.6.2.

SCR 10.11 70. In a hierarchical family of bus interfaces, the
physicalPort/name of all ports in the port-
Map referencing the same logical port shall
reference ports with identical singleShot-
Driver sub-elements.

No See also: 7.6.2.

SCR 10.12 71. In a hierarchical family of bus interfaces, the
physicalPort/name of all ports in the port-
Map referencing the same logical port shall
reference ports with identical portCon-
straintSets sub-elements.

No See also: 7.6.2.

Table B10—Hierarchy (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 237
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 237
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.2.11 Hierarchy and memory maps

Table B11—Hierarchy and memory maps

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 11.1 72. In a hierarchical family of slave or mirrored-
master bus interfaces, all bus interfaces that
define addressing information shall define
the same set of addresses to be visible.

No I.e., if one member of
the family defines an
address as a valid
address accessible
through that bus
interface, all mem-
bers of the family that
define addressing
information shall
define that same
address as a valid
address accessible
through that bus
interface. See also:
7.6.2.

SCR 11.2 73. For any member of a hierarchical family of
slave or mirrored-master bus interfaces, if
an address resolves to reference a location
outside the containing hierarchical family of
components, that address shall reference the
same location (i.e., the same address on the
same bus) in every member of the hierarchi-
cal family that defines addressing informa-
tion.

No I.e., if C is a hierar-
chical component and
the IP-XACT
description of C itself
or some design of C
specifies accessing
address a of C on bus
interface I results in
an access to address
b of some other bus
interface J of C, all
designs of C that
specify addressing on
I shall indicate the
same about this
address. See also:
7.6.2.

SCR 11.3 74. If any bit address (i.e., address plus bit off-
set) is resolved to a bit within an address
block by any member of a hierarchical fam-
ily of slave bus interfaces, all members of
that family with addressing information
shall resolve that bit address to a bit with
identical behavioral properties.

No If an address resolves
to a location within
the hierarchical fam-
ily of components, its
only observable fea-
tures from outside the
hierarchical family
are its behavioral
properties (except as
defined in SCR 11.4).
See also: 7.6.2.

SCR 11.4 75. When any two addresses resolve to the same
location in the addressing information of
any member of a hierarchical family of bus
interfaces, this shall be true for all members
of the hierarchical family of bus interfaces
that have addressing information.

No I.e., aliasing of
addresses shall be
preserved. Aliasing is
observable from out-
side the hierarchical
family. See also:
7.6.2.
238 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

238 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
B.2.12 Constraints

Table B12—Constraints

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 12.1 A component wire port with direction out
shall not have a drive constraint.

Yes See also: 6.11.11.2.

SCR 12.2 A component wire port with a direction in
shall not have a load constraint.

Yes See also: 6.11.12.2.

SCR 12.3 An onMaster, onSlave, or onSystem ele-
ment of a wire port with direction out shall
not contain a drive constraint within its
modeConstraint element.

Yes See also: 6.11.11.2.

SCR 12.4 An onMaster, onSlave, or onSystem ele-
ment of a wire port with direction in shall
not contain a load constraint within its
modeConstraint element.

Yes See also: 6.11.12.2.

SCR 12.5 An onMaster, onSlave, or onSystem ele-
ment of a wire port with direction out shall
not contain a load constraint within its mir-
roredModeConstraint element.

Yes See also: 6.11.12.2.

SCR 12.6 An onMaster, onSlave, or onSystem ele-
ment of a wire port with direction in shall
not contain a drive constraint with its mir-
roredModeConstraint element.

Yes See also: 6.11.11.2.

SCR 12.7 The clockName in a timing constraint of a
component port shall be the name of another
component port of the component or an oth-
erClockDriver of the component.

Yes See also: 6.11.13.2.

SCR 12.8 The clockName in a timing constraint of a
port within an abstraction definition shall be
the name of another port of the abstraction
definition; that referenced port shall have an
isClock sub-element.

Yes See also: 5.6.2 and
6.11.13.2.

SCR 12.9 The value of any clockPeriod element shall
be greater than 0.

Yes See also: 6.11.7.2.

SCR 12.10 The value of any clockPulseValue element
shall be 0 or 1.

Yes See also: 6.11.7.2.

SCR 12.11 The value of any singleShotDuration ele-
ment shall be greater than 0.

Yes See also: 6.11.8.2.

SCR 12.12 The value of any singleShotValue element
shall be 0 or 1.

Yes See also: 6.11.8.2.

SCR 12.13 Only a scalar port (i.e., a single bit port) may
have a clockDriver or a singleShotDriver
sub-element.

Yes See also: 6.11.6.2.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 239
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 239
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
B.2.13 Design configurations

SCR 12.14 A whiteboxElementRef, which references
a whiteboxElement with a whiteboxType
of pin, shall have a pathName that is a port
in the containing description.

Yes See also: 6.16.

SCR 12.15 A whiteboxElementRef, which references
a whiteboxElement with a whiteboxType
of register, shall have a pathName that is a
register in the containing description.

Yes See also: 6.16.

Table B13—Design configurations

Rule
number

V1.2 rule
number Rule

Single
doc

check
Notes

SCR 13.1 The value of any generatorName element
shall match the value of a name sub-ele-
ment of a generator element in the genera-
tor chain referenced by the generatorChain
element enclosing the generatorName ele-
ment.

No See also: 10.3.2.

SCR 13.2 The value of an instanceName within a
viewConfiguration shall match the value of
the instanceName element of a compo-
nentInstance of the design document refer-
enced by the design configuration document
containing the viewConfiguration element.

No See also: 10.2.2.

SCR 13.3 The value of an viewName within a view-
Configuration shall match the value of the
name element of a view within the compo-
nent referenced by the component instance
that is itself referenced by the instance-
Name sub-element of the viewConfigura-
tion element.

No See also: 10.2.2.

SCR 13.4 No two interconnectionConfiguration ele-
ments within a design configuration shall
have the same interconnectionRef value.

Yes See also: 10.4.2.

SCR 13.5 No two viewConfiguration elements within
a design configuration shall reference the
same view. i.e., no two viewConfiguration
elements may have the same instance-
Name.

Yes See also: 10.2.2.

Table B12—Constraints (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
240 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

240 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
B.2.14 Rules requiring external knowledge

SCR 13.6 No two abstractor elements within a design
configuration shall have the same instance-
Name element values.

Yes Also unique to the
component instance
names in the refer-
enced design. See
also: 10.4.2.

SCR 13.7 No two generators elements within a gen-
eratorChainConfiguration element shall
have the same generatorName element val-
ues.

Yes See also: 10.3.2.

SCR 13.8 No two generatorChainConfiguration ele-
ments within the same design configuration
shall reference the same generator chain
through their generatorChainRef elements.

Yes See also: 10.3.2.

Table B14—Rules requiring external knowledge

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes

SCR 14.1 76. The name sub-element of a file element can
contain environment variables in the form of
${ENV_VAR} which are meaningful to the
host operating system and, when expanded,
shall result in a string which is a valid URI.

Yes See also: 6.13.2.2.

SCR 14.2 77. In VLNVs, the vendor name shall be speci-
fied as the top-level internet domain name
for that organization. The domain shall be
ordered with the top-level domain name at
the end (as in HTTP URLs), e.g., men-
tor.com, arm.com, etc.

Yes This is to guarantee
uniqueness of vendor
names. See also:
C.6.2 and C.6.4.

SCR 14.3 78. The envIdentifier of a view shall be a text
string consisting of three fields delimited by
colons (:). The first two fields shall be a
language name, which shall be one of the
languages available for fileTypes, and a tool
name. The tool name may be generic (e.g.,
*Simulation or *Synthesis) or a
specific tool name, such as DesignCom-
piler or VCS. The third field shall be an
arbitrary vendor-specific text string.

Yes Tool vendors need to
publish a list of valid
tool names in The
SPIRIT Consortium
web site. See also:
6.11.2.2.

Table B13—Design configurations (Continued)

Rule
number

V1.2 rule
number

Rule
Single

doc
check

Notes
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 241
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 241
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
242 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

242 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Annex C

(normative)

Common elements and concepts

This annex details common elements and concepts that appear many times throughout the Standard.

C.1 nameGroup group

C.1.1 Schema

The following schema details the information contained in the nameGroup group.

C.1.2 Description

The nameGroup group defines any descriptive text for the containing element. The nameGroup group
definition contains the following elements.

a) name (mandatory) identifies the containing element. The name element is of type Name.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.
The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-
ment is of type string.

C.2 nameGroupOptional group

C.2.1 Schema

The following schema details the information contained in the nameGroupOptional group.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 243
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 243
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
C.2.2 Description

The nameGroupOptional group defines any descriptive text for the containing element. The
nameGroupOptional group definition contains the following elements.

a) name (optional) identifies the containing element. The name element is of type Name.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.
The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-
ment is of type string.

C.3 nameGroupPort group

C.3.1 Schema

The following schema details the information contained in the nameGroupPort group.

C.3.2 Description

The nameGroupPort group defines any descriptive text for the containing element. The nameGroupPort
group definition contains the following elements.

a) name (mandatory) identifies the containing element. The name element is of type portName.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.
The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-
ment is of type string.
244 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

244 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
C.4 nameGroupNMTOKEN group

C.4.1 Schema

The following schema details the information contained in the nameGroupNMTOKEN group.

C.4.2 Description

The nameGroupNMTOKEN group defines any descriptive text for the containing element. The
nameGroupNMTOKEN group definition contains the following elements.

a) name (mandatory) identifies the containing element. The name used shall match the corresponding
port name found in any views of the containing component. The name element is of type
NMTOKEN.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.
The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-
ment is of type string.

C.5 nameGroupString group

C.5.1 Schema

The following schema details the information contained in the nameGroupString group.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 245
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 245
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
C.5.2 Description

The nameGroupString group defines any descriptive text for the containing element. The
nameGroupString group definition contains the following elements.

a) name (mandatory) identifies the containing element. The name element is of type string.

b) displayName (optional) allows a short descriptive text to be associated with the containing element.
The displayName element is of type string.

c) description (optional) allows a textual description of the containing element. The description ele-
ment is of type string.

C.6 versionedIdentifier group

C.6.1 Schema

The following schema details the information contained in the versionedIdentifier group.

C.6.2 Description

The versionedIdentifier group defines a unique reference of or from an IP-XACT description. Only one
object with a given VLNV may be present in a DE at any given time. The timing and way to change the
VLNV of an object is completely up to the user or developer. The versionedIdentifier group definition
contains the following four subelements.

a) vendor (mandatory) identifies the owner of this description. The format of the vendor element is
the company internet domain name in left to right order (e.g., spiritconsortium.org not
org.spiritconsortium). The vendor element is of type Name.

b) library (mandatory) identifies the library of this description. This allows a vendor to group descrip-
tions. The library element is of type Name.

c) name (mandatory) identifies the name of this description within a library. The name element is of
type NMTOKEN.

d) version (mandatory) identifies the version of this description. This allows a vendor to provide many
descriptions which all have the same name, but are still uniquely identified. The version may appear
as an alphanumeric string and contain a set of substrings, with non-alphanumeric delimiters in-
between. Each IP supplier shall have their own cataloguing system for setting version numbers. The
version element is of type NMTOKEN.

See also: SCR 1.1, SCR 1.2, and SCR 14.2.
246 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

246 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
C.6.3 Sorting and comparing version elements

Sorting and comparing version elements determines whether:

— an IP is a component that has been previously imported;

— multiple versions of the same IP exist in a design;

— a newer version of an IP exists.

To sort and compare version elements, subdivide the version number into major fields and subfields. Major
fields may be separated by a non-alphanumeric delimiter such as :, ., -, _, etc. Each major field can be
compared to determine equivalence and broken down further into subfields if necessary.

C.6.3.1 Comparison rules

a) Each version element is broken into its major fields, which are separated using the appropriate
delimiter (e.g., : or .).

b) Major fields are compared against each other from left-to-right.

c) Subfields, within each major field, need to be examined if the major fields are alphanumeric. Each
major field shall have alphabetical and numerical subfields that are separated from right-to-left.

d) To summarize the rules for the comparison of each subfield in a major field:

1) Numeric—compare the integer values of numeric subfields.

2) Alphabetic:

i) String—perform a simple string comparison.

ii) Case—ignore alphabetic case (e.g., a-A are the same).

It is possible for different representations of version numbers to be considered equal. For example, under
these rules, A1 and A01 are equal, since numerical subfields are compared numerically, and A.B equals
A_B, since delimiters are not compared.

C.6.3.2 Comparison examples

The following examples illustrate the sorting and comparing of a version elements.

Example 1

The first case uses: 205:75WR16 and 215:50HR15.

a) Each of these version numbers break down into the following two major fields, separated by the :
delimiter: 205 75WR16 and 215 50HR15.

b) Major fields are compared against each other from left-to-right. In this example, the first major
fields (205 and 215) differ between the VLNV strings and the comparison ends there. This case is
also simplified since the first major field is an integer (i.e., numeric).

c) Subfields, within each major field, need to be examined if the major fields are alphanumeric. Each
major field shall have alphabetical and numerical subfields that are separated from right-to-left.

Example 2

In the next case, two VLNV have the same first major field and their second major subfields need to be
compared: e.g., 205:45R16 and 205:55R15.

a) The first major field (205) is the same between these two VLNV, so the second major field is
checked. These second major fields are broken down into the following alphabetic and numeric sub-
fields: 45 R 16 and 55 R 15.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 247
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 247
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
b) The subfields are compared from left-to-right. The first (and in this case only) comparison is 45
versus 55, so these subfields are not equal. The major fields are not equivalent.

C.6.4 Version control

Each file conforming to the top-level schema has a set of VLNV elements which, when considered together,
form a unique identifier (a version control number) for the information contained in that XML document.
The VLNV of any IP-XACT information is not the same as the version of the file which might contain that
information.

NOTE—An XML file might be revised in a way that does not materially affect the IP-XACT information content. For
example, copyright notices are updated, comments are added, and environment variable names used as part of the filena-
mes might be changed (but still point to the same files). These changes may not necessitate changing the VLNV.

Many developers of IP libraries use a version control system to track updates and changes to the various files
that contribute to the overall design and IP package information. At any time, individual files may be
modified and updated as development of that design or IP progresses. At appropriate junctures, releases are
made, each consisting of a particular combination of files at different levels of version.

An IP-XACT description is one of the files that can be very usefully tracked in this way and updated in-line
with other design modifications. There is no direct link between the version number of the file and the
VLNV identifier contained in that description. In many cases, however, the VLNV can be coordinated with
the overall release package version.

See also: SCR 1.1, SCR 1.2, and SCR 14.2.

C.7 libraryRefType

C.7.1 Schema

The following schema details the information contained in the libraryRefType type.

C.7.2 Description

The libraryRefType type defines a set of four attributes that reference to another IP-XACT description
through the unique VLNV identifier.

a) The vendor attribute (mandatory) identifies the owner of the referenced description. This attribute is
of type Name.
248 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

248 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
b) The library attribute (mandatory) identifies the library of the referenced description. This attribute
is of type Name.

c) The name attribute (mandatory) identifies the name of the referenced description. This attribute is of
type NMTOKEN.

d) The version attribute (mandatory) identifies the version of the referenced description. This attribute
is of type NMTOKEN.

C.8 fileSetRef

C.8.1 Schema

The following schema details the information contained in the fileSetRef element.

C.8.2 Description

The fileSetRef element defines a reference to a fileSet contained in the containing document. The
fileSetRef element contains the following element.

localName (mandatory) shall contain a name of a fileSet/name within the local description. local-
Name is of type Name.

C.9 fileType

C.9.1 Schema

The following schema details the information contained in the fileType type.

C.9.2 Description

The fileType type defines the format of a referenced file. The fileType group contains one or more of the
following two elements.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 249
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 249
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
a) fileType (mandatory) describes the type of file referenced from this enumerated list of industry stan-
dard files types.

1) unknown

2) asmSource, cSource, cppSource, eSource, OVASource, perlSource, pslSource,
SVASource, tclSource, veraSource,

systemCSource, systemCSource-2.0, systemCSource-2.0.1, systemCSource-2.1,
systemCSource-2.2,

systemVerilogSource, systemVerilogSource-3.0, systemVerilogSource-3.1,
systemVerilogSource-3.1a,

verilogSource, verilogSource-95, verilogSource-2001,
vhdlSource, vhdlSource-87, and vhdlSource-93

3) swObject and swObjectLibrary

4) vhdlBinaryLibrary and verilogBinaryLibrary

5) executableHdl and unelaboratedHdl

6) SDC

b) userFileType (mandatory) describes any other file type that can not be described from the list for
fileType. The userFileType element is of type string.

C.10 vendorExtensions

C.10.1 Schema

The following schema details the information contained in the vendorExtensions element.

C.10.2 Description

The vendorExtensions element is a place in the description in which any vendor specific information can be
stored. The vendorExtensions element allows any well-formed description.

C.11 parameters

C.11.1 Schema

The following schema details the information contained in the parameters element.
250 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

250 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
C.11.2 Description

The parameters element contains an unbounded list of parameter elements. parameter (mandatory)
defines a configurable element related to the containing element. The parameter definition allows for the
assignment of a name and a value. The parameter element also allows for vendor attributes to be applied.
The parameter element definition contains the following elements.

a) nameGroupString is defined in C.1.

b) value (mandatory) contains the actual value of the parameter. The value element is of type string.
The value element is configurable with attributes from string.prompt.att, see C.12.

c) vendorExtensions (optional) adds any extra vendor-specific data related to the parameter. See
C.10.

C.12 Configuration

Some elements in a component, abstractor, or generator chain description are defined as being configurable.
This means that the value of the element can be set differently for each use of the description, which allows
a single description to be used in many different ways.

The same method is used to configure elements in a component, abstractor, or generator chain. The
configuration is done via a reference to an id attribute in the configured element. Any element in a
component, abstractor, or generator chain description with an id attribute is configurable. The id attribute is
always contained inside an attribute group. This group provides other attributes that specify how the element
may be configured, e.g., from a choice list or free-form text. This group also defines the type of values for
setting the element, e.g., integer, float, or string. There are five different attribute groups defined for four
different types of configurable elements:

a) bool.prompt.att, see C.13.

b) float.prompt.att, see C.14.

c) long.prompt.att or long.att, see C.15 or C.16, respectively.

d) string.prompt.att, see C.17.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 251
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 251
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
The location of the configuration values differs based on the description being configured. A component
description is configured via the design description, see Clause 7. When the component instance is
referenced in the design description, a configurableElementValue element may be specified to configure
any elements for this instance, see 7.2. An abstractor or generator chain description is configured via the
design configuration description, see 10.2. A design configuration description may contain an
interconnectionConfiguration element or a generatorChainConfiguration element, each of which may
contain a configurableElementValue element used to configure an abstractor or generator chain,
respectively.

C.13 bool.prompt.att

C.13.1 Schema

The following schema details the information contained in the bool.prompt.att attribute group.

C.13.2 Description

The bool.prompt.att attribute group defines a set of attributes to be applied to the containing element. The
bool.prompt.att attribute group contains the following attributes.

a) format (optional) is the input and storage type for the configurable elements and, optionally, the
output type for modelParameters. The value shall be one from of the following.

1) bitString indicates the input or storage shall be in the format of a double quoted string of 1's
and 0's or a scaledInteger number. The output shall be a bit string in the format specified by the
language, e.g., VHDL = “1010” or Verilog = 4’b1010.

2) bool (the default) indicates the input or storage shall be one of true or false. The output shall be
a Boolean type as specified by the language.
252 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

252 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
3) float indicates the input or storage shall a decimal floating point number. The output shall be a
decimal floating point number.

4) long indicates the input shall be a scaledInteger number. The storage shall be in a format com-
patible with the containing element and the output shall be a decimal integer number.

5) string indicates the input and storage shall contain any characters. The output shall be a string
in the format as specified by the language.

b) resolve (optional) defines how the value for the containing element is configured. The value shall be
one of the following.

1) immediate indicates the value shall be specified in the containing element.

2) user indicates the value shall be specified by user input and the new value stored in a design or
design configuration description under the configurableElement element.

3) dependent indicates the value shall be defined by an XPATH equation (see Annex E) defined
in the dependency attribute. The dependency attribute requires the resolve attribute to be
equal to dependent.

4) generated indicates the value shall be set by a generator and the new value stored in a design or
design configuration description under the configurableElement element.

c) id (optional) assigns a unique identifier to the containing element for reference throughout the con-
taining description. The id attribute is required if the element has a resolve type equal to user, gen-
erated or is referenced in a dependency equation. This id is referenced in two ways. The first
reference is by the configurableElement in a design or design configuration description. The sec-
ond is in a dependency attribute XPATH equation. The id attribute if of type ID.

d) dependency (optional) is an XPATH 1.0 equation (see Annex E) for the value of the containing ele-
ment. The resolve attribute shall be equal to dependent. The dependency attribute is of type string.

e) ##any (optional) indicates any additional attributes in any namespace are allowed in the containing
element. These additional attributes are called vendor attributes.

f) choiceRef (optional) indicates the value of the containing element is defined in the referenced
choice element. The choiceRef attribute is of type Name.

g) order (optional) indicates how elements are presented, when resolve equal user. The elements are
presented in ascending order. The order attribute is of type float.

h) configGroups (optional) indicates a name to group elements together; elements with matching val-
ues for this attribute are contained in the same group. There is no semantic meaning to this attribute.
The configGroups attribute is of type NMTOKENS.

i) bitStringLength (optional) indicates the length of the bit string. The format attribute shall be equal
to bitString. The bitStringLength attribute is of type nonNegativeInteger.

j) minimum (optional) indicates the lower bound for the value of the containing element. This check
is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type
of the minimum attribute. The minimum attribute is of type string.

k) maximum (optional) indicates the upper bound for the value of the containing element. This check
is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type
of the maximum attribute. The maximum attribute is of type string.

l) rangeType (optional) indicates the range for the minimum and maximum attributes. The value
shall be one from the enumerated list of float (the default), int, unsigned int, long, or unsigned
long. float indicates a floating point number, int or long indicates a scaledInteger, and unsigned int
or unsigned long indicates a scaledNonNegativeInteger.

m) prompt (optional) defines a prompt string which a DE can use if the resolve attribute is equal to
user. The prompt attribute is of type string.

See also: The SCRs in Table B5.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 253
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 253
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
C.14 float.prompt.att

C.14.1 Schema

The following schema details the information contained in the float.prompt.att attribute group.

C.14.2 Description

The float.prompt.att attribute group defines a set of attributes to be applied to the containing element. The
float.prompt.att attribute group contains the following attributes.

a) format (optional) is the input and storage type for the configurable elements and, optionally, the
output type for modelParameters. The value shall be one from of the following.

1) bitString indicates the input or storage shall be in the format of a double quoted string of 1's
and 0's or a scaledInteger number. The output shall be a bit string in the format specified by the
language, e.g., VHDL = “1010” or Verilog = 4’b1010.

2) bool indicates the input or storage shall be one of true or false. The output shall be a Boolean
type as specified by the language.

3) float (the default) indicates the input or storage shall a decimal floating point number. The out-
put shall be a decimal floating point number.

4) long indicates the input shall be a scaledInteger number. The storage shall be in a format com-
patible with the containing element and the output shall be a decimal integer number.

5) string indicates the input and storage shall contain any characters. The output shall be a string
in the format as specified by the language.

b) resolve (optional) defines how the value for the containing element is configured. The value shall be
one from the enumerated list of immediate, user, dependent, or generated.
254 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

254 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
1) immediate indicates the value shall be specified in the containing element.

2) user indicates the value shall be specified by user input and the new value stored in a design or
design configuration description under the configurableElement element.

3) dependent indicates the value shall be defined by an XPATH equation (see Annex E) defined
in the dependency attribute. The dependency attribute requires the resolve attribute to be
equal to dependent.

4) generated indicates the value shall be set by a generator and the new value stored in a design or
design configuration description under the configurableElement element.

c) id (optional) assigns a unique identifier to the containing element for reference throughout the con-
taining description. The id attribute is required if the element has a resolve type equal to user, gen-
erated or is referenced in a dependency equation. This id is referenced in two ways. The first
reference is by the configurableElement in a design or design configuration description. The sec-
ond is in a dependency attribute XPATH equation. The id attribute if of type ID.

d) dependency (optional) is an XPATH 1.0 equation (see Annex E) for the value of the containing ele-
ment. The resolve attribute shall be equal to dependent. The dependency attribute is of type string.

e) ##any (optional) indicates any additional attributes in any namespace are allowed in the containing
element. These additional attributes are called vendor attributes.

f) choiceRef (optional) indicates the value of the containing element is defined in the referenced
choice element. The choiceRef attribute is of type Name.

g) order (optional) indicates how elements are presented, when resolve equal user. The elements are
presented in ascending order. The order attribute is of type float.

h) configGroups (optional) indicates a name to group elements together; elements with matching val-
ues for this attribute are contained in the same group. There is no semantic meaning to this attribute.
The configGroups attribute is of type NMTOKENS.

i) bitStringLength (optional) indicates the length of the bit string. This attribute is required if the for-
mat attribute is equal to bitString. The bitStringLength attribute is of type nonNegativeInteger.

j) minimum (optional) indicates the lower bound for the value of the containing element. This check
is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type
of the minimum attribute. The minimum attribute is of type string.

k) maximum (optional) indicates the upper bound for the value of the containing element. This check
is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type
of the maximum attribute. The maximum attribute is of type string.

l) rangeType (optional) indicates the range for the minimum and maximum attributes. The value
shall be one from the enumerated list of float (the default), int, unsigned int, long, or unsigned
long. float indicates a floating point number, int or long indicates a scaledInteger, and unsigned int
or unsigned long indicates a scaledNonNegativeInteger.

m) prompt (optional) defines a prompt string which a DE can use if the resolve attribute is equal to
user. The prompt attribute is of type string.

See also: The SCRs in Table B5.

C.15 long.prompt.att

C.15.1 Schema

The following schema details the information contained in the long.prompt.att attribute group.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 255
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 255
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
C.15.2 Description

The long.prompt.att attribute group defines a set of attributes to be applied to the containing element. The
long.prompt.att attribute group contains the following attributes.

a) format (optional) is the input and storage type for the configurable elements and, optionally, the
output type for modelParameters. The value shall be one from of the following.

1) bitString indicates the input or storage shall be in the format of a double quoted string of 1's
and 0's or a scaledInteger number. The output shall be a bit string in the format specified by the
language, e.g., VHDL = “1010” or Verilog = 4’b1010.

2) bool indicates the input or storage shall be one of true or false. The output shall be a Boolean
type as specified by the language.

3) float indicates the input or storage shall a decimal floating point number. The output shall be a
decimal floating point number.

4) long (the default) indicates the input shall be a scaledInteger number. The storage shall be in a
format compatible with the containing element and the output shall be a decimal integer num-
ber.

5) string indicates the input and storage shall contain any characters. The output shall be a string
in the format as specified by the language.

b) resolve (optional) defines how the value for the containing element is configured. The value shall be
one from the enumerated list of immediate, user, dependent or generated.

1) immediate indicates the value shall be specified in the containing element.

2) user indicates the value shall be specified by user input and the new value stored in a design or
design configuration description under the configurableElement element.

3) dependent indicates the value shall be defined by an XPATH equation (see Annex E) defined
in the dependency attribute. The dependency attribute requires the resolve attribute to be
equal to dependent.
256 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

256 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
4) generated indicates the value shall be set by a generator and the new value stored in a design or
design configuration description under the configurableElement element.

c) id (optional) assigns a unique identifier to the containing element for reference throughout the con-
taining description. The id attribute is required if the element has a resolve type equal to user, gen-
erated or is referenced in a dependency equation. This id is referenced in two ways. The first
reference is by the configurableElement in a design or design configuration description. The sec-
ond is in a dependency attribute XPATH equation. The id attribute if of type ID.

d) dependency (optional) is an XPATH 1.0 equation (see Annex E) for the value of the containing ele-
ment. The resolve attribute shall be equal to dependent. The dependency attribute is of type string.

e) ##any (optional) indicates any additional attributes in any namespace are allowed in the containing
element. These additional attributes are called vendor attributes.

f) choiceRef (optional) indicates the value of the containing element is defined in the referenced
choice element. The choiceRef attribute is of type Name.

g) order (optional) indicates how elements are presented, when resolve equal user. The elements are
presented in ascending order. The order attribute is of type float.

h) configGroups (optional) indicates a name to group elements together; elements with matching val-
ues for this attribute are contained in the same group. There is no semantic meaning to this attribute.
The configGroups attribute is of type NMTOKENS.

i) bitStringLength (optional) indicates the length of the bit string. This attribute is required if the for-
mat attribute is equal to bitString. The bitStringLength attribute is of type nonNegativeInteger.

j) minimum (optional) indicates the lower bound for the value of the containing element. This check
is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type
of the minimum attribute. The minimum attribute is of type string.

k) maximum (optional) indicates the upper bound for the value of the containing element. This check
is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type
of the maximum attribute. The maximum attribute is of type string.

l) rangeType (optional) indicates the range for the minimum and maximum attributes. The value
shall be one from the enumerated list of float (the default), int, unsigned int, long, or unsigned
long. float indicates a floating point number, int or long indicates a scaledInteger, and unsigned int
or unsigned long indicates a scaledNonNegativeInteger.

m) prompt (optional) defines a prompt string which a DE can use if the resolve attribute is equal to
user. The prompt attribute is of type string.

See also: The SCRs in Table B5.

C.16 long.att

C.16.1 Schema

The following schema details the information contained in the long.att attribute group.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 257
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 257
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
C.16.2 Description

The long.att attribute group defines a set of attributes to be applied to the containing element. The long.att
attribute group contains all the same attributes as the long.prompt.att attribute group, except for the prompt
attribute. See C.15.

See also: The SCRs in Table B5.

C.17 string.prompt.att

C.17.1 Schema

The following schema details the information contained in the string.prompt.att attribute group.
258 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

258 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
C.17.2 Description

The string.prompt.att attribute group defines a set of attributes to be applied to the containing element. The
string.prompt.att attribute group contains the following attributes.

a) format (optional) is the input and storage type for the configurable elements and, optionally, the
output type for modelParameters. The value shall be one from of the following.

1) bitString indicates the input or storage shall be in the format of a double quoted string of 1's
and 0's or a scaledInteger number. The output shall be a bit string in the format specified by the
language, e.g., VHDL = “1010” or Verilog = 4’b1010.

2) bool indicates the input or storage shall be one of true or false. The output shall be a Boolean
type as specified by the language.

3) float indicates the input or storage shall a decimal floating point number. The output shall be a
decimal floating point number.

4) long indicates the input shall be a scaledInteger number. The storage shall be in a format com-
patible with the containing element and the output shall be a decimal integer number.

5) string (the default) indicates the input and storage shall contain any characters. The output
shall be a string in the format as specified by the language.

b) resolve (optional) defines how the value for the containing element is configured. The value shall be
one from the enumerated list of immediate, user, dependent or generated.

1) immediate indicates the value shall be specified in the containing element.

2) user indicates the value shall be specified by user input and the new value stored in a design or
design configuration description under the configurableElement element.

3) dependent indicates the value shall be defined by an XPATH equation (see Annex E) defined
in the dependency attribute. The dependency attribute requires the resolve attribute to be
equal to dependent.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 259
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 259
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
4) generated indicates the value shall be set by a generator and the new value stored in a design or
design configuration description under the configurableElement element.

c) id (optional) assigns a unique identifier to the containing element for reference throughout the con-
taining description. The id attribute is required if the element has a resolve type equal to user, gen-
erated or is referenced in a dependency equation. This id is referenced in two ways. The first
reference is by the configurableElement in a design or design configuration description. The sec-
ond is in a dependency attribute XPATH equation. The id attribute if of type ID.

d) dependency (optional) is an XPATH 1.0 equation (see Annex E) for the value of the containing ele-
ment. The resolve attribute shall be equal to dependent. The dependency attribute is of type string.

e) ##any (optional) indicates any additional attributes in any namespace are allowed in the containing
element. These additional attributes are called vendor attributes.

f) choiceRef (optional) indicates the value of the containing element is defined in the referenced
choice element. The choiceRef attribute is of type Name.

g) order (optional) indicates how elements are presented, when resolve equal user. The elements are
presented in ascending order. The order attribute is of type float.

h) configGroups (optional) indicates a name to group elements together; elements with matching val-
ues for this attribute are contained in the same group. There is no semantic meaning to this attribute.
The configGroups attribute is of type NMTOKENS.

i) bitStringLength (optional) indicates the length of the bit string. This is required if the format
attribute is equal to bitString. The bitStringLength attribute is of type nonNegativeInteger.

j) minimum (optional) indicates the lower bound for the value of the containing element. This check
is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type
of the minimum attribute. The minimum attribute is of type string.

k) maximum (optional) indicates the upper bound for the value of the containing element. This check
is only valid for a format of bitString, float, or long. The rangeType attribute shall specify the type
of the maximum attribute. The maximum attribute is of type string.

l) rangeType (optional) indicates the range for the minimum and maximum attributes. The value
shall be one from the enumerated list of float (the default), int, unsigned int, long, or unsigned
long. float indicates a floating point number, int or long indicates a scaledInteger, and unsigned int
or unsigned long indicates a scaledNonNegativeInteger.

m) prompt (optional) defines a prompt string which a DE can use if the resolve attribute is equal to
user. The prompt attribute is of type string.

See also: The SCRs in Table B5.
260 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

260 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Annex D

(normative)

Types

Many elements and attributes defined in the standard have associated types. These types define the legal
values and ranges for input into these element and attributes.

D.1 boolean

The boolean type defines two possible value, true and false.

D.2 configurableDouble

The configurableDouble type defines a decimal floating point number based on the IEEE single-precision
64-bit floating point type (see IEEE Std 754-1985).

D.3 float

The float type defines a decimal floating point number based on the IEEE single-precision 32-bit floating
point type (see IEEE Std 754-1985).

D.4 ID or IDREF

The ID or IDREF type defines a unique identifier through the containing description. It needs to begin with
a letter or underscore (_). An ID or IDREF shall only contain letters, numbers, and the underscore (_), dash
(-), and dot (.) characters. Any leading or trailing spaces are removed.

D.5 instancePath

The instancePath type defines a series of Name type character strings, see D.8, separated by a slash (/).
Any leading or trailing space is removed.

D.6 integer

The integer type defines a decimal integer number of infinite precision, containing the numbers 0-9.

D.7 libraryRefType

The libraryRefType type is an element type, not a data type. This type defines the four attributes of a
VLNV required for a reference from one description to another description. See C.7.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 261
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 261
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
D.8 Name

The Name type defines a series of any characters, excluding embedded whitespace. It needs to begin with a
letter, colon (:), or underscore (_). A Name shall only contain letters, numbers, and the colon (:),
underscore (_), dash (-), and dot (.) characters. Any leading or trailing spaces are removed.

D.9 NMTOKEN

The NMTOKEN type defines a series of any characters, excluding embedded whitespace. It shall only
contain letters, numbers, and the colon (:), underscore (_), dash (-), and dot (.) characters. Any leading or
trailing spaces are removed.

D.10 NMTOKENS

The NMTOKENS type defines a series of any characters, including embedded whitespace. It shall only
contain letters, numbers, and the colon (:), underscore (_), dash (-), and dot (.) characters.

D.11 nonNegativeInteger

The nonNegativeInteger type is a subtype of integer; it follows all the same rules, except its value shall be
greater than or equal to 0.

D.12 portName

The portName type defines a series of any characters, excluding embedded whitespace. It shall only contain
letters, numbers, and the colon (:), underscore (_), dash (-), and dot (.) characters. It also needs to begin
with a letter, colon (:), or underscore (_). Any leading or trailing spaces are removed.

D.13 positiveInteger

The positiveInteger type is a subtype of integer; it follows all the same rules, except its value shall be
greater than 0.

D.14 scaledInteger

The scaledInteger type defines an integer of infinite precision. The number may be in any of the follow
formats with or without a leading +/- indication.

a) Decimal containing numbers 0-9.

b) Hexadecimal representation starting with 0x or #, and containing the numbers 0-9 and letters A-F
(case-insensitive).

c) Optionally, the number may end with the following case-insensitive suffixes. Each suffix is a multi-
plier of the resulting value.

1) K is a multiplier of 1024.

2) M is a multiplier of 1024*1024.
262 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

262 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
3) G is a multiplier of 1024*1024*1024.

4) T is a multiplier of 1024*1024*1024*1024.

Example: 4K evaluates to 4096. 0x1000 evaluates to 4096.

D.15 scaledNonNegativeInteger

The scaledNonNegativeInteger type is a subtype of scaledInteger; it follows all the same rules, except its
value shall be greater than or equal to 0.

D.16 scaledPositiveInteger

The scaledPositiveInteger type is a subtype of scaledInteger; it follows all the same rules, except its value
shall be greater than 0.

D.17 SpiritURI

The SpiritURI type defines a string of characters for an absolute or relative path to a file, a directory, or an
executable in URI format (xs:anyURI), except it can contain environment variables in the ${ENV_VAR}
form, which are replaced by their value(s) to provide the underlying URI.

D.18 string

The string type defines a series of any characters and may include spaces.

D.19 token

The token type defines a series of any characters, excluding carriage-return, line-feed, and tab. Any leading
or trailing spaces are removed and all internal sequences of two or more spaces are reduced to one space.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 263
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 263
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
264 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

264 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Annex E

(normative)

Dependency XPATH

This version of the standard utilizes XPATH 1.0 as a means to specify an equation for the contents of a
resolvable element. This is done by setting the resolve attribute to resolve=”dependent”. When the
resolve attribute is set to dependent, a dependency attribute is required.

The accuracy of the XPATH numeric functions shall be of infinite precision and are not limited to any fixed
number of bits. This is necessary to ensure all systems are interoperable and the large calculations required
by the configuration of IP-XACT components are successful.

In addition to the standard XPATH 1.0 functions, IP-XACT also defines the following functions to aid
expressions calculations.

E.1 id

id(string)

The id function returns the value of the element with an attribute of id that matches the input string. This
function has been modified from the standard XPATH definition to return the value applied to the element at
the time of evaluation; this is the configured value of the element from the design description (see G.4).

E.2 spirit:containsToken

spirit:containsToken(string1, string2)

spirit:containsToken(node, stringx)

The containsToken function (Boolean) returns true if string1 contains string2 as a token (or node contains
stringx as a token) and otherwise returns false. To be interpreted as a token, string2 needs to be found within
string1 (or stringx needs to be found within node) and be separated by white space from any other characters
in the string1 (or node) that are not white space characters.

containsToken only uses the configured value while executing its function.

Purpose: Some attributes in IP-XACT are a list of tokens separated by white space. This function allows
XPATH selection based on whether the attribute contains a specific token.

Example: spirit:containsToken('default spine driver','pin') evaluates to false,
whereas the standard XPATH function contains would evaluate to true with the same arguments.

E.3 spirit:decode

spirit:decode(string)

spirit:decode(node)
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 265
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 265
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
The decode function (number) decodes the string (or node) argument to a number and returns the number or
NaN (if the string (or node) cannot be decoded). If the string (or node) argument is a decimal formatted
number, it is returned unchanged. If it is a hexadecimal representation starting with 0x or #, it is converted
to a decimal number and returned. If it is in engineering notation ending in a k, m, g, or t suffix (case-
insensitive), the numeric part is multiplied by the appropriate power of two. K is a multiplier of 1024. M is a
multiplier of 1024*1024. G is a multiplier of 1024*1024*1024. T is a multiplier of 1024*1024*1024*1024.

Purpose: IP-XACT allows numbers to be expressed in hexadecimal format and engineering format. When
setting up dependencies on configurable values, it is sometimes necessary to perform some arithmetic in the
dependency XPATH expression. However, XPATH only supports arithmetic on numbers and it only
recognizes decimal strings as numbers. This function allows the alternate formats to be converted to
numbers recognizable by XPATH.

Example: spirit:decode('0x4000') evaluates to 16384. spirit:decode('4G') evaluates to
4294967296.

E.4 spirit:pow

spirit:pow(number, number)

spirit:pow(number, node)

spirit:pow(node, number)

spirit:pow(node, node)

The pow function (number) returns a number (or node), which is the first argument raised to the power of
the second argument.

Purpose: It is common for a component to have a configurable number of address bits. When this happens,
the size of the address range it occupies on a memory map varies exponentially with the number of address
bits. This function gives XPATH the mathematical capabilities needed to describe this relationship in a
dependency expression.

Example: spirit:pow(2, 10) evaluates to 1024.

E.5 spirit:log

spirit:log(number, number)

spirit:log(number, node)

spirit:log(node, number)

spirit:log(node, node)

The log function (number) returns a number (or node), which is the log of the second argument in the base of
the first argument.

Purpose: This is the inverse of pow function. It is intended to express the reverse of the dependency
described for the pow function. In this case, the range of an address block might be configurable and the
number of address bits might be expressed as a dependency of the address range using the log function.

Example: spirit:log(2, 1024) evaluates to 10.
266 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

266 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
E.6 Dependency example

This is a example of using resolve=dependent.

<spirit:memoryMaps>
 <spirit:memoryMap>
 <spirit:name>mmap</spirit:name>
 <spirit:addressBlock>
 <spirit:name>ab1</spirit:name>
 <spirit:baseAddress spirit:resolve="user" spirit:id="baseAddr">0</

spirit:baseAddress>
<spirit:range spirit:id="range">786K</spirit:range>
 <spirit:width>32</spirit:width>
 <spirit:usage>memory</spirit:usage>
 <spirit:access>read-write</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryMap>

 <spirit:memoryMap>
 <spirit:name>dependent_mmap</spirit:name>
 <spirit:addressBlock>

<!-- The baseAddress in this memoryMap is dependent on the previous memory map
and the formula to compute the baseAddress from the baseAddress of previous
map is expressed as an XPATH expression -->

 <spirit:baseAddress spirit:resolve="dependent"
spirit:dependency="spirit:pow(2,floor(spirit:log(2,
spirit:decode(id('baseAddr'))+ spirit:decode(id('range')))+1))"
spirit:id="dependentBaseAddress">0</spirit:baseAddress>

<spirit:range>4096</spirit:range>
 <spirit:width>32</spirit:width>
 <spirit:usage>register</spirit:usage>
 <spirit:access>read-write</spirit:access>
 </spirit:addressBlock>
 </spirit:memoryMap>
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 267
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 267
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
268 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

268 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Annex F

(informative)

External bus with an internal/digital interface

While the current use of IP-XACT schema may be viewed as describing single chip implementations, the
schemas works equally well at the package- and board-level. Often a PHY component exists which
interconnects the internal and external bus. Some interface standards define both of these interfaces, some
define only the internal, and some define only the external. A common point of confusion is to use an
external bus standard as an interface on an internal component. This is legal if the component caries the full
PHY implementation, but this often makes the component very technology- or implementation-dependant.

F.1 Example: ethernet interfaces

An Ethernet bus might be described as more than a single wire and in a system that includes Ethernet buses,
it might also include all the interfaces shown in Figure F.1.

Figure F.1—Ethernet interface examples

XAUI: 10-gigabit Attachment Unit Interface

MII: Media Independent Interface

GMII: Gigabit Media Independent Interface

XGMII: 10-gigabit media-independent interface

MII: Media Independent
Interface
GMII, XGMII, RMII, SSMII,
or SMII,

Physical Coding
Sublayer

Physical Media
Attachment

Physical Media
Dependant

MAC Control

Media Access Control

Reconciliation

XAUI: 10-gigabit
Attachment Unit Interface

MIIM
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 269
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 269
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
RMII: Reduced MII, 7-pin interface

SSMII: Source Synchronous MII

SMII: Serial Media Independent Interface, this provides an interface to Ethernet MAC. The SMII
provides the same interface as the MII, but with a reduced pinout. The reduction in ports is achieved
by multiplexing data and control information to a port transmit port and a single receive port.

F.2 Example: I2C bus

The I2C bus is a two-wire bus with a clock and data line. The standard described bus is the two-wire bus. IP-
XACT has defined an additional, related bus that is the internal digital interface. The internal digital
interface shown in Figure F2 contains three pins for each external pin: for SDA (the data line), the internal
pins are defined as input, output, and enable as SDA_I, SDA_O, and SDA_E; in a similar manner, for the
clock bus SCL, the internal pins are defined again for the functions of input, output, and enable as SCL_I,
SCL_O, and SCL_E.

Figure F2—I2C interface example

VDD

SDA

SCL

Standard Described I2C

SPIRIT defined (non-standard)
Internal digital reference I2C bus

I2C

Device

I2C

Device

I2C

Device

S
D

A
I

S
D

A
O

S
D

A
E

S
C

L
I

S
C

L
O

S
C

L
E

SDA SCL
270 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

270 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Annex G

(normative)

Tight generator interface (TGI)

IP-XACT generators are tools which are invoked from within a DE to perform an operation required by the
user of the DE. For example, generators can be provided to verify the configuration of a subsystem, generate
an address map, or write a netlist representation of the subsystem in a target language such as Verilog or
SystemC. To perform their various operations, most generators need access to the IP-XACT meta-data
describing the subsystem, as currently loaded into the DE. Generators need both read- and write-access to
the IP-XACT meta-data. All generators are external applications running in a separate address space from
the DE.

The tight generator interface (TGI) defines how the DE and generator cooperate to achieve the desired end-
goal of the user of the DE. The TGI defines the method of communication between the DE and generator,
the method for invoking the generator, and the actual application programming interface (API) which can be
used to read and write the IP-XACT meta-data stored in the DE. G.1, G.2, and G.3 describe each of these
three aspects of the TGI, respectively.

G.1 Method of communication

The DE and the generator communicate with each other by sending messages to each other utilizing the
SOAP standard. SOAP provides a simple means for sending XML-format messages using HTTP or other
transport protocols. The TGI restricts the set of allowed transport protocols to HTTP and a file-based
protocol. All generators are required to support the HTTP protocol, but support for the file-based protocol is
optional. The same rules apply to the DE—it shall support the use of the HTTP protocol, but is not required
to support the file-based protocol, even though a generator may allow it. The protocols supported by a
generator are specified using the transportMethod element within the componentGenerator element.

The information required to use a particular transport protocol shall be passed to the generator by the DE
when it is invoked, as described in G.2. For the HTTP protocol, the generator is passed a URL of the form
http://host_name:port_number. All SOAP messages sent to the DE shall be sent using the referenced URL.
For the file-based protocol, the generator is a passed a URL of the form file://file_name. In this case, all
SOAP messages are written to the specified file.

Each DE and generator is responsible for setting itself up to communicate using SOAP with the appropriate
transport protocol. For example, a generator written in Tcl might include the Tcl SOAP package to enable
SOAP functionality. Once the communication channel is set up, the generator can read and write the IP-
XACT meta-data using any legal SOAP message. The set of legal SOAP messages defines the API portion
of the TGI (see G.7).

G.2 Generator invocation

All of the information known by the DE about a particular generator comes from an instance of the
componentGenerator (see 6.12), abstractorGenerator (see 8.7), or generator (see 9.4) elements. These
elements provides the following information.

a) name is the name of the generator as seen within the DE.

b) executable is the URL defining the location of the generator.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 271
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 271
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
c) parameters is a list of name/value pairs defining information to be passed to the generator.

d) apiType indicates the generator type: TGI or none (no communication).

e) transportMethods show any transport mechanisms supported (in addition to HTTP).

f) phase (not relevant to the TGI).

g) vendorExtensions (not relevant to the TGI).

h) group (not relevant to the TGI).

G.2.1 Resolving the URL

The URL defining the generator executable shall resolve to one of the following forms.

— file:path_to_executable (e.g., file:/usr/jdoe/bin/mygen.pl or file:../bin/
mygen.pl) defines the path for invoking the generator on the machine from which the DE was
invoked.

— file://machine_name/path_to_executable (e.g., file://server1/tmp/othergen.pl)
defines the path for invoking a generator on the specified machine.

— http://web_address:port_number (e.g., http://www.acme.com/generator:1500) defines
the URL of a generator implemented as a web-based server.

All file references are relative to the location of the XML description in which the file reference is
contained.

For the file-based generators, the DE shall invoke the generator as a sub-process with a command line built
up as:

executable -url transport_URL generator_parameter_arguments

The generator_parameter_arguments are the parameters from the componentGenerator element with the
user-specified values. Each parameter causes two additional arguments to be passed to the generator with
the following format: -parameter_name parameter_value. The transport_URL is created by the DE, but is
guaranteed to specify a protocol supported by the generator as defined by the transport methods within the
componentGenerator. The DE is responsible for ensuring any passed parameters can be interpreted
correctly. This URL is to be used in the generator to set up the SOAP communication channel.

For web-based generators, the DE shall send a message to the address and port defined as the executable.
The format of this message is

url=transport_URL&generator_parameter_arguments

In this case, the generator parameters are formatted using the standard HTTP parameter passing syntax. The
specified transport URL shall be used by the generator for any return messages to the DE.

The invocation syntax described above applies only to generators with an API type of TGI. Generators with
an API type of none are invoked as described above, excluding the transport_URL argument.

G.2.2 Example

This example shows file-based and web-based componentGenerator elements.

<spirit:componentGenerator>
<spirit:name>myGenerator</spirit:name>
<spirit:parameter spirit:name="param1" spirit:resolve="user"

spirit:id="param1">default1</spirit:parameter>
<spirit:parameter spirit:name="param2">fixedValue</spirit:parameter>
272 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

272 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
<spirit:apiType>TGI</spirit:apiType>

<spirit:transportMethods>
<spirit:transportMethod>file</spirit:transportMethod>

</spirit:transportMethods>
<spirit:generatorExe>../bin/myGenerator.pl</spirit:generatorExe>

</spirit:componentGenerator>

produces the following output.

path_to _XML/../bin/myGenerator -url http://host:port -param1 default1
-param2 fixedValue

Whereas:

<spirit:componentGenerator>
<spirit:name>myWebGenerator</spirit:name>
<spirit:parameter spirit:name="param" spirit:resolve="user"

spirit:id="myParamID">defaultValue</spirit:parameter>
<spirit:apiType>TGI</spirit:apiType>
<spirit:generatorExe>http://www.acme.com:1500</spirit:generatorExe>

</spirit:componentGenerator>

produces the following output.
http://www.acme.com:1500?url=http%3a%2f%2fhost%3aport¶m1=default1

¶m2=fixedValue

G.3 TGI API

The TGI API defines the set of legal SOAP messages that can be sent from a generator to a DE, along with
the format of the responses the generator can expect from a given request (message) to the DE. The API
shall provide the means of getting and setting values within the IP-XACT design currently represented in the
DE. The API commands can be classified as shown in Table G1.

The complete set of API commands is defined using WSDL so that it can be defined in a language-
independent format.

G.3.1 TGI fault codes

The fault codes for TGI failures are as follows.

1 - Unknown (undefined) error.

2 - Illegal element ID.

3 - Illegal value(s).

4 - Element is not modifiable (incompatible resolve value).

5 - Operation not supported by the DE.

6 - Operation not supported in this version of the schema.

7 - Operation failed.

G.3.2 Administrative commands

There are three administrative commands defined in the API.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 273
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 273
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
a) Init is the required first message from the generator to the DE. It tells the DE that the generator has
properly connected via SOAP.

1) Input:

i) apiVersion of type string—Indicates the API version for which the generator is defined to
work.

ii) failureMode of type apiFailureMode—Compatibility failure mode:

fail indicates the DE shall return an error on the init call if its API version does not
match the one passed to the init call;

error indicates the DE shall return an error each time a potentially incompatible API call
is made;

warning indicates the DE shall increment a warning count each time a potentially incom-
patible API call is made.

iii) message of type string—Message which the DE may display to the user.

2) Returns: status of type Boolean.

b) End is the required last message from the generator to the DE. It tells the DE it is okay to stop listen-
ing for messages from the generator. This includes a generator return status, although the generator
is not strictly required to terminate after sending the message.

c) Message indicates some form of generator status to pass to the user.

G.4 IDs and configurable values

Most TGI calls take an element identifier which acts as a handle or pointer to the element and are referred to
as IDs. These IDs allow a single TGI command to operate on many different ID types to produce a result.
One such example is getDescription(ID), which takes any ID type as input and returns its description if that
ID contains a description element. When an ID is passed to a TGI routine which returns an element’s value,
the configured value (component) is always returned. If the unconfigured value (design) is desired (the
default), getUnconfiguredID can be used to translate the ID into an unconfigured identifier, which is

Table G1—TGI API classifications

Category Description Example

Get Commands which get attribute or element values.
These commands are available for getting all infor-
mation from the design and component schemas. If
the attribute or element does not exist, this may
return a default value, an empty string, or an empty
array.

Get port width.

Set Commands which set element values. These com-
mands are available to set each element for which
the resolve attribute is legal. Setting the value of the
element fails unless the resolve value is user or gen-
erator. Set routines return a Boolean value where a
true return code implies a successful operation. If
false is returned, the SOAP fault code shall provide
additional information detailing the failure.

Get parameter value.

Traversal Commands which return a list of elements which
can then be traversed for further manipulation

Get components in a design.

Administrative Commands which do not deal directly with the IP-
XACT meta-data.

Terminate communication.
274 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

274 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
referred to as a UID. The configured and unconfigured values may be the same. The only time the values are
different is when the unconfigured (default) value is overridden via a configureElementValue from the
design file.

The TGI API presumes the data stored in the design description to configure an element that has a resolve
attribute value of user or generated is applied to the component instance by the DE. This enables the TGI
author to simply ask for the value of an element on a given component instance and retrieve the correct
answer. The setting of an element works similarly. When an element is set on a component instance, the
value of this element is ultimately stored in the design description.

The design configuration description is handled in the same manner as the configurable elements as in the
design description. The settings in the design configuration description are applied to the elements in the
referenced design description or the containing component instances. Therefore, there are no TGI functions
to retrieve the design configuration information directly; the TGI author can find this information applied to
the correct element in the design or component instance. For example, the configured view of a component
instance is accessed using the normal getComponentViewIDs with a Boolean argument set to indicate the
configured view (specified in the design configuration description) should be returned.

IDs returned by TGI commands are guaranteed to be persistent for the duration of a single generator
invocation provided the element being referenced is not removed. For example, if an ID represents an
address space element, that ID can be utilized as often as is needed during a single generator invocation,
unless the component containing the address map is removed by calling removeComponentInstance().

G.5 TGI messages

The TGI is a set of messages used to query and modify an IP-XACT compliant database. The TGI messages
are composed of a SOAP envelope and a TGI body. The TGI services are specified in the TGI.wsdl file.
Each TGI body message is an XML element whose name is the name of the TGI command and whose
elements are the arguments of the TGI command. All TGI messages apply to IP-XACT XML elements,
identified by an ID, i.e. a TGI server-defined constant uniquely identifying an IP-XACT XML element
throughout a TGI server session.

G.6 Vendor attributes

One case of special interest to a user may be the location of vendor attributes in the schema. These attributes
are allowed in more places in the schema than the TGI allows a user to retrieve them. This goes back to the
concept where one function uses many different ID types to return some data. In the case of vendor attributes,
these can only be accessed if the containing element has an ID.

G.7 TGI SOAP messages

G.7.1 TGI SOAP message index

Abstraction Definition Operations

— getAbstractionDefBusTypeVLNV - Get VLNV of the bus definition.

— getAbstractionDefExtends - Vendor Library Name Version of the abstraction definition being
extended. (New in 1.5)

— getAbstractionDefID - ID for the abstraction definition with the given VLNV.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 275
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 275
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
— getAbstractionDefPortDefaultValue - Default value for port when not connected.

— getAbstractionDefPortDriveConstraintIDs - List of drive constraint IDs of the port.

— getAbstractionDefPortIDs - List of abstraction definition port element IDs.

— getAbstractionDefPortIsAddress - Is this port an address port.

— getAbstractionDefPortIsClock - Is this port a clock port.

— getAbstractionDefPortIsData - Is this port a data port.

— getAbstractionDefPortIsReset - Is this port a reset port.

— getAbstractionDefPortLoadConstraintIDs - List of load constraint IDs of the port.

— getAbstractionDefPortLogicalName - Logical name of this abstraction definition port.

— getAbstractionDefPortMirroredConstraintIDs - List of constraint IDs for a mirrored port.

— getAbstractionDefPortModeBitWidth - Bit width constraint when present on an interface of the
given type.

— getAbstractionDefPortModeDirection - Port direction constraint when present on an interface of the
given type.

— getAbstractionDefPortModeGroup - Group name when present on a system interface.

— getAbstractionDefPortModeID - Returns an ID for accessing the given port in the given interface
mode. (Invalid in 1.5)

— getAbstractionDefPortModeIDs - Returns an array of IDs for accessing the given port in the given
interface mode. The array shall only contain one element if the modeValue input is master or slave.
The array may contain multiple elements for modeValue system. (New in 1.5)

— getAbstractionDefPortModePresence - Existence requirement for this port on an interface of the
given type.

— getAbstractionDefPortModeServiceID - AbstractionDef service ID on a transactional port. (New in
1.5)

— getAbstractionDefPortModeServiceIDs - AbstractionDef service IDs on a transactional port. (Invalid
in 1.5)

— getAbstractionDefPortNonMirroredConstraintIDs - List of constraint IDs for a non-mirrored port.

— getAbstractionDefPortRequiredDriverType - Required driver type for this port.

— getAbstractionDefPortRequiresDriver - Does this port require a driver.

— getAbstractionDefPortStyle - Returns 'wire' or 'transactional' to indicate the port style.

— getAbstractionDefPortTimingConstraintIDs - List of timing constraint IDs of the port.

— getAbstractionDefVLNV - Vendor Library Name Version of the abstraction definition.

Abstractor Instance Operations

— getAbstractorInstanceAbstractorID - ID for the abstractor associated with given instance (crossing
from design configuration to abstractor file).

— getAbstractorInstanceName - Instance name of the abstractor.

— getAbstractorInstanceVLNV - Vendor Library Name Version of the abstractor (from the design file).

— getAbstractorInstanceXML - Return the abstractor XML in text format. Schema version is DE
dependent.

Abstractor Operations

— getAbstractorAbstractorInterfaceIDs - List of 2 interface IDs.

— getAbstractorAbstractorMode - Get the mode that the abstractor can be master, slave, direct or sys-
tem.

— getAbstractorBusTypeVLNV - List of VLNV of the bus definition.

— getAbstractorChoiceIDs - List of choices IDs.
276 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

276 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
— getAbstractorFileSetIDs - List of file set IDs.

— getAbstractorGeneratorIDs - List of generator IDs of the abstractor.

— getAbstractorModelParameterIDs - A list of model parameter IDs.

— getAbstractorPortIDs - A list of abstractor model port IDs.

— getAbstractorViewIDs - A list of model view IDs. (Modified in 1.5)

Address Map Operations

— getAddressBlockAccess - The accessibility of the data in the local address block.

— getAddressBlockBaseAddress - The base address of an address block.

— getAddressBlockRange - The address range of an address block expressed as the number of accessa-
ble and addressable units.

— getAddressBlockRegisterFileIDs - The IDs of the available register files in the address block. (New
in 1.5)

— getAddressBlockRegisterIDs - The IDs of the available registers in the address block.

— getAddressBlockUsage - Indicates the usage of this address block.

— getAddressBlockVolatility - Indicates whether or not the data is volatile.

— getAddressBlockWidth - The bit width of an address block in the local memory map.

— getAddressSpaceAddressUnitBits - The number bits in an addressable unit. If none exists, the default
8 bits is returned.

— getAddressSpaceLocalMemoryMapID - The ID for the local memory map of the address space.
(New in 1.5)

— getAddressSpaceRange - The address range of an address block expressed as the number of accessa-
ble and addressable units.

— getAddressSpaceSegmentIDs - List of IDs for address block segments for the address space. (New in
1.5)

— getAddressSpaceWidth - The bit width of an address block.

— getBankAccess - The accessibility of the data in the local address bank.

— getBankAlignment - The bank alignment value, serial or parallel.

— getBankBaseAddress - The base address of an address bank.

— getBankUsage - Indicates the usage of this address bank.

— getBankVolatility - Indicates whether or not the data is volatile.

— getExecutableImageFileBuilderIDs - List of default file builder IDs of the executable image.

— getExecutableImageFileSetIDs - The group of file set reference IDs complying with the tool set of
the current executable image.

— getExecutableImageIDs - The IDs of the executable images belonging to the specified address space.

— getExecutableImageLinkerCommand - The linker command for the current executable image.

— getExecutableImageLinkerCommandFileID - Element ID of linkerCommandFile associated with
given executable image.

— getExecutableImageLinkerFlags - The flags of the current executable image linker command.

— getExecutableImageType - The type of the executable image if existent.

— getLinkerCommandFileEnable - Indicates whether or not to generate and enable the linker command
file.

— getLinkerCommandFileLineSwitch - The command line switch to specify with the linker command
file.

— getLinkerCommandFileName - The name of the linker command file.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 277
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 277
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
— getLinkerCommandGeneratorIDs - Reference IDs to the generator elements for generating the linker
command file.

— getMemoryMapAddressUnitBits - The number bits in an addressable unit for a memory map. If none
exists, the default 8 bits is returned.

— getMemoryMapElementIDs - List of element IDs (addressBlockID, bankID, subspaceMapID)
within a memory map, memory remap, local memory map, or bank. (Modified in 1.5)

— getMemoryMapElementType - Indicates type of memory map element: addressBlock, bank or sub-
spaceMap.

— getMemoryMapRemapElementIDs - List of IDs for memory map 'remap' elements of the given
memory map.

— getMemoryRemapStateID - Remap State ID for which this remap is applicable.

— getSegmentAddressOffset - The address offset of an address space segment in an address space.
(New in 1.5)

— getSegmentRange - The address range of an address space segment expressed as the number of
accessable addressable units. (New in 1.5)

— getSubspaceMapBaseAddress - The base address of a memory subspace.

— getSubspaceMapMasterID - Master bus interface ID on the other side of a bus bridge .

— getSubspaceMapSegmentID - Address space segment ID on the other side of a bus bridge . (New in
1.5)

— getTypeIdentifier - Indicates the type identifier of an addressBlock, registerFile, register or field.
(New in 1.5)

— setAddressBlockBaseAddress - Set the base address of an address block.

— setAddressBlockRange - Set the address range of an address block expressed as the number of
accessable and addressable units.

— setAddressBlockWidth - Set the bit width of an address block.

— setAddressSpaceRange - Set the address range of an address block expressed as the number of
accessable and addressable units.

— setAddressSpaceWidth - Set the bit width of an address block.

— setBankBaseAddress - Set the base address of an address bank.

— setExecutableImageLinkerCommand - Set the linker command for the current executable image.

— setExecutableImageLinkerFlags - Set the flags of the current executable image linker command.

— setLinkerCommandFileEnable - Set whether or not to generate and enable the linker command file.

— setLinkerCommandFileLineSwitch - Set the command line switch to specify with the linker com-
mand file.

— setLinkerCommandFileName - Set the name of the linker command file.

— setSegmentAddressOffset - Set the address offset of an address space segment expressed in the num-
ber addressable units. (New in 1.5)

— setSegmentRange - Set the address range of an address space segment expressed as the number of
accessable addressable units. (New in 1.5)

— setSubspaceMapBaseAddress - Set the base address of a memory subspace.

Bus Definition Operations

— getBusDefinitionDirectConnection - Indicates whether or not the bus definition supports direct con-
nections.

— getBusDefinitionExtends - Vendor Library Name Version of the bus definition being extended.

— getBusDefinitionID - ID for the bus definition with the given VLNV.

— getBusDefinitionIsAddressable - Indicates whether or not the bus definition is an addressable bus.
278 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

278 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
— getBusDefinitionMaxMasters - Maximum # of masters supported by this bus definition.

— getBusDefinitionMaxSlaves - Maximum # of slaves supported by this bus definition.

— getBusDefinitionSystemGroupNames - List of system group names for this bus definition.

— getBusDefinitionVLNV - Vendor Library Name Version of the bus definition.

Bus Interface Operations

— getBridgeIsOpaque - Value of the opaque attribute.

— getBridgeMasterID - The slave interface master interface reference ID.

— getBusInterfaceBitSteering - Bit steering description of the bus interface: on or off.

— getBusInterfaceBitsInLAU - The number bits in the least addressable unit. If none exists, the default
8 bits is returned.

— getBusInterfaceConnectionRequired - Connection required for this bus interface.

— getBusInterfaceEndianness - The endianess of the bus interface, big or little. The default is little.

— getBusInterfaceGroupName - Group name of a system, mirroredSystem, or monitor bus interface.

— getBusInterfaceMasterAddressSpaceID - ID of the master addressSpace.

— getBusInterfaceMasterBaseAddress - Base address of the master addressSpace.

— getBusInterfaceMirroredSlaveRange - The address range of the mirrored slave interface.

— getBusInterfaceMirroredSlaveRemapAddressIDs - List of remap address IDs of the mirrored slave
interface.

— getBusInterfaceMonitorInterfaceMode - Indicates the mode of interface being monitored, slave,
master, system, mirrorslave, mirrormaster or mirrorslave.

— getBusInterfaceSlaveBridgeIDs - List of slave bridge IDs.

— getBusInterfaceSlaveFileSetGroupIDs - List of fileSetGroup IDs.

— getBusInterfaceSlaveMemoryMapID - ID of the memoryMap referenced from a slave interface.

— getRemapAddressRemapStateID - Remap state ID of the given remap address element.

— getRemapAddressValue - Remap address of the given remap address element.

— setBusInterfaceBitSteering - Set bus interface bit steering value.

— setBusInterfaceMasterBaseAddress - Set base address of the master bus interface.

— setBusInterfaceMirroredSlaveRange - Set address range for the associated interface.

— setRemapAddressValue - Set remap address value for the associated interface.

Component Instance Operations

— getComponentInstanceComponentID - ID for the component associated with given instance (cross-
ing from design to component file).

— getComponentInstanceName - Instance name of the component.

— getComponentInstanceVLNV - Vendor Library Name Version of the component (from the design
file).

— getComponentInstanceXML - Return the component XML in text format. Schema version is DE
dependent.

Component Operations

— getChannelBusInterfaceIDs - List of busInterface IDs in this channel.

— getComponentAddressSpaceIDs - List of IDs for the logical address spaces in the component.

— getComponentBusInterfaceIDs - List of interface IDs.

— getComponentChannelIDs - A list of channel IDs.

— getComponentChoiceIDs - List of choices IDs.

— getComponentCpuIDs - List of cpu IDs of the component.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 279
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 279
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
— getComponentElementType - Returns the name of the XML element associated with the component
(currently only 'component'). This call is being provided to cover a future scenario where there can
be different types of component elements instantiated in a design (e.g. macroComponent elements).

— getComponentFileSetIDs - List of file set IDs.

— getComponentGeneratorIDs - List of generator IDs of the component.

— getComponentMemoryMapIDs - List of IDs for memory map elements in the given component.

— getComponentModelParameterIDs - A list of model parameter IDs.

— getComponentOtherClockDriverIDs - List of clock driver IDs of the component.

— getComponentPortIDs - A list of component model port IDs.

— getComponentRemapStateIDs - A list of remap state IDs.

— getComponentVLNV - Vendor Library Name Version of the component (from the component file).

— getComponentViewIDs - A list of model view IDs.

— getComponentWhiteboxElementIDs - List of whitebox element IDs of the component.

— getCpuAddressSpaceIDs - List of address space reference IDs of the cpu.

Constraint Operations

— getDriveConstraintType - Indicates the type of drive constraint: function class.

— getDriveConstraintValue - Returns the drive constraint. Format depends on the constraint type.

— getLoadConstraintCount - Returns the load constraint count, the number of loads.

— getLoadConstraintType - Indicates the type of load constraint: function class.

— getLoadConstraintValue - Returns the load constraint. Format is cell function and strength or cell
class and strength.

— getPortConstraintSetDriveConstraintIDs - List of drive constraint IDs of the port.

— getPortConstraintSetLoadConstraintIDs - List of load constraint IDs of the port.

— getPortConstraintSetRange - List of the left and right range of a port referenced by this constraint set.

— getPortConstraintSetReferenceName - Reference name of the given port constraint set.

— getPortConstraintSetTimingConstraintIDs - List of timing constraint IDs of the port.

— getTimingConstraintClockDetails - Indicates the clock name, clock edge, and delay type.

— getTimingConstraintValue - Returns the timing constraint value (cycle time percentage).

Design Operations

— addAdHocConnection - Add new ad-hoc connection.

— addAdHocExternalPortReference - Add an external port reference to an existing ad-hoc connection.

— addAdHocInternalPortReference - Add an internal port reference to an existing ad-hoc connection.
An identical port reference must not already exist in the ad-hoc connection.

— addComponentInstance - Add new component instance.

— addHierConnection - Add new hierarchical connection.

— addHierarchicalMonitorInterconnection - Add new hierarchical interconnection between a compo-
nent and monitor. If there is already a monitorInterconnection for the given componentRef/compo-
nentInterfaceRef, then the monitor connection is added to that element. (New in 1.5)

— addInterconnection - Add new interconnection between components.

— addMonitorInterconnection - Add new interconnection between a component and monitor. If there is
already a monitorInterconnection for the given componentRef/componentInterfaceRef, then the
monitor connection is added to that element.

— appendAbstractorInstance - Append a new abstractor instance to the interconnection.

— getAdHocConnectionExternalPortDetails - List for an external connection containing the portRef,
left, and right attribute values.
280 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

280 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
— getAdHocConnectionExternalPortReferenceIDs - List of external ad-hoc port reference element IDs.

— getAdHocConnectionInternalPortReferenceDetails - List for an internal connection containing the
componentRef, portRef, left, and right attribute values.

— getAdHocConnectionInternalPortReferenceIDs - List of internal ad-hoc port reference element IDs.

— getAdHocConnectionTiedValue - Get the tied value for an ad-hoc connection.

— getComponentInstanceID - Return the component instance ID of the named component instance in
the given design.

— getDesignAdHocConnectionIDs - List of ad-hoc connection element IDs.

— getDesignComponentInstanceIDs - Components instances IDs of the given design.

— getDesignHierConnectionIDs - List of hierarchical connection element IDs.

— getDesignID - Get ID of the current or top design.

— getDesignInterconnectionAbstractorInstanceIDs - List of abstractor instances IDs for this intercon-
nection.

— getDesignInterconnectionIDs - List of interconnection element IDs.

— getDesignMonitorInterconnectionIDs - List of monitorInterconnection element IDs.

— getDesignVLNV - Vendor Library Name Version of the design.

— getHierConnectionDetails - List containing the interface name, component reference, and interface
reference.

— getInterconnectionActiveInterfaces - Returns the active interfaces as a list: componentRef interfac-
eRef componentRef interfaceRef. (Modified in 1.5)

— getMonitorInterconnectionInterfaces - Returns the active interface and monitor interfaces as a list in
componentPathRef, componentRef, componentInterface, monitorPathRef, monitorRef, moni-
torInterface format, the active interface comes first in the list. (Modified in 1.5)

— removeAbstractorInstance - Remove specified abstractor instance.

— removeAdHocExternalPortReference - Remove an external port reference from existing ad-hoc con-
nection.

— removeAdHocInternalPortReference - Remove an internal port from existing ad-hoc connection.
The ad-hoc connection is removed when the last port reference is removed.

— removeComponentInstance - Remove specified component instance.

— removeHierConnection - Remove existing hierarchical connection.

— removeHierarchicalMonitorInterconnection - Remove a hierarchical interconnection between a com-
ponent and monitor. When the last monitor reference is removed, the entire monitorInterconnection
element will be removed. (New in 1.5)

— removeInterconnection - Remove interconnection between components, and any abstractors if
present.

— removeMonitorInterconnection - Remove interconnection between a component and monitor. When
the last monitor reference is removed, the entire monitorInterconnection element will be removed.

— replaceAbstractorInstance - Replace specified abstractor with new provided abstractor.

— replaceComponentInstance - Replace specified component with new provided component.

Field Operations

— getRegisterFieldAccess - The accessibility of the data in the field.

— getRegisterFieldBitOffset - Bit offset of the fields LSB inside the register.

— getRegisterFieldBitWidth - Width of the field in bits.

— getRegisterFieldModifiedWriteValue - The modified write value for the field. (New in 1.5)

— getRegisterFieldReadAction - The read action for the field. (New in 1.5)
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 281
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 281
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
— getRegisterFieldTestConstraint - The test constraint required if the field can be tested with a simple
register test. (New in 1.5)

— getRegisterFieldTestable - True if the field can be tested with a simple register test. (New in 1.5)

— getRegisterFieldValue - Enumerated bit field value.

— getRegisterFieldValueIDs - List of IDs for field values for the given register field.

— getRegisterFieldValueName - Enumerated name for this register field value. Deprecated - use get-
Name.

— getRegisterFieldValueUsage - Enumerated bit field usage. (New in 1.5)

— getRegisterFieldVolatility - Indicates whether or not the data is volatile. The presumed value is 'false'
if the element is not present. (Modified in 1.5)

— getRegisterFieldWriteValueConstraintMinMax - The value of a write constraint. (New in 1.5)

— getRegisterFieldWriteValueConstraintUseEnumeratedValues - The write value constraint shall use
the enumerated values. (New in 1.5)

— getRegisterFieldWriteValueConstraintWriteAsRead - The write value constraint is write as read.
(New in 1.5)

— setRegisterFieldBitWidth - Set the width of the field in bits.

File and Fileset Operations

— getFileBuildCommandFlags - Flags of the file build command.

— getFileBuildCommandFlagsIsAppend - Value of append attribute on the flag element.

— getFileBuildCommandName - Name of the build command of the file.

— getFileBuildCommandReplaceDefaultFlags - Indicates whether or not to replace default flags.

— getFileBuildCommandTargetName - Target name of the file build command.

— getFileBuilderCommand - Command of the file builder.

— getFileBuilderFileType - FileType or userFileType of the file builder.

— getFileBuilderFlags - Flags of the file builder.

— getFileBuilderReplaceDefaultFlags - Value of the replaceDefaultFlags element of the file builder.

— getFileDefineSymbolIDs - List of define symbol IDs used in the file.

— getFileDependencies - List of dependent locations for the file, typically directories.

— getFileExportedNames - List of exported names of the file.

— getFileHasExternalDeclarations - Indicates that the file includes external declarations required by the
top-level netlist file.

— getFileImageTypes - List of image types of the file.

— getFileIsIncludeFile - Indicates that the given file is an include file.

— getFileLogicalName - Logical name of the file.

— getFileLogicalNameDefault - Default attribute of logical name of the file.

— getFileName - Get name of the given fileID.

— getFileSetDependencies - List of dependent locations for the fileSet, typically directories.

— getFileSetFileBuilderIDs - List of file builder IDs used for this fileSet.

— getFileSetFileIDs - List of file IDs of the file set.

— getFileSetFunctionIDs - List of function IDs.

— getFileSetGroupFileSetIDs - List of file set IDs in this file set group.

— getFileSetGroupName - Name of file set group.

— getFileSetGroups - List of group names of the file set.

— getFileType - FileType or userFileType of the file.
282 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

282 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
— getFunctionArgumentDataType - Data type of the argument.

— getFunctionArgumentIDs - List of argument IDs of the function of the file set.

— getFunctionDisabled - Indicates whether or not the function is disabled.

— getFunctionEntryPoint - Entry point of the function.

— getFunctionFileID - File ID containing the function entry point.

— getFunctionReplicate - Value of replicate attribute on function element.

— getFunctionReturnType - Return type of the function.

— getFunctionSourceFileIDs - List of source file IDs of the function of the file set.

— getFunctionSourceFileName - Name of the source file.

— getFunctionSourceFileType - FileType or userFileType of the source file.

— setFileBuildCommandFlags - Set command flags for the given file builder.

— setFileBuildCommandName - Set command name for the given file builder.

— setFileBuildCommandReplaceDefaultFlags - Set replace default flags for the given file builder.

— setFileBuildCommandTargetName - Set target name for build command for the given file.

— setFileBuilderCommand - Set command associated with file builder.

— setFileBuilderFlags - Set flags associated with the given file builder.

— setFileBuilderReplaceDefaultFlags - Set value of replace default flags in file builder.

— setFileName - Set name of the given file.

— setFunctionDisabled - Set disable flag on function.

Generator Operations

— getGeneratorApiType - Api type of the generator.

— getGeneratorExecutable - Executable name associated with the generator .

— getGeneratorGroups - List of group names of the generator.

— getGeneratorIsHidden - Value of hidden attribute on the generator.

— getGeneratorPhase - Phase number of the generator.

— getGeneratorScope - Scope of the generator.

— getGeneratorTransportMethods - List of transport methods of the generator.

Interface Operations

— getInterfaceAbstractionTypeVLNV - List of VLNV of the abstraction definition.

— getInterfaceBusTypeVLNV - List of VLNV of the bus definition.

— getInterfaceMode - Mode of the interface: master, slave, system, mirroredMaster, mirroredSlave,
mirroredSystem or monitor.

— getInterfacePortMapIDs - List of interface port map IDs.

— getLogicalPhysicalMapIDs - List of the logical and physical port map IDs.

— getPortMapRange - List of left and right range of the port map.

— setPortMapRange - Set left/right range of an interface port map.

Miscellaneous Operations

— end - Terminate connection to the Design Environment.

— getChoiceEnumerationHelp - Value of the enumeration help attribute.

— getChoiceEnumerationIDs - List of choice enumeration IDs of the choice.

— getChoiceEnumerationText - Value of the enumeration text attribute.

— getChoiceEnumerationValue - Value of the enumeration element.

— getChoiceName - Name of the choice.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 283
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 283
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
— getDescription - Return the description of the specified element. (Modified in 1.5)

— getDisplayName - Return the displayName of the specified element. (Modified in 1.5)

— getErrorMessage - Get error message from prior callback.

— getGeneratorContextComponentInstanceID - ID for the component instance associated with the cur-
rently invoked generator.

— getIdValue - Return the value of the spirit:id attribute on a ID. (New in 1.5)

— getModelParameterDataType - Data type of the model parameter.

— getModelParameterUsageType - Usage type of the model parameter.

— getName - Return the name of the specified element. (Modified in 1.5)

— getParameterIDs - List of parameter IDs from the given element (any which contains spirit:parame-
ter elements).

— getUnconfiguredID - Return the unconfigured ID from a configured ID. (New in 1.5)

— getValue - Get the value of a parameterID, fileDefineIDs or argumentIDs.

— getValueAttribute - Returns the value of the given attribute name on the elementID/value element.

— getVendorAttribute - Get vendor defined attribute from the given element.

— getVendorExtensions - Returns the complete XML text of the vendor extension element including
the spirit:vendorExtension tag, as a well formed XML document.

— getWarningCount - Return count of how many potentially incompatible API calls have been made.

— getXMLForVLNV - Return XML of the IP-XACT object identified by the given VLNV.

— init - API initialization function. Must be called before any other API call.

— message - Send message level and message text to Design Environment.

— registerVLNV - Indicate to DE where the file resides for the IP-XACT element with the given
VLNV.

— setValue - Set the value of a parameterID, fileDefineIDs or argumentIDs.

— setVendorAttribute - Set vendor defined attribute on the given element.

— setVendorExtensions - Set vendor extensions. NOTE: This call is only supported for elements within
a spirit:design.

Port Operations

— getAllLogicalDirectionsAllowed - Get the value of the allLogicalDirectionAllowed attribute. (New
in 1.5)

— getClockDriverName - Name of the clock driver.

— getClockDriverPeriod - Clock period of the given clock.

— getClockDriverPeriodUnits - Units of the clock period of the given clock. (New in 1.5)

— getClockDriverPulseDuration - Clock period of the given clock.

— getClockDriverPulseDurationUnits - Units of the clock pulse duration of the given clock. (New in
1.5)

— getClockDriverPulseOffset - Clock pulse offset of the given clock.

— getClockDriverPulseOffsetUnits - Units of the clock pulse offset of the given clock. (New in 1.5)

— getClockDriverPulseValue - Clock pulse value of the given clock.

— getClockDriverSource - Source name of the clock driver.

— getPortAccessHandle - Alternate name to be used when accessing this port. (Modified in 1.5)

— getPortAccessType - Indicates the access type for this port. (Modified in 1.5)

— getPortClockDriverID - Element ID of clock driver element, if present.

— getPortConstraintSetIDs - List of constraint sets IDs of the port.
284 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

284 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
— getPortDefaultValue - Default value of the port, if not set returns "".

— getPortDirection - Direction of the port.

— getPortMaxAllowedConnections - Max allowed connections for this transactional port.

— getPortMinAllowedConnections - Min allowed connections for this transactional port.

— getPortRange - List of the left and right range of the port.

— getPortServiceID - ID of element representing the service of a transactional port.

— getPortSingleShotDriverID - Element ID of single shot driver element, if present.

— getPortSingleShotPulseDuration - Clock period of the port.

— getPortSingleShotPulseOffset - Clock pulse offset of the port.

— getPortSingleShotPulseValue - Clock pulse value of the port.

— getPortStyle - Returns 'wire' or 'transactional' to indicate the port style.

— getPortTransactionalTypeDefID - The type definition for a transactional portID. (New in 1.5)

— getPortWireTypeDefIDs - List of typeDefs for a wire portID. (New in 1.5)

— setClockDriverPeriod - Set period of the given clock port.

— setClockDriverPulseDuration - Set pulse duration of the given clock port.

— setClockDriverPulseOffset - Set pulse offset value of the given clock port.

— setClockDriverPulseValue - Set pulse value of the given clock port.

— setPortDefaultValue - Set default value of the given port.

— setPortRange - Set left/right range for the given port.

— setPortSingleShotPulseDuration - Set pulse duration of given single shot port.

— setPortSingleShotPulseOffset - Set pulse offset of given single shot port.

— setPortSingleShotPulseValue - Set pulse value of given single shot port.

Register File Operations

— getRegisterFileAddressOffset - The offset from the base address. (New in 1.5)

— getRegisterFileDimensions - Dimensions of a register file array. (New in 1.5)

— getRegisterFileRange - The register file range in number of addressable units. (New in 1.5)

— getRegisterFileRegisterFileIDs - List of IDs for the register files of the given register file. (New in
1.5)

— getRegisterFileRegisterIDs - List of IDs for the registers of the given register file. (New in 1.5)

— setRegisterFileRange - Set the register file range in addressable units. (New in 1.5)

Register Operations

— getRegisterAccess - The accessibility of the data in the register.

— getRegisterAddressOffset - The offset from the base address.

— getRegisterAlternateGroups - Indicates the group names for an alternate register. (New in 1.5)

— getRegisterAlternateRegisterIDs - List of IDs for the alternate registers of the given register. (New in
1.5)

— getRegisterDimensions - Dimensions of a register array.

— getRegisterFieldIDs - List of IDs for the fields of the given register. (Modified in 1.5)

— getRegisterResetMask - Mask to be ANDed with the value before comparing to reset value. (Modi-
fied in 1.5)

— getRegisterResetValue - Register value at reset. (Modified in 1.5)

— getRegisterSize - The register size in bits.

— getRegisterVolatility - Indicates whether or not the data is volatile. (Modified in 1.5)
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 285
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 285
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
— setRegisterResetMask - Set the mask to be ANDed with the value before comparing to reset value.
(Modified in 1.5)

— setRegisterResetValue - Set register value at reset. (Modified in 1.5)

— setRegisterSize - Set the register size in bits.

Remap Operations

— getRemapStatePortIDs - List of remap port IDs of a remap state.

— getRemapStatePortPortID - Port ID for the remap state.

— getRemapStatePortPortIndex - Index of the port if a vector for the remap state.

— getRemapStatePortPortValue - Value of the port for the remap state.

Service Operations

— getAbstractionDefAbstractionServiceTypeDefIDs - List of type definitions for an abstractionServi-
ceID. (New in 1.5)

— getAbstractionDefServiceIDs - List of typeDefs for an abstractionServiceID. (Invalid in 1.5)

— getAbstractionDefServiceInitiative - Port service initiative from the abstraction definition.

— getServiceInitiative - Initiative of the service.

— getServiceTypeDefIDs - List of typeDefs for a serviceID. (Modified in 1.5)

TypeDef Operations

— getTypeDefConstrained - Is the type name constrained. (Modified in 1.5)

— getTypeDefImplicit - Is the type name implicit. (Modified in 1.5)

— getTypeDefTypeDefinitions - List of type definition for the given type. (Modified in 1.5)

— getTypeDefTypeName - Name of the type. (Modified in 1.5)

— getTypeDefTypeViewIDs - List of type viewIDs for the given type. (Modified in 1.5)

View Operations

— getViewDefaultFileBuilderIDs - List of default file builder IDs of the view.

— getViewDesignID - ID of the design associated with a hierarchical view.

— getViewEnvIdentifiers - List of environment identifiers of the view.

— getViewFileSetIDs - List of fileSet IDs for fileSets referenced by the view.

— getViewLanguage - View Language.

— getViewLanguageIsStrict - Value of 'strict' attribute on view language element.

— getViewModelName - Get the model name for this view.

— getViewPortConstraintSetIDs - Constraint set ID for the port referenced by the view. (Modified in
1.5)

— getViewWhiteboxElementRefIDs - List of whitebox element reference IDs of the view.

Whitebox Operations

— getWhiteboxElementDrivable - Indicates whether or not the whitebox element is drivable.

— getWhiteboxElementRefID - White box element reference ID.

— getWhiteboxElementRegisterID - Register reference ID of the whitebox element. (Invalid in 1.5)

— getWhiteboxElementRegisterIDs - Register reference IDs of the whitebox element. (New in 1.5)

— getWhiteboxElementType - Type of the whitebox element.

— getWhiteboxRefPathIDs - List of path IDs of the white box element reference.

— getWhiteboxRefPathName - Name of the whitebox reference path element.

— getWhiteboxRefPathRange - List of left and right range of the whitebox reference path element.

G.7.2 Abstraction definition operations
286 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

286 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.2.1 getAbstractionDefBusTypeVLNV

Description: Get VLNV of the bus definition.

• Input: abstractionDefID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.2.2 getAbstractionDefExtends

Description: Vendor Library Name Version of the abstraction definition being extended. (New in 1.5)

• Input: abstractionDefID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.2.3 getAbstractionDefID

Description: ID for the abstraction definition with the given VLNV.

• Input: vlnvValue of type spirit:soapStringArrayType.

• Returns: abstractionDefID of type xsd:string.

G.7.2.4 getAbstractionDefPortDefaultValue

Description: Default value for port when not connected.

• Input: abstractionDefPortID of type xsd:string.

• Returns: value of type xsd:string.

G.7.2.5 getAbstractionDefPortDriveConstraintIDs

Description: List of drive constraint IDs of the port.

• Input: abstractionDefPortModeConstraintID of type xsd:string.

• Returns: driveConstraintIDs of type spirit:soapStringArrayType.

G.7.2.6 getAbstractionDefPortIDs

Description: List of abstraction definition port element IDs.

• Input: abstractionDefID of type xsd:string.

• Returns: abstractionDefPortIDs of type spirit:soapStringArrayType.

G.7.2.7 getAbstractionDefPortIsAddress

Description: Is this port an address port.

• Input: abstractionDefPortID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.2.8 getAbstractionDefPortIsClock

Description: Is this port a clock port.

• Input: abstractionDefPortID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 287
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 287
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.2.9 getAbstractionDefPortIsData

Description: Is this port a data port.

• Input: abstractionDefPortID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.2.10 getAbstractionDefPortIsReset

Description: Is this port a reset port.

• Input: abstractionDefPortID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.2.11 getAbstractionDefPortLoadConstraintIDs

Description: List of load constraint IDs of the port.

• Input: abstractionDefPortModeConstraintID of type xsd:string.

• Returns: loadConstraintIDs of type spirit:soapStringArrayType.

G.7.2.12 getAbstractionDefPortLogicalName

Description: Logical name of this abstraction definition port.

• Input: abstractionDefPortID of type xsd:string.

• Returns: value of type xsd:string.

G.7.2.13 getAbstractionDefPortMirroredConstraintIDs

Description: List of constraint IDs for a mirrored port.

• Input: abstractionDefPortModeID of type xsd:string.

• Returns: abstractionDefPortModeConstraintIDs of type spirit:soapStringArrayType.

G.7.2.14 getAbstractionDefPortModeBitWidth

Description: Bit width constraint when present on an interface of the given type.

• Input: abstractionDefPortModeID of type xsd:string.

• Returns: nonNegativeIntegerValue of type xsd:nonNegativeInteger. a return value of 0
indicates unbounded.

G.7.2.15 getAbstractionDefPortModeDirection

Description: Port direction constraint when present on an interface of the given type.

• Input: abstractionDefPortModeID of type xsd:string.

• Returns: direction of type xsd:string.

G.7.2.16 getAbstractionDefPortModeGroup

Description: Group name when present on a system interface.

• Input: abstractionDefPortModeID of type xsd:string.

• Returns: value of type xsd:string.
288 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

288 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.2.17 getAbstractionDefPortModeID

Description: Returns an ID for accessing the given port in the given interface mode. (Invalid in 1.5)

• Input: modeValue of type xsd:string. modeValue should be one of master, slave or system.

• Input: abstractionDefPortID of type xsd:string.

• Returns: abstractionDefPortModeID of type spirit:soapStringArrayType.

G.7.2.18 getAbstractionDefPortModeIDs

Description: Returns an array of IDs for accessing the given port in the given interface mode. The array shall
only contain one element if the modeValue input is master or slave. The array may contain multiple
elements for modeValue system. (New in 1.5)

• Input: modeValue of type xsd:string. modeValue should be one of master, slave or system.

• Input: abstractionDefPortID of type xsd:string.

• Returns: abstractionDefPortModeID of type spirit:soapStringArrayType.

G.7.2.19 getAbstractionDefPortModePresence

Description: Existence requirement for this port on an interface of the given type.

• Input: abstractionDefPortModeID of type xsd:string.

• Returns: presence of type xsd:string.

G.7.2.20 getAbstractionDefPortModeServiceID

Description: AbstractionDef service ID on a transactional port. (New in 1.5)

• Input: abstractionDefPortModeID of type xsd:string.

• Returns: abstractionServiceID of type xsd:string.

G.7.2.21 getAbstractionDefPortModeServiceIDs

Description: AbstractionDef service IDs on a transactional port. (Invalid in 1.5)

• Input: abstractionDefPortModeID of type xsd:string.

• Returns: abstractionServiceIDs of type xsd:string.

G.7.2.22 getAbstractionDefPortNonMirroredConstraintIDs

Description: List of constraint IDs for a non-mirrored port.

• Input: abstractionDefPortModeID of type xsd:string.

• Returns: abstractionDefPortModeConstraintIDs of type spirit:soapStringArrayType.

G.7.2.23 getAbstractionDefPortRequiredDriverType

Description: Required driver type for this port.

• Input: abstractionDefPortID of type xsd:string.

• Returns: value of type xsd:string.

G.7.2.24 getAbstractionDefPortRequiresDriver

Description: Does this port require a driver.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 289
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 289
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: abstractionDefPortID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.2.25 getAbstractionDefPortStyle

Description: Returns 'wire' or 'transactional' to indicate the port style.

• Input: abstractionDefPortID of type xsd:string.

• Returns: value of type xsd:string.

G.7.2.26 getAbstractionDefPortTimingConstraintIDs

Description: List of timing constraint IDs of the port.

• Input: abstractionDefPortModeConstraintID of type xsd:string.

• Returns: timingConstraintIDs of type spirit:soapStringArrayType.

G.7.2.27 getAbstractionDefVLNV

Description: Vendor Library Name Version of the abstraction definition.

• Input: abstractionDefID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.3 Abstractor instance operations

G.7.3.1 getAbstractorInstanceAbstractorID

Description: ID for the abstractor associated with given instance (crossing from design configuration to
abstractor file).

• Input: abstractorInstanceID of type xsd:string.

• Returns: abstractorID of type xsd:string.

G.7.3.2 getAbstractorInstanceName

Description: Instance name of the abstractor.

• Input: abstractorInstanceID of type xsd:string.

• Returns: value of type xsd:string.

G.7.3.3 getAbstractorInstanceVLNV

Description: Vendor Library Name Version of the abstractor (from the design file).

• Input: abstractorInstanceID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.3.4 getAbstractorInstanceXML

Description: Return the abstractor XML in text format. Schema version is DE dependent.

• Input: abstractorInstanceID of type xsd:string.

• Returns: xmlText of type xsd:string.

G.7.4 Abstractor operations
290 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

290 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.4.1 getAbstractorAbstractorInterfaceIDs

Description: List of 2 interface IDs.

• Input: abstractorID of type xsd:string.

• Returns: interfaceIDs of type spirit:soapStringArrayType.

G.7.4.2 getAbstractorAbstractorMode

Description: Get the mode that the abstractor can be master, slave, direct or system.

• Input: abstractorID of type xsd:string.

• Returns: value of type xsd:string.

G.7.4.3 getAbstractorBusTypeVLNV

Description: List of VLNV of the bus definition.

• Input: interfaceID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.4.4 getAbstractorChoiceIDs

Description: List of choices IDs.

• Input: abstractorID of type xsd:string.

• Returns: choiceIDs of type spirit:soapStringArrayType.

G.7.4.5 getAbstractorFileSetIDs

Description: List of file set IDs.

• Input: abstractorID of type xsd:string.

• Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.4.6 getAbstractorGeneratorIDs

Description: List of generator IDs of the abstractor.

• Input: abstractorID of type xsd:string.

• Returns: generatorIDs of type spirit:soapStringArrayType.

G.7.4.7 getAbstractorModelParameterIDs

Description: A list of model parameter IDs.

• Input: abstractorID of type xsd:string.

• Input: usageType of type xsd:string. Restrict returned parameters to those that match the given
usageType. nontyped or typed or all if not specified.

• Returns: parameterIDs of type spirit:soapStringArrayType.

G.7.4.8 getAbstractorPortIDs

Description: A list of abstractor model port IDs.

• Input: abstractorID of type xsd:string.

• Returns: portIDs of type spirit:soapStringArrayType.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 291
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 291
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.4.9 getAbstractorViewIDs

Description: A list of model view IDs. (Modified in 1.5)

• Input: abstractorID of type xsd:string.

• Input: configured of type xsd:boolean. If true returns only the view configured by a designCon-
figuration. If false returns all views.

• Returns: viewIDs of type spirit:soapStringArrayType.

G.7.5 Address map operations

G.7.5.1 getAddressBlockAccess

Description: The accessibility of the data in the local address block.

• Input: addressBlockID of type xsd:string.

• Returns: value of type xsd:string.

G.7.5.2 getAddressBlockBaseAddress

Description: The base address of an address block.

• Input: elementID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressBlockUID of type xsd:string.

• Returns: baseAddress of type spirit:spiritNumberType.

G.7.5.3 getAddressBlockRange

Description: The address range of an address block expressed as the number of accessable and addressable
units.

• Input: elementID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressBlockUID of type xsd:string.

• Returns: range of type spirit:spiritNumberType.

G.7.5.4 getAddressBlockRegisterFileIDs

Description: The IDs of the available register files in the address block. (New in 1.5)

• Input: addressBlockID of type xsd:string.

• Returns: registerFileIDs of type spirit:soapStringArrayType.

G.7.5.5 getAddressBlockRegisterIDs

Description: The IDs of the available registers in the address block.

• Input: addressBlockID of type xsd:string.

• Returns: registerIDs of type spirit:soapStringArrayType.

G.7.5.6 getAddressBlockUsage

Description: Indicates the usage of this address block.
292 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

292 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: addressBlockID of type xsd:string.

• Returns: usage of type xsd:string. one of "memory", "register", "reserved" or "" if not set.

G.7.5.7 getAddressBlockVolatility

Description: Indicates whether or not the data is volatile.

• Input: addressBlockID of type xsd:string.

• Returns: value of type xsd:string. returns "true", "false" or "".

G.7.5.8 getAddressBlockWidth

Description: The bit width of an address block in the local memory map.

• Input: elementID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressBlockUID of type xsd:string.

• Returns: width of type xsd:nonNegativeInteger.

G.7.5.9 getAddressSpaceAddressUnitBits

Description: The number bits in an addressable unit. If none exists, the default 8 bits is returned.

• Input: addressSpaceID of type xsd:string.

• Returns: addressUnitBits of type xsd:positiveInteger.

G.7.5.10 getAddressSpaceLocalMemoryMapID

Description: The ID for the local memory map of the address space. (New in 1.5)

• Input: addressSpaceID of type xsd:string.

• Returns: localMemoryMapID of type xsd:string.

G.7.5.11 getAddressSpaceRange

Description: The address range of an address block expressed as the number of accessable and addressable
units.

• Input: elementID of type xsd:string.

• Legal value: addressSpaceID of type xsd:string.

• Legal value: addressSpaceUID of type xsd:string.

• Returns: range of type spirit:spiritNumberType.

G.7.5.12 getAddressSpaceSegmentIDs

Description: List of IDs for address block segments for the address space. (New in 1.5)

• Input: addressSpaceID of type xsd:string.

• Returns: segmentIDs of type spirit:soapStringArrayType.

G.7.5.13 getAddressSpaceWidth

Description: The bit width of an address block.

• Input: elementID of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 293
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 293
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Legal value: addressSpaceID of type xsd:string.

• Legal value: addressSpaceUID of type xsd:string.

• Returns: width of type xsd:nonNegativeInteger.

G.7.5.14 getBankAccess

Description: The accessibility of the data in the local address bank.

• Input: bankID of type xsd:string.

• Returns: value of type xsd:string.

G.7.5.15 getBankAlignment

Description: The bank alignment value, serial or parallel.

• Input: bankID of type xsd:string.

• Returns: value of type xsd:string.

G.7.5.16 getBankBaseAddress

Description: The base address of an address bank.

• Input: elementID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: bankUID of type xsd:string.

• Returns: value of type spirit:spiritNumberType.

G.7.5.17 getBankUsage

Description: Indicates the usage of this address bank.

• Input: bankID of type xsd:string.

• Returns: usage of type xsd:string.

G.7.5.18 getBankVolatility

Description: Indicates whether or not the data is volatile.

• Input: bankID of type xsd:string.

• Returns: value of type xsd:string. returns "true", "false" or "".

G.7.5.19 getExecutableImageFileBuilderIDs

Description: List of default file builder IDs of the executable image.

• Input: executableImageID of type xsd:string.

• Returns: fileBuilderIDs of type spirit:soapStringArrayType.

G.7.5.20 getExecutableImageFileSetIDs

Description: The group of file set reference IDs complying with the tool set of the current executable image.

• Input: executableImageID of type xsd:string.

• Returns: fileSetIDs of type spirit:soapStringArrayType.
294 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

294 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.5.21 getExecutableImageIDs

Description: The IDs of the executable images belonging to the specified address space.

• Input: addressSpaceID of type xsd:string.

• Returns: executableImageIDs of type spirit:soapStringArrayType.

G.7.5.22 getExecutableImageLinkerCommand

Description: The linker command for the current executable image.

• Input: elementID of type xsd:string.

• Legal value: executableImageID of type xsd:string.

• Legal value: executableImageUID of type xsd:string.

• Returns: value of type xsd:string.

G.7.5.23 getExecutableImageLinkerCommandFileID

Description: Element ID of linkerCommandFile associated with given executable image.

• Input: executableImageID of type xsd:string.

• Returns: linkerCommandFileID of type xsd:string.

G.7.5.24 getExecutableImageLinkerFlags

Description: The flags of the current executable image linker command.

• Input: elementID of type xsd:string.

• Legal value: executableImageID of type xsd:string.

• Legal value: executableImageUID of type xsd:string.

• Returns: value of type xsd:string.

G.7.5.25 getExecutableImageType

Description: The type of the executable image if existent.

• Input: executableImageID of type xsd:string.

• Returns: value of type xsd:string.

G.7.5.26 getLinkerCommandFileEnable

Description: Indicates whether or not to generate and enable the linker command file.

• Input: elementID of type xsd:string.

• Legal value: linkerCommandFileID of type xsd:string.

• Legal value: linkerCommandFileUID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.5.27 getLinkerCommandFileLineSwitch

Description: The command line switch to specify with the linker command file.

• Input: elementID of type xsd:string.

• Legal value: linkerCommandFileID of type xsd:string.

• Legal value: linkerCommandFileUID of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 295
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 295
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Returns: value of type xsd:string.

G.7.5.28 getLinkerCommandFileName

Description: The name of the linker command file.

• Input: elementID of type xsd:string.

• Legal value: linkerCommandFileID of type xsd:string.

• Legal value: linkerCommandFileUID of type xsd:string.

• Returns: fileName of type spirit:spiritURI.

G.7.5.29 getLinkerCommandGeneratorIDs

Description: Reference IDs to the generator elements for generating the linker command file.

• Input: linkerCommandFileID of type xsd:string.

• Returns: generatorIDs of type spirit:soapStringArrayType.

G.7.5.30 getMemoryMapAddressUnitBits

Description: The number bits in an addressable unit for a memory map. If none exists, the default 8 bits is
returned.

• Input: memoryMapID of type xsd:string.

• Returns: addressUnitBits of type xsd:positiveInteger.

G.7.5.31 getMemoryMapElementIDs

Description: List of element IDs (addressBlockID, bankID, subspaceMapID) within a memory map,
memory remap, local memory map, or bank. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: localMemoryMapID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: memoryMapID of type xsd:string.

• Legal value: memoryRemapID of type xsd:string.

• Returns: memoryMapElementIDs of type spirit:soapStringArrayType.

• Possible value(s): addressBlockID of type xsd:string.

• Possible value(s): bankID of type xsd:string.

• Possible value(s): subspaceMapID of type xsd:string.

G.7.5.32 getMemoryMapElementType

Description: Indicates type of memory map element: addressBlock, bank or subspaceMap.

• Input: memoryMapElementID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: subspaceMapID of type xsd:string.

• Returns: type of type xsd:string. The return value is one of "addressBlock", "bank", "sub-
spaceMap" or "" for unknown.
296 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

296 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.5.33 getMemoryMapRemapElementIDs

Description: List of IDs for memory map 'remap' elements of the given memory map.

• Input: memoryMapID of type xsd:string.

• Returns: memoryRemapIDs of type spirit:soapStringArrayType.

G.7.5.34 getMemoryRemapStateID

Description: Remap State ID for which this remap is applicable.

• Input: memoryRemapID of type xsd:string.

• Returns: remapStateID of type xsd:string.

G.7.5.35 getSegmentAddressOffset

Description: The address offset of an address space segment in an address space. (New in 1.5)

• Input: elementID of type xsd:string.

• Legal value: segmentID of type xsd:string.

• Legal value: segmentUID of type xsd:string.

• Returns: addressOffset of type spirit:spiritNumberType.

G.7.5.36 getSegmentRange

Description: The address range of an address space segment expressed as the number of accessable
addressable units. (New in 1.5)

• Input: elementID of type xsd:string.

• Legal value: segmentID of type xsd:string.

• Legal value: segmentUID of type xsd:string.

• Returns: range of type spirit:spiritNumberType.

G.7.5.37 getSubspaceMapBaseAddress

Description: The base address of a memory subspace.

• Input: elementID of type xsd:string.

• Legal value: subspaceMapID of type xsd:string.

• Legal value: subspaceMapUID of type xsd:string.

• Returns: value of type spirit:spiritNumberType.

G.7.5.38 getSubspaceMapMasterID

Description: Master bus interface ID on the other side of a bus bridge .

• Input: subspaceMapID of type xsd:string.

• Returns: interfaceID of type xsd:string.

G.7.5.39 getSubspaceMapSegmentID

Description: Address space segment ID on the other side of a bus bridge . (New in 1.5)

• Input: subspaceMapID of type xsd:string.

• Returns: segmentID of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 297
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 297
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.5.40 getTypeIdentifier

Description: Indicates the type identifier of an addressBlock, registerFile, register or field. (New in 1.5)

• Input: elementID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Returns: identifier of type xsd:string.

G.7.5.41 setAddressBlockBaseAddress

Description: Set the base address of an address block.

• Input: addressBlockID of type xsd:string.

• Input: baseAddress of type spirit:spiritNumberType.

• Returns: status of type xsd:integer.

G.7.5.42 setAddressBlockRange

Description: Set the address range of an address block expressed as the number of accessable and
addressable units.

• Input: addressBlockID of type xsd:string.

• Input: spiritNumberTypeValue of type spirit:spiritNumberType.

• Returns: status of type xsd:integer.

G.7.5.43 setAddressBlockWidth

Description: Set the bit width of an address block.

• Input: addressBlockID of type xsd:string.

• Input: nonNegativeIntegerValue of type xsd:nonNegativeInteger.

• Returns: status of type xsd:integer.

G.7.5.44 setAddressSpaceRange

Description: Set the address range of an address block expressed as the number of accessable and
addressable units.

• Input: addressSpaceID of type xsd:string.

• Input: range of type spirit:spiritNumberType.

• Returns: status of type xsd:integer.

G.7.5.45 setAddressSpaceWidth

Description: Set the bit width of an address block.

• Input: addressSpaceID of type xsd:string.

• Input: width of type xsd:nonNegativeInteger.

• Returns: status of type xsd:integer.
298 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

298 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.5.46 setBankBaseAddress

Description: Set the base address of an address bank.

• Input: bankID of type xsd:string.

• Input: baseAddress of type spirit:spiritNumberType.

• Returns: status of type xsd:integer.

G.7.5.47 setExecutableImageLinkerCommand

Description: Set the linker command for the current executable image.

• Input: executableImageID of type xsd:string.

• Input: value of type xsd:string.

• Returns: status of type xsd:integer.

G.7.5.48 setExecutableImageLinkerFlags

Description: Set the flags of the current executable image linker command.

• Input: executableImageID of type xsd:string.

• Input: value of type xsd:string.

• Returns: status of type xsd:integer.

G.7.5.49 setLinkerCommandFileEnable

Description: Set whether or not to generate and enable the linker command file.

• Input: linkerCommandFileID of type xsd:string.

• Input: value of type xsd:boolean.

• Returns: status of type xsd:integer.

G.7.5.50 setLinkerCommandFileLineSwitch

Description: Set the command line switch to specify with the linker command file.

• Input: linkerCommandFileID of type xsd:string.

• Input: value of type xsd:string.

• Returns: status of type xsd:integer.

G.7.5.51 setLinkerCommandFileName

Description: Set the name of the linker command file.

• Input: linkerCommandFileID of type xsd:string.

• Input: fileName of type spirit:spiritURI.

• Returns: status of type xsd:integer.

G.7.5.52 setSegmentAddressOffset

Description: Set the address offset of an address space segment expressed in the number addressable units.
(New in 1.5)

• Input: segmentID of type xsd:string.

• Input: addressOffset of type spirit:spiritNumberType.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 299
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 299
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Returns: status of type xsd:integer.

G.7.5.53 setSegmentRange

Description: Set the address range of an address space segment expressed as the number of accessable
addressable units. (New in 1.5)

• Input: segmentID of type xsd:string.

• Input: range of type spirit:spiritNumberType.

• Returns: status of type xsd:integer.

G.7.5.54 setSubspaceMapBaseAddress

Description: Set the base address of a memory subspace.

• Input: subspaceMapID of type xsd:string.

• Input: spiritNumberTypeValue of type spirit:spiritNumberType.

• Returns: status of type xsd:integer.

G.7.6 Bus definition operations

G.7.6.1 getBusDefinitionDirectConnection

Description: Indicates whether or not the bus definition supports direct connections.

• Input: busdefID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.6.2 getBusDefinitionExtends

Description: Vendor Library Name Version of the bus definition being extended.

• Input: busdefID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.6.3 getBusDefinitionID

Description: ID for the bus definition with the given VLNV.

• Input: vlnvValue of type spirit:soapStringArrayType.

• Returns: busdefID of type xsd:string.

G.7.6.4 getBusDefinitionIsAddressable

Description: Indicates whether or not the bus definition is an addressable bus.

• Input: busdefID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.6.5 getBusDefinitionMaxMasters

Description: Maximum # of masters supported by this bus definition.

• Input: busdefID of type xsd:string.

• Returns: value of type xsd:integer. -1 indicates unbounded.
300 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

300 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.6.6 getBusDefinitionMaxSlaves

Description: Maximum # of slaves supported by this bus definition.

• Input: busdefID of type xsd:string.

• Returns: value of type xsd:integer. -1 indicates unbounded.

G.7.6.7 getBusDefinitionSystemGroupNames

Description: List of system group names for this bus definition.

• Input: busdefID of type xsd:string.

• Returns: groupNames of type spirit:soapStringArrayType.

G.7.6.8 getBusDefinitionVLNV

Description: Vendor Library Name Version of the bus definition.

• Input: busdefID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.7 Bus interface operations

G.7.7.1 getBridgeIsOpaque

Description: Value of the opaque attribute.

• Input: bridgeID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.7.2 getBridgeMasterID

Description: The slave interface master interface reference ID.

• Input: bridgeID of type xsd:string.

• Returns: interfaceID of type xsd:string.

G.7.7.3 getBusInterfaceBitSteering

Description: Bit steering description of the bus interface: on or off.

• Input: elementID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: interfaceUID of type xsd:string.

• Returns: bitSteeringValue of type xsd:string.

G.7.7.4 getBusInterfaceBitsInLAU

Description: The number bits in the least addressable unit. If none exists, the default 8 bits is returned.

• Input: interfaceID of type xsd:string.

• Returns: bitsInLau of type xsd:positiveInteger.

G.7.7.5 getBusInterfaceConnectionRequired

Description: Connection required for this bus interface.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 301
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 301
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: interfaceID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.7.6 getBusInterfaceEndianness

Description: The endianess of the bus interface, big or little. The default is little.

• Input: interfaceID of type xsd:string.

• Returns: spiritEndianessValue of type xsd:string.

G.7.7.7 getBusInterfaceGroupName

Description: Group name of a system, mirroredSystem, or monitor bus interface.

• Input: interfaceID of type xsd:string.

• Returns: value of type xsd:string.

G.7.7.8 getBusInterfaceMasterAddressSpaceID

Description: ID of the master addressSpace.

• Input: interfaceID of type xsd:string.

• Returns: addressSpaceID of type xsd:string.

G.7.7.9 getBusInterfaceMasterBaseAddress

Description: Base address of the master addressSpace.

• Input: elementID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: interfaceUID of type xsd:string.

• Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.7.10 getBusInterfaceMirroredSlaveRange

Description: The address range of the mirrored slave interface.

• Input: interfaceID of type xsd:string.

• Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.7.11 getBusInterfaceMirroredSlaveRemapAddressIDs

Description: List of remap address IDs of the mirrored slave interface.

• Input: interfaceID of type xsd:string.

• Returns: remapAddressIDs of type spirit:soapStringArrayType.

G.7.7.12 getBusInterfaceMonitorInterfaceMode

Description: Indicates the mode of interface being monitored, slave, master, system, mirrorslave,
mirrormaster or mirrorslave.

• Input: interfaceID of type xsd:string.

• Returns: value of type xsd:string.
302 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

302 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.7.13 getBusInterfaceSlaveBridgeIDs

Description: List of slave bridge IDs.

• Input: interfaceID of type xsd:string.

• Returns: bridgeIDs of type spirit:soapStringArrayType.

G.7.7.14 getBusInterfaceSlaveFileSetGroupIDs

Description: List of fileSetGroup IDs.

• Input: interfaceID of type xsd:string.

• Returns: fileSetGroupIDs of type spirit:soapStringArrayType.

G.7.7.15 getBusInterfaceSlaveMemoryMapID

Description: ID of the memoryMap referenced from a slave interface.

• Input: interfaceID of type xsd:string.

• Returns: memoryMapID of type xsd:string.

G.7.7.16 getRemapAddressRemapStateID

Description: Remap state ID of the given remap address element.

• Input: remapAddressID of type xsd:string.

• Returns: remapStateID of type xsd:string.

G.7.7.17 getRemapAddressValue

Description: Remap address of the given remap address element.

• Input: remapAddressID of type xsd:string.

• Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.7.18 setBusInterfaceBitSteering

Description: Set bus interface bit steering value.

• Input: interfaceID of type xsd:string.

• Input: bitSteeringValue of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.7.19 setBusInterfaceMasterBaseAddress

Description: Set base address of the master bus interface.

• Input: interfaceID of type xsd:string.

• Input: baseAddressValue of type spirit:spiritNumberType.

• Returns: status of type xsd:boolean.

G.7.7.20 setBusInterfaceMirroredSlaveRange

Description: Set address range for the associated interface.

• Input: interfaceID of type xsd:string.

• Input: spiritNumberTypeValue of type spirit:spiritNumberType.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 303
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 303
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Returns: status of type xsd:boolean.

G.7.7.21 setRemapAddressValue

Description: Set remap address value for the associated interface.

• Input: remapAddressID of type xsd:string.

• Input: spiritNumberTypeValue of type spirit:spiritNumberType.

• Returns: status of type xsd:boolean.

G.7.8 Component instance operations

G.7.8.1 getComponentInstanceComponentID

Description: ID for the component associated with given instance (crossing from design to component file).

• Input: componentInstanceID of type xsd:string.

• Returns: componentID of type xsd:string.

G.7.8.2 getComponentInstanceName

Description: Instance name of the component.

• Input: componentInstanceID of type xsd:string.

• Returns: value of type xsd:string.

G.7.8.3 getComponentInstanceVLNV

Description: Vendor Library Name Version of the component (from the design file).

• Input: componentInstanceID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.8.4 getComponentInstanceXML

Description: Return the component XML in text format. Schema version is DE dependent.

• Input: componentInstanceID of type xsd:string.

• Returns: xmlText of type xsd:string.

G.7.9 Component operations

G.7.9.1 getChannelBusInterfaceIDs

Description: List of busInterface IDs in this channel.

• Input: channelID of type xsd:string.

• Returns: interfaceIDs of type spirit:soapStringArrayType.

G.7.9.2 getComponentAddressSpaceIDs

Description: List of IDs for the logical address spaces in the component.

• Input: componentID of type xsd:string.

• Returns: addressSpaceIDs of type spirit:soapStringArrayType.
304 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

304 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.9.3 getComponentBusInterfaceIDs

Description: List of interface IDs.

• Input: componentID of type xsd:string.

• Returns: interfaceIDs of type spirit:soapStringArrayType.

G.7.9.4 getComponentChannelIDs

Description: A list of channel IDs.

• Input: componentID of type xsd:string.

• Returns: channelIDs of type spirit:soapStringArrayType.

G.7.9.5 getComponentChoiceIDs

Description: List of choices IDs.

• Input: componentID of type xsd:string.

• Returns: choiceIDs of type spirit:soapStringArrayType.

G.7.9.6 getComponentCpuIDs

Description: List of cpu IDs of the component.

• Input: componentID of type xsd:string.

• Returns: cpuIDs of type spirit:soapStringArrayType.

G.7.9.7 getComponentElementType

Description: Returns the name of the XML element associated with the component (currently only
'component'). This call is being provided to cover a future scenario where there can be different types of
component elements instantiated in a design (e.g. macroComponent elements).

• Input: componentID of type xsd:string.

• Returns: componentElementType of type xsd:string.

G.7.9.8 getComponentFileSetIDs

Description: List of file set IDs.

• Input: componentID of type xsd:string.

• Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.9.9 getComponentGeneratorIDs

Description: List of generator IDs of the component.

• Input: componentID of type xsd:string.

• Returns: generatorIDs of type spirit:soapStringArrayType.

G.7.9.10 getComponentMemoryMapIDs

Description: List of IDs for memory map elements in the given component.

• Input: componentID of type xsd:string.

• Returns: memoryMapIDs of type spirit:soapStringArrayType.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 305
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 305
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.9.11 getComponentModelParameterIDs

Description: A list of model parameter IDs.

• Input: componentID of type xsd:string.

• Input: usageType of type xsd:string. Restrict returned parameters to those that match the given
usageType. nontyped or typed or userdefined or all if not specified.

• Returns: parameterIDs of type spirit:soapStringArrayType.

G.7.9.12 getComponentOtherClockDriverIDs

Description: List of clock driver IDs of the component.

• Input: componentID of type xsd:string.

• Returns: clockDriverIDs of type spirit:soapStringArrayType.

G.7.9.13 getComponentPortIDs

Description: A list of component model port IDs.

• Input: componentID of type xsd:string.

• Returns: portIDs of type spirit:soapStringArrayType.

G.7.9.14 getComponentRemapStateIDs

Description: A list of remap state IDs.

• Input: componentID of type xsd:string.

• Returns: remapStateIDs of type spirit:soapStringArrayType.

G.7.9.15 getComponentVLNV

Description: Vendor Library Name Version of the component (from the component file).

• Input: componentID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.9.16 getComponentViewIDs

Description: A list of model view IDs.

• Input: componentID of type xsd:string.

• Input: configured of type xsd:boolean. If true returns only the view configured by a designCon-
figuration or NULL if not configured. If false returns all views.

• Returns: viewIDs of type spirit:soapStringArrayType.

G.7.9.17 getComponentWhiteboxElementIDs

Description: List of whitebox element IDs of the component.

• Input: componentID of type xsd:string.

• Returns: whiteboxElementIDs of type spirit:soapStringArrayType.

G.7.9.18 getCpuAddressSpaceIDs

Description: List of address space reference IDs of the cpu.
306 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

306 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: cpuID of type xsd:string.

• Returns: addressSpaceIDs of type spirit:soapStringArrayType.

G.7.10 Constraint operations

G.7.10.1 getDriveConstraintType

Description: Indicates the type of drive constraint: function class.

• Input: driveConstraintID of type xsd:string.

• Returns: driveConstraintTypeValue of type spirit:soapStringArrayType.

G.7.10.2 getDriveConstraintValue

Description: Returns the drive constraint. Format depends on the constraint type.

• Input: driveConstraintID of type xsd:string.

• Returns: value of type xsd:string.

G.7.10.3 getLoadConstraintCount

Description: Returns the load constraint count, the number of loads.

• Input: loadConstraintID of type xsd:string.

• Returns: value of type xsd:integer.

G.7.10.4 getLoadConstraintType

Description: Indicates the type of load constraint: function class.

• Input: loadConstraintID of type xsd:string.

• Returns: loadConstraintTypeValue of type spirit:soapStringArrayType.

G.7.10.5 getLoadConstraintValue

Description: Returns the load constraint. Format is cell function and strength or cell class and strength.

• Input: loadConstraintID of type xsd:string.

• Returns: value of type spirit:soapStringArrayType.

G.7.10.6 getPortConstraintSetDriveConstraintIDs

Description: List of drive constraint IDs of the port.

• Input: portConstraintSetID of type xsd:string.

• Returns: driveConstraintIDs of type spirit:soapStringArrayType.

G.7.10.7 getPortConstraintSetLoadConstraintIDs

Description: List of load constraint IDs of the port.

• Input: portConstraintSetID of type xsd:string.

• Returns: loadConstraintIDs of type spirit:soapStringArrayType.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 307
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 307
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.10.8 getPortConstraintSetRange

Description: List of the left and right range of a port referenced by this constraint set.

• Input: portConstraintSetID of type xsd:string.

• Returns: integerArrayValue of type spirit:integerArrayType.

G.7.10.9 getPortConstraintSetReferenceName

Description: Reference name of the given port constraint set.

• Input: portConstraintSetID of type xsd:string.

• Returns: value of type xsd:string.

G.7.10.10 getPortConstraintSetTimingConstraintIDs

Description: List of timing constraint IDs of the port.

• Input: portConstraintSetID of type xsd:string.

• Returns: timingConstraintIDs of type spirit:soapStringArrayType.

G.7.10.11 getTimingConstraintClockDetails

Description: Indicates the clock name, clock edge, and delay type.

• Input: timingConstraintID of type xsd:string.

• Returns: clockDetailsValue of type spirit:soapStringArrayType.

G.7.10.12 getTimingConstraintValue

Description: Returns the timing constraint value (cycle time percentage).

• Input: timingConstraintID of type xsd:string.

• Returns: floatValue of type xsd:float.

G.7.11 Design operations

G.7.11.1 addAdHocConnection

Description: Add new ad-hoc connection.

• Input: designID of type xsd:string.

• Input: name of type xsd:string.

• Input: displayName of type xsd:string.

• Input: description of type xsd:string.

• Input: componentRef of type xsd:string.

• Input: portRef of type xsd:string.

• Input: left of type xsd:string.

• Input: right of type xsd:string.

• Input: tiedValue of type spirit:spiritNumberType. Tied value for this connection, if blank no
tied value.

• Returns: adHocConnectionID of type xsd:string. Element ID of the newly added ad hoc con-
nection.
308 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

308 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.11.2 addAdHocExternalPortReference

Description: Add an external port reference to an existing ad-hoc connection.

• Input: designID of type xsd:string.

• Input: adHocConnectionID of type xsd:string.

• Input: portRef of type xsd:string.

• Input: left of type xsd:string.

• Input: right of type xsd:string.

• Returns: adHocExternalPortReferenceID of type xsd:string. Element ID of the newly
added external port reference.

G.7.11.3 addAdHocInternalPortReference

Description: Add an internal port reference to an existing ad-hoc connection. An identical port reference
must not already exist in the ad-hoc connection.

• Input: designID of type xsd:string.

• Input: adHocConnectionID of type xsd:string.

• Input: componentRef of type xsd:string.

• Input: portRef of type xsd:string.

• Input: left of type xsd:string.

• Input: right of type xsd:string.

• Returns: adHocInternalPortReferenceID of type xsd:string. Element ID of the newly
added internal port reference.

G.7.11.4 addComponentInstance

Description: Add new component instance.

• Input: designID of type xsd:string.

• Input: vlnvValue of type spirit:soapStringArrayType.

• Input: instanceName of type xsd:string.

• Input: displayName of type xsd:string.

• Input: description of type xsd:string.

• Returns: componentInstanceID of type xsd:string. Element ID of the newly added component
instance.

G.7.11.5 addHierConnection

Description: Add new hierarchical connection.

• Input: designID of type xsd:string.

• Input: interfaceRef of type xsd:string.

• Input: componentRef of type xsd:string.

• Input: busRef of type xsd:string.

• Returns: hierConnectionID of type xsd:string. Element ID of the newly added hierarchical
connection.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 309
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 309
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.11.6 addHierarchicalMonitorInterconnection

Description: Add new hierarchical interconnection between a component and monitor. If there is already a
monitorInterconnection for the given componentRef/componentInterfaceRef, then the monitor connection is
added to that element. (New in 1.5)

• Input: designID of type xsd:string. The design that contains the interconnection.

• Input: componentPath of type xsd:string. The instance name path to the design that contains the
component instance.

• Input: componentRef of type xsd:string. The component instance name.

• Input: componentInterfaceRef of type xsd:string.

• Input: monitorPath of type xsd:string. The instance name path to the design that contains the
monitor instance.

• Input: monitorRef of type xsd:string. The component instance name with the monitor interface.

• Input: monitorInterfaceRef of type xsd:string.

• Input: name of type xsd:string.

• Input: displayName of type xsd:string.

• Input: description of type xsd:string.

• Returns: interconnectionID of type xsd:string. Element ID of the new/modified monitor
interconnection.

G.7.11.7 addInterconnection

Description: Add new interconnection between components.

• Input: designID of type xsd:string.

• Input: component1Ref of type xsd:string. The component instance name.

• Input: interface1Ref of type xsd:string.

• Input: component2Ref of type xsd:string. The component instance name.

• Input: interface2Ref of type xsd:string.

• Input: name of type xsd:string.

• Input: displayName of type xsd:string.

• Input: description of type xsd:string.

• Returns: interconnectionID of type xsd:string. Element ID of the newly added interconnec-
tion.

G.7.11.8 addMonitorInterconnection

Description: Add new interconnection between a component and monitor. If there is already a
monitorInterconnection for the given componentRef/componentInterfaceRef, then the monitor connection is
added to that element.

• Input: designID of type xsd:string. The design that contains the interconnection.

• Input: componentRef of type xsd:string. The component instance name.

• Input: componentInterfaceRef of type xsd:string.

• Input: monitorRef of type xsd:string. The component instance name with the monitor interface.

• Input: monitorInterfaceRef of type xsd:string.

• Input: name of type xsd:string.

• Input: displayName of type xsd:string.
310 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

310 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: description of type xsd:string.

• Returns: interconnectionID of type xsd:string. Element ID of the new/modified monitor
interconnection.

G.7.11.9 appendAbstractorInstance

Description: Append a new abstractor instance to the interconnection.

• Input: designID of type xsd:string.

• Input: interconnectionID of type xsd:string.

• Input: vlnvValue of type spirit:soapStringArrayType.

• Input: instanceName of type xsd:string.

• Input: displayName of type xsd:string.

• Input: description of type xsd:string.

• Returns: abstractorInstanceID of type xsd:string. Element ID of the newly added abstractor
instance.

G.7.11.10 getAdHocConnectionExternalPortDetails

Description: List for an external connection containing the portRef, left, and right attribute values.

• Input: adHocExternalPortReferenceID of type xsd:string.

• Returns: details of type spirit:soapStringArrayType.

G.7.11.11 getAdHocConnectionExternalPortReferenceIDs

Description: List of external ad-hoc port reference element IDs.

• Input: adHocConnectionID of type xsd:string.

• Returns: adHocExternalPortReferenceIDs of type spirit:soapStringArrayType.

G.7.11.12 getAdHocConnectionInternalPortReferenceDetails

Description: List for an internal connection containing the componentRef, portRef, left, and right attribute
values.

• Input: adHocInternalPortReferenceID of type xsd:string.

• Returns: details of type spirit:soapStringArrayType.

G.7.11.13 getAdHocConnectionInternalPortReferenceIDs

Description: List of internal ad-hoc port reference element IDs.

• Input: adHocConnectionID of type xsd:string.

• Returns: adHocInternalPortReferenceIDs of type spirit:soapStringArrayType.

G.7.11.14 getAdHocConnectionTiedValue

Description: Get the tied value for an ad-hoc connection.

• Input: adHocConnectionID of type xsd:string.

• Returns: value of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 311
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 311
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.11.15 getComponentInstanceID

Description: Return the component instance ID of the named component instance in the given design.

• Input: designID of type xsd:string.

• Input: instanceName of type xsd:string.

• Returns: componentInstanceID of type xsd:string.

G.7.11.16 getDesignAdHocConnectionIDs

Description: List of ad-hoc connection element IDs.

• Input: designID of type xsd:string.

• Returns: adHocConnectionIDs of type spirit:soapStringArrayType.

G.7.11.17 getDesignComponentInstanceIDs

Description: Components instances IDs of the given design.

• Input: designID of type xsd:string.

• Returns: componentInstanceIDs of type spirit:soapStringArrayType.

G.7.11.18 getDesignHierConnectionIDs

Description: List of hierarchical connection element IDs.

• Input: designID of type xsd:string.

• Returns: hierConnectionIDs of type spirit:soapStringArrayType.

G.7.11.19 getDesignID

Description: Get ID of the current or top design.

• Input: top of type xsd:boolean.

• Returns: designID of type xsd:string. The ID of the current design or the top design if the 'top'
argument is true.

G.7.11.20 getDesignInterconnectionAbstractorInstanceIDs

Description: List of abstractor instances IDs for this interconnection.

• Input: interconnectName of type xsd:string.

• Input: designID of type xsd:string.

• Returns: abstractorInstanceIDs of type spirit:soapStringArrayType.

G.7.11.21 getDesignInterconnectionIDs

Description: List of interconnection element IDs.

• Input: designID of type xsd:string.

• Returns: interconnectionIDs of type spirit:soapStringArrayType.

G.7.11.22 getDesignMonitorInterconnectionIDs

Description: List of monitorInterconnection element IDs.
312 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

312 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: designID of type xsd:string.

• Returns: monitorInterconnectionIDs of type spirit:soapStringArrayType.

G.7.11.23 getDesignVLNV

Description: Vendor Library Name Version of the design.

• Input: designID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.11.24 getHierConnectionDetails

Description: List containing the interface name, component reference, and interface reference.

• Input: hierConnectionID of type xsd:string.

• Returns: values of type spirit:soapStringArrayType.

G.7.11.25 getInterconnectionActiveInterfaces

Description: Returns the active interfaces as a list: componentRef interfaceRef componentRef interfaceRef.
(Modified in 1.5)

• Input: interconnectionID of type xsd:string.

• Returns: activeInterfaceValue of type spirit:soapStringArrayType.

G.7.11.26 getMonitorInterconnectionInterfaces

Description: Returns the active interface and monitor interfaces as a list in componentPathRef,
componentRef, componentInterface, monitorPathRef, monitorRef, monitorInterface format, the active
interface comes first in the list. (Modified in 1.5)

• Input: monitorInterconnectionID of type xsd:string.

• Returns: interconnectInterfaceValue of type spirit:soapStringArrayType.

G.7.11.27 removeAbstractorInstance

Description: Remove specified abstractor instance.

• Input: abstractorInstanceID of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.11.28 removeAdHocExternalPortReference

Description: Remove an external port reference from existing ad-hoc connection.

• Input: designID of type xsd:string.

• Input: adHocConnectionID of type xsd:string.

• Input: portRef of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.11.29 removeAdHocInternalPortReference

Description: Remove an internal port from existing ad-hoc connection. The ad-hoc connection is removed
when the last port reference is removed.

• Input: designID of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 313
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 313
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: adHocConnectionID of type xsd:string.

• Input: componentRef of type xsd:string.

• Input: portRef of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.11.30 removeComponentInstance

Description: Remove specified component instance.

• Input: componentInstanceID of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.11.31 removeHierConnection

Description: Remove existing hierarchical connection.

• Input: designID of type xsd:string.

• Input: componentRef of type xsd:string.

• Input: busRef of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.11.32 removeHierarchicalMonitorInterconnection

Description: Remove a hierarchical interconnection between a component and monitor. When the last
monitor reference is removed, the entire monitorInterconnection element will be removed. (New in 1.5)

• Input: designID of type xsd:string.

• Input: componentPath of type xsd:string. The instance name path to the design that contains the
component instance.

• Input: componentRef of type xsd:string. The component instance name.

• Input: componentInterfaceRef of type xsd:string.

• Input: monitorPath of type xsd:string. The instance name path to the design that contains the
monitor instance.

• Input: monitorRef of type xsd:string. The component instance name with the monitor interface.

• Input: monitorInterfaceRef of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.11.33 removeInterconnection

Description: Remove interconnection between components, and any abstractors if present.

• Input: designID of type xsd:string.

• Input: component1Ref of type xsd:string. The component instance name.

• Input: interface1Ref of type xsd:string.

• Input: component2Ref of type xsd:string. The component instance name.

• Input: interface2Ref of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.11.34 removeMonitorInterconnection

Description: Remove interconnection between a component and monitor. When the last monitor reference is
removed, the entire monitorInterconnection element will be removed.
314 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

314 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: designID of type xsd:string.

• Input: componentRef of type xsd:string. The component instance name.

• Input: componentInterfaceRef of type xsd:string.

• Input: monitorRef of type xsd:string. The component instance name with the monitor interface.

• Input: monitorInterfaceRef of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.11.35 replaceAbstractorInstance

Description: Replace specified abstractor with new provided abstractor.

• Input: designID of type xsd:string.

• Input: abstractorInstanceID of type xsd:string.

• Input: vlnvValue of type spirit:soapStringArrayType.

• Returns: status of type xsd:boolean.

G.7.11.36 replaceComponentInstance

Description: Replace specified component with new provided component.

• Input: designID of type xsd:string.

• Input: componentInstanceID of type xsd:string.

• Input: vlnvValue of type spirit:soapStringArrayType.

• Returns: status of type xsd:boolean.

G.7.12 Field operations

G.7.12.1 getRegisterFieldAccess

Description: The accessibility of the data in the field.

• Input: regFieldID of type xsd:string.

• Returns: value of type xsd:string.

G.7.12.2 getRegisterFieldBitOffset

Description: Bit offset of the fields LSB inside the register.

• Input: regFieldID of type xsd:string.

• Returns: value of type xsd:integer.

G.7.12.3 getRegisterFieldBitWidth

Description: Width of the field in bits.

• Input: elementID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Legal value: regFieldUID of type xsd:string.

• Returns: width of type xsd:positiveInteger.

G.7.12.4 getRegisterFieldModifiedWriteValue

Description: The modified write value for the field. (New in 1.5)
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 315
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 315
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: regFieldID of type xsd:string.

• Returns: type of type xsd:string. one of "", "onetoClear", "oneToSet", "oneToToggle", "zeroTo-
Clear", "zeroToSet","zeroToToggle", "clear", "set" or "modified".

G.7.12.5 getRegisterFieldReadAction

Description: The read action for the field. (New in 1.5)

• Input: regFieldID of type xsd:string.

• Returns: type of type xsd:string. one of "", "clear", "set" or "modify".

G.7.12.6 getRegisterFieldTestConstraint

Description: The test constraint required if the field can be tested with a simple register test. (New in 1.5)

• Input: regFieldID of type xsd:string.

• Returns: value of type xsd:string.

G.7.12.7 getRegisterFieldTestable

Description: True if the field can be tested with a simple register test. (New in 1.5)

• Input: regFieldID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.12.8 getRegisterFieldValue

Description: Enumerated bit field value.

• Input: regFieldValueID of type xsd:string.

• Returns: value of type spirit:spiritNumberType.

G.7.12.9 getRegisterFieldValueIDs

Description: List of IDs for field values for the given register field.

• Input: regFieldID of type xsd:string.

• Returns: regFieldValueIDs of type spirit:soapStringArrayType.

G.7.12.10 getRegisterFieldValueName

Description: Enumerated name for this register field value. Deprecated - use getName.

• Input: regFieldValueID of type xsd:string.

• Returns: value of type xsd:string.

G.7.12.11 getRegisterFieldValueUsage

Description: Enumerated bit field usage. (New in 1.5)

• Input: regFieldValueID of type xsd:string.

• Returns: usage of type xsd:string.

G.7.12.12 getRegisterFieldVolatility

Description: Indicates whether or not the data is volatile. The presumed value is 'false' if the element is not
present. (Modified in 1.5)
316 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

316 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: registerID of type xsd:string.

• Returns: value of type xsd:string. returns "true" or "false".

G.7.12.13 getRegisterFieldWriteValueConstraintMinMax

Description: The value of a write constraint. (New in 1.5)

• Input: regFieldID of type xsd:string.

• Returns: integerArrayValue of type spirit:integerArrayType. array of minimum and maxi-
mum or zero element array if not specified.

G.7.12.14 getRegisterFieldWriteValueConstraintUseEnumeratedValues

Description: The write value constraint shall use the enumerated values. (New in 1.5)

• Input: regFieldID of type xsd:string.

• Returns: boolean of type xsd:boolean.

G.7.12.15 getRegisterFieldWriteValueConstraintWriteAsRead

Description: The write value constraint is write as read. (New in 1.5)

• Input: regFieldID of type xsd:string.

• Returns: boolean of type xsd:boolean.

G.7.12.16 setRegisterFieldBitWidth

Description: Set the width of the field in bits.

• Input: regFieldID of type xsd:string.

• Input: width of type xsd:positiveInteger.

• Returns: status of type xsd:integer.

G.7.13 File and fileset operations

G.7.13.1 getFileBuildCommandFlags

Description: Flags of the file build command.

• Input: elementID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: fileUID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.2 getFileBuildCommandFlagsIsAppend

Description: Value of append attribute on the flag element.

• Input: fileID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.13.3 getFileBuildCommandName

Description: Name of the build command of the file.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 317
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 317
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: elementID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: fileUID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.4 getFileBuildCommandReplaceDefaultFlags

Description: Indicates whether or not to replace default flags.

• Input: elementID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: fileUID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.13.5 getFileBuildCommandTargetName

Description: Target name of the file build command.

• Input: elementID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: fileUID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.6 getFileBuilderCommand

Description: Command of the file builder.

• Input: elementID of type xsd:string.

• Legal value: fileBuilderID of type xsd:string.

• Legal value: fileBuilderUID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.7 getFileBuilderFileType

Description: FileType or userFileType of the file builder.

• Input: fileBuilderID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.8 getFileBuilderFlags

Description: Flags of the file builder.

• Input: elementID of type xsd:string.

• Legal value: fileBuilderID of type xsd:string.

• Legal value: fileBuilderUID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.9 getFileBuilderReplaceDefaultFlags

Description: Value of the replaceDefaultFlags element of the file builder.

• Input: elementID of type xsd:string.
318 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

318 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Legal value: fileBuilderID of type xsd:string.

• Legal value: fileBuilderUID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.13.10 getFileDefineSymbolIDs

Description: List of define symbol IDs used in the file.

• Input: fileID of type xsd:string.

• Returns: fileDefineIDs of type spirit:soapStringArrayType.

G.7.13.11 getFileDependencies

Description: List of dependent locations for the file, typically directories.

• Input: fileID of type xsd:string.

• Returns: fileDependencyValue of type spirit:soapStringArrayType.

G.7.13.12 getFileExportedNames

Description: List of exported names of the file.

• Input: fileID of type xsd:string.

• Returns: exportedNamesValue of type spirit:soapStringArrayType.

G.7.13.13 getFileHasExternalDeclarations

Description: Indicates that the file includes external declarations required by the top-level netlist file.

• Input: fileID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.13.14 getFileImageTypes

Description: List of image types of the file.

• Input: fileID of type xsd:string.

• Returns: fileImageTypesValue of type spirit:soapStringArrayType.

G.7.13.15 getFileIsIncludeFile

Description: Indicates that the given file is an include file.

• Input: fileID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.13.16 getFileLogicalName

Description: Logical name of the file.

• Input: fileID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.17 getFileLogicalNameDefault

Description: Default attribute of logical name of the file.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 319
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 319
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: fileID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.13.18 getFileName

Description: Get name of the given fileID.

• Input: elementID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: fileUID of type xsd:string.

• Input: resolve of type xsd:boolean. True=DE shall return an absolute file path, False=actual
XML text returned.

• Returns: name of type xsd:string.

G.7.13.19 getFileSetDependencies

Description: List of dependent locations for the fileSet, typically directories.

• Input: fileSetID of type xsd:string.

• Returns: fileDependencyValue of type spirit:soapStringArrayType.

G.7.13.20 getFileSetFileBuilderIDs

Description: List of file builder IDs used for this fileSet.

• Input: fileSetID of type xsd:string.

• Returns: fileBuilderIDs of type spirit:soapStringArrayType.

G.7.13.21 getFileSetFileIDs

Description: List of file IDs of the file set.

• Input: fileSetID of type xsd:string.

• Returns: fileIDs of type spirit:soapStringArrayType.

G.7.13.22 getFileSetFunctionIDs

Description: List of function IDs.

• Input: fileSetID of type xsd:string.

• Returns: functionIDs of type spirit:soapStringArrayType.

G.7.13.23 getFileSetGroupFileSetIDs

Description: List of file set IDs in this file set group.

• Input: fileSetGroupID of type xsd:string.

• Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.13.24 getFileSetGroupName

Description: Name of file set group.

• Input: fileSetGroupID of type xsd:string.

• Returns: value of type xsd:string.
320 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

320 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.13.25 getFileSetGroups

Description: List of group names of the file set.

• Input: fileSetID of type xsd:string.

• Returns: fileSetGroupsValue of type spirit:soapStringArrayType.

G.7.13.26 getFileType

Description: FileType or userFileType of the file.

• Input: fileID of type xsd:string.

• Returns: value of type spirit:soapStringArrayType.

G.7.13.27 getFunctionArgumentDataType

Description: Data type of the argument.

• Input: argumentID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.28 getFunctionArgumentIDs

Description: List of argument IDs of the function of the file set.

• Input: functionID of type xsd:string.

• Returns: argumentIDs of type spirit:soapStringArrayType.

G.7.13.29 getFunctionDisabled

Description: Indicates whether or not the function is disabled.

• Input: elementID of type xsd:string.

• Legal value: functionID of type xsd:string.

• Legal value: functionUID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.13.30 getFunctionEntryPoint

Description: Entry point of the function.

• Input: functionID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.31 getFunctionFileID

Description: File ID containing the function entry point.

• Input: functionID of type xsd:string.

• Returns: fileID of type xsd:string.

G.7.13.32 getFunctionReplicate

Description: Value of replicate attribute on function element.

• Input: functionID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 321
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 321
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.13.33 getFunctionReturnType

Description: Return type of the function.

• Input: functionID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.34 getFunctionSourceFileIDs

Description: List of source file IDs of the function of the file set.

• Input: functionID of type xsd:string.

• Returns: functionSourceFileIDs of type spirit:soapStringArrayType.

G.7.13.35 getFunctionSourceFileName

Description: Name of the source file.

• Input: functionSourceFileID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.36 getFunctionSourceFileType

Description: FileType or userFileType of the source file.

• Input: functionSourceFileID of type xsd:string.

• Returns: value of type xsd:string.

G.7.13.37 setFileBuildCommandFlags

Description: Set command flags for the given file builder.

• Input: fileID of type xsd:string.

• Input: value of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.13.38 setFileBuildCommandName

Description: Set command name for the given file builder.

• Input: fileID of type xsd:string.

• Input: value of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.13.39 setFileBuildCommandReplaceDefaultFlags

Description: Set replace default flags for the given file builder.

• Input: fileID of type xsd:string.

• Input: booleanValue of type xsd:boolean.

• Returns: status of type xsd:boolean.

G.7.13.40 setFileBuildCommandTargetName

Description: Set target name for build command for the given file.

• Input: fileID of type xsd:string.
322 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

322 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: value of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.13.41 setFileBuilderCommand

Description: Set command associated with file builder.

• Input: fileBuilderID of type xsd:string.

• Input: command of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.13.42 setFileBuilderFlags

Description: Set flags associated with the given file builder.

• Input: fileBuilderID of type xsd:string.

• Input: flags of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.13.43 setFileBuilderReplaceDefaultFlags

Description: Set value of replace default flags in file builder.

• Input: fileBuilderID of type xsd:string.

• Input: replaceDefaultFlags of type xsd:boolean.

• Returns: status of type xsd:boolean.

G.7.13.44 setFileName

Description: Set name of the given file.

• Input: fileID of type xsd:string.

• Input: value of type xsd:string. File name may be not be a relative path.

• Returns: status of type xsd:boolean.

G.7.13.45 setFunctionDisabled

Description: Set disable flag on function.

• Input: functionID of type xsd:string.

• Input: booleanValue of type xsd:boolean.

• Returns: status of type xsd:boolean.

G.7.14 Generator operations

G.7.14.1 getGeneratorApiType

Description: Api type of the generator.

• Input: generatorID of type xsd:string.

• Returns: value of type xsd:string.

G.7.14.2 getGeneratorExecutable

Description: Executable name associated with the generator .
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 323
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 323
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: generatorID of type xsd:string.

• Returns: value of type xsd:string.

G.7.14.3 getGeneratorGroups

Description: List of group names of the generator.

• Input: generatorID of type xsd:string.

• Returns: generatorGroupValue of type spirit:soapStringArrayType.

G.7.14.4 getGeneratorIsHidden

Description: Value of hidden attribute on the generator.

• Input: generatorID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.14.5 getGeneratorPhase

Description: Phase number of the generator.

• Input: generatorID of type xsd:string.

• Returns: floatValue of type xsd:float.

G.7.14.6 getGeneratorScope

Description: Scope of the generator.

• Input: generatorID of type xsd:string.

• Returns: value of type xsd:string.

G.7.14.7 getGeneratorTransportMethods

Description: List of transport methods of the generator.

• Input: generatorID of type xsd:string.

• Returns: transportValue of type spirit:soapStringArrayType.

G.7.15 Interface operations

G.7.15.1 getInterfaceAbstractionTypeVLNV

Description: List of VLNV of the abstraction definition.

• Input: interfaceID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.

G.7.15.2 getInterfaceBusTypeVLNV

Description: List of VLNV of the bus definition.

• Input: interfaceID of type xsd:string.

• Returns: vlnvValue of type spirit:soapStringArrayType.
324 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

324 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.15.3 getInterfaceMode

Description: Mode of the interface: master, slave, system, mirroredMaster, mirroredSlave, mirroredSystem
or monitor.

• Input: interfaceID of type xsd:string.

• Returns: value of type xsd:string.

G.7.15.4 getInterfacePortMapIDs

Description: List of interface port map IDs.

• Input: interfaceID of type xsd:string.

• Returns: interfacePortMapIDs of type spirit:soapStringArrayType.

G.7.15.5 getLogicalPhysicalMapIDs

Description: List of the logical and physical port map IDs.

• Input: interfacePortMapID of type xsd:string.

• Returns: portMapIDs of type spirit:soapStringArrayType.

G.7.15.6 getPortMapRange

Description: List of left and right range of the port map.

• Input: elementID of type xsd:string.

• Legal value: portMapID of type xsd:string.

• Legal value: portMapUID of type xsd:string.

• Returns: nonNegativeIntegerArrayValue of type spirit:nonNegativeIntegerArrayType.
The return array value is in the format of logical vector left, right, physical vector left, right.

G.7.15.7 setPortMapRange

Description: Set left/right range of an interface port map.

• Input: portMapID of type xsd:string.

• Input: nonNegativeIntegerArrayMessage of type spirit:nonNegativeIntegerArrayType.

• Returns: status of type xsd:boolean.

G.7.16 Miscellaneous operations

G.7.16.1 end

Description: Terminate connection to the Design Environment.

• Input: gen_status of type xsd:integer. Status indicator from the generator. Non-zero implies an
error.

• Input: message of type xsd:string. Message which the DE may display to the user.

• Returns: de_status of type xsd:integer. Status indicator from the DE. Non-zero implies an error.

G.7.16.2 getChoiceEnumerationHelp

Description: Value of the enumeration help attribute.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 325
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 325
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: choiceEnumerationID of type xsd:string.

• Returns: help of type xsd:string.

G.7.16.3 getChoiceEnumerationIDs

Description: List of choice enumeration IDs of the choice.

• Input: choiceID of type xsd:string.

• Returns: choiceEnumerationIDs of type spirit:soapStringArrayType.

G.7.16.4 getChoiceEnumerationText

Description: Value of the enumeration text attribute.

• Input: choiceEnumerationID of type xsd:string.

• Returns: text of type xsd:string.

G.7.16.5 getChoiceEnumerationValue

Description: Value of the enumeration element.

• Input: choiceEnumerationID of type xsd:string.

• Returns: value of type xsd:string.

G.7.16.6 getChoiceName

Description: Name of the choice.

• Input: choiceID of type xsd:string.

• Returns: value of type xsd:string.

G.7.16.7 getDescription

Description: Return the description of the specified element. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: abstractionDefID of type xsd:string.

• Legal value: abstractorID of type xsd:string.

• Legal value: abstractorInstanceID of type xsd:string.

• Legal value: adHocConnectionID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressSpaceID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: busdefID of type xsd:string.

• Legal value: channelID of type xsd:string.

• Legal value: componentID of type xsd:string.

• Legal value: componentInstanceID of type xsd:string.

• Legal value: cpuID of type xsd:string.

• Legal value: designID of type xsd:string.

• Legal value: executableImageID of type xsd:string.
326 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

326 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Legal value: fileDefineID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: fileSetID of type xsd:string.

• Legal value: generatorID of type xsd:string.

• Legal value: interconnectionID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: localMemoryMapID of type xsd:string.

• Legal value: memoryMapID of type xsd:string.

• Legal value: memoryRemapID of type xsd:string.

• Legal value: monitorInterconnectionID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Legal value: portConstraintSetID of type xsd:string.

• Legal value: portID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Legal value: regFieldValueID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Legal value: remapStateID of type xsd:string.

• Legal value: segmentID of type xsd:string.

• Legal value: subspaceMapID of type xsd:string.

• Legal value: viewID of type xsd:string.

• Legal value: whiteboxElementID of type xsd:string.

• Returns: description of type xsd:string.

G.7.16.8 getDisplayName

Description: Return the displayName of the specified element. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: adHocConnectionID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressSpaceID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: channelID of type xsd:string.

• Legal value: cpuID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: fileSetID of type xsd:string.

• Legal value: generatorID of type xsd:string.

• Legal value: interconnectionID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: localMemoryMapID of type xsd:string.

• Legal value: memoryMapID of type xsd:string.

• Legal value: memoryRemapID of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 327
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 327
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Legal value: monitorInterconnectionID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Legal value: portConstraintSetID of type xsd:string.

• Legal value: portID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Legal value: regFieldValueID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Legal value: remapStateID of type xsd:string.

• Legal value: segmentID of type xsd:string.

• Legal value: subspaceMapID of type xsd:string.

• Legal value: viewID of type xsd:string.

• Legal value: whiteboxElementID of type xsd:string.

• Returns: displayName of type xsd:string.

G.7.16.9 getErrorMessage

Description: Get error message from prior callback.

• Input: callerIdent of type xsd:string. ID string for debugging calls to this command within the
DE. Any value is okay.

• Returns: message of type xsd:string.

G.7.16.10 getGeneratorContextComponentInstanceID

Description: ID for the component instance associated with the currently invoked generator.

• Input: generatorName of type xsd:string. Generator name for use within DE in case of errors.

• Returns: componentInstanceID of type xsd:string.

G.7.16.11 getIdValue

Description: Return the value of the spirit:id attribute on a ID. (New in 1.5)

• Input: elementID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: localMemoryMapID of type xsd:string.

• Legal value: memoryMapID of type xsd:string.

• Legal value: memoryRemapID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Returns: id of type xsd:string.

G.7.16.12 getModelParameterDataType

Description: Data type of the model parameter.

• Input: parameterID of type xsd:string.
328 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

328 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Returns: value of type xsd:string.

G.7.16.13 getModelParameterUsageType

Description: Usage type of the model parameter.

• Input: parameterID of type xsd:string.

• Returns: value of type xsd:string. possible values are nontyped and typed.

G.7.16.14 getName

Description: Return the name of the specified element. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: adHocConnectionID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressSpaceID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: channelID of type xsd:string.

• Legal value: cpuID of type xsd:string.

• Legal value: executableImageID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: fileSetID of type xsd:string.

• Legal value: generatorID of type xsd:string.

• Legal value: interconnectionID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: linkerCommandFileID of type xsd:string.

• Legal value: localMemoryMapID of type xsd:string.

• Legal value: memoryMapID of type xsd:string.

• Legal value: memoryRemapID of type xsd:string.

• Legal value: monitorInterconnectionID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Legal value: portConstraintSetID of type xsd:string.

• Legal value: portID of type xsd:string.

• Legal value: portMapID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Legal value: regFieldValueID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Legal value: remapStateID of type xsd:string.

• Legal value: segmentID of type xsd:string.

• Legal value: subspaceMapID of type xsd:string.

• Legal value: viewID of type xsd:string.

• Legal value: whiteboxElementID of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 329
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 329
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Returns: name of type xsd:string.

G.7.16.15 getParameterIDs

Description: List of parameter IDs from the given element (any which contains spirit:parameter elements).

• Input: elementID of type xsd:string.

• Legal value: abstractorID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressSpaceID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: cpuID of type xsd:string.

• Legal value: componentID of type xsd:string.

• Legal value: executableImageID of type xsd:string.

• Legal value: generatorID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: linkerCommandFileID of type xsd:string.

• Legal value: memoryMapID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Legal value: subspaceMapID of type xsd:string.

• Legal value: serviceTypeDefID of type xsd:string.

• Legal value: viewID of type xsd:string.

• Legal value: whiteboxElementID of type xsd:string.

• Returns: parameterIDs of type spirit:soapStringArrayType.

G.7.16.16 getUnconfiguredID

Description: Return the unconfigured ID from a configured ID. (New in 1.5)

• Input: elementID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressSpaceID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: clockDriverID of type xsd:string.

• Legal value: executableImageID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: fileBuilderID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: functionID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: linkerCommandFileID of type xsd:string.

• Legal value: parameterID of type xsd:string.
330 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

330 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Legal value: portID of type xsd:string.

• Legal value: portMapID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Legal value: segmentID of type xsd:string.

• Legal value: singleShotDriverID of type xsd:string.

• Legal value: subspaceMapID of type xsd:string.

• Returns: elementID of type xsd:string. Unconfigured ID.

• Possible value(s): addressBlockUID of type xsd:string.

• Possible value(s): addressSpaceUID of type xsd:string.

• Possible value(s): alternateRegisterUID of type xsd:string.

• Possible value(s): argumentUID of type xsd:string.

• Possible value(s): bankUID of type xsd:string.

• Possible value(s): clockDriverUID of type xsd:string.

• Possible value(s): executableImageUID of type xsd:string.

• Possible value(s): fileBuilderUID of type xsd:string.

• Possible value(s): fileDefineUID of type xsd:string.

• Possible value(s): fileUID of type xsd:string.

• Possible value(s): functionUID of type xsd:string.

• Possible value(s): interfaceUID of type xsd:string.

• Possible value(s): linkerCommandFileUID of type xsd:string.

• Possible value(s): parameterUID of type xsd:string.

• Possible value(s): portUID of type xsd:string.

• Possible value(s): portMapUID of type xsd:string.

• Possible value(s): regFieldUID of type xsd:string.

• Possible value(s): registerUID of type xsd:string.

• Possible value(s): registerFileUID of type xsd:string.

• Possible value(s): segmentUID of type xsd:string.

• Possible value(s): singleShotDriverUID of type xsd:string.

• Possible value(s): subspaceMapUID of type xsd:string.

G.7.16.17 getValue

Description: Get the value of a parameterID, fileDefineIDs or argumentIDs.

• Input: elementID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: argumentUID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: fileDefineUID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Legal value: parameterUID of type xsd:string.

• Returns: value of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 331
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 331
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.16.18 getValueAttribute

Description: Returns the value of the given attribute name on the elementID/value element.

• Input: elementID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Input: attrName of type xsd:string. This is a namespace qualified attribute.

• Returns: value of type xsd:string.

G.7.16.19 getVendorAttribute

Description: Get vendor defined attribute from the given element.

• Input: elementID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Input: attrName of type xsd:string.

• Returns: attrValue of type xsd:string.

G.7.16.20 getVendorExtensions

Description: Returns the complete XML text of the vendor extension element including the
spirit:vendorExtension tag, as a well formed XML document.

• Input: elementID of type xsd:string.

• Legal value: abstractionDefID of type xsd:string.

• Legal value: abstractionDefPortID of type xsd:string.

• Legal value: abstractionServiceID of type xsd:string.

• Legal value: abstractorID of type xsd:string.

• Legal value: addressBlockID of type xsd:string.

• Legal value: addressSpaceID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: bankID of type xsd:string.

• Legal value: busdefID of type xsd:string.

• Legal value: componentID of type xsd:string.

• Legal value: componentInstanceID of type xsd:string.

• Legal value: cpuID of type xsd:string.

• Legal value: designID of type xsd:string.

• Legal value: executableImageID of type xsd:string.

• Legal value: fileBuilderID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: fileID of type xsd:string.
332 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

332 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Legal value: fileSetID of type xsd:string.

• Legal value: generatorID of type xsd:string.

• Legal value: hierConnectionID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: linkerCommandFileID of type xsd:string.

• Legal value: memoryMapID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Legal value: portID of type xsd:string.

• Legal value: regFieldID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Legal value: segmentID of type xsd:string.

• Legal value: subspaceMapID of type xsd:string.

• Legal value: serviceID of type xsd:string.

• Legal value: viewID of type xsd:string.

• Legal value: whiteboxElementID of type xsd:string.

• Returns: value of type xsd:string.

G.7.16.21 getWarningCount

Description: Return count of how many potentially incompatible API calls have been made.

• Input: callerIdent of type xsd:string. ID string for debugging calls to this command within the
DE. Any value is okay.

• Returns: count of type xsd:integer.

G.7.16.22 getXMLForVLNV

Description: Return XML of the IP-XACT object identified by the given VLNV.

• Input: vlnvValue of type spirit:soapStringArrayType.

• Returns: xmlText of type xsd:string.

G.7.16.23 init

Description: API initialization function. Must be called before any other API call.

• Input: apiVersion of type xsd:string. Indicates the API version the generator is defined to work
with.

• Input: failureMode of type spirit:apiFailureMode. Compatability failure mode: fail -- DE
should return an error on the init call if it's API version does not match the one passed to the init call,
error -- DE should return an error each time a potentially incompatible API call is made, warning --
DE should increment a warning count each time a potentially incompatible API call is made.

• Input: message of type xsd:string. Message which the DE may display to the user.

• Returns: status of type xsd:boolean.

G.7.16.24 message

Description: Send message level and message text to Design Environment.

• Input: severity of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 333
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 333
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: message of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.16.25 registerVLNV

Description: Indicate to DE where the file resides for the IP-XACT element with the given VLNV.

• Input: fileName of type xsd:string.

• Input: replace of type xsd:boolean. True=always register, False=do not register if the VLNV
already exists.

• Returns: status of type xsd:boolean. True=VLNV registered, False=VLNV not registered.

G.7.16.26 setValue

Description: Set the value of a parameterID, fileDefineIDs or argumentIDs.

• Input: elementID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Input: value of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.16.27 setVendorAttribute

Description: Set vendor defined attribute on the given element.

• Input: elementID of type xsd:string.

• Legal value: argumentID of type xsd:string.

• Legal value: fileDefineID of type xsd:string.

• Legal value: fileID of type xsd:string.

• Legal value: interfaceID of type xsd:string.

• Legal value: parameterID of type xsd:string.

• Input: attrName of type xsd:string.

• Input: attrValue of type xsd:string.

• Returns: status of type xsd:integer.

G.7.16.28 setVendorExtensions

Description: Set vendor extensions. NOTE: This call is only supported for elements within a spirit:design.

• Input: elementID of type xsd:string.

• Legal value: componentInstanceID of type xsd:string.

• Legal value: designID of type xsd:string.

• Legal value: hierConnectionID of type xsd:string.

• Input: extensionText of type xsd:string. Complete vendor extension text as a well formed
XML document with top-level element of spirit:vendorExtensions.

• Returns: status of type xsd:boolean.

G.7.17 Port operations
334 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

334 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
G.7.17.1 getAllLogicalDirectionsAllowed

Description: Get the value of the allLogicalDirectionAllowed attribute. (New in 1.5)

• Input: portID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.17.2 getClockDriverName

Description: Name of the clock driver.

• Input: clockDriverID of type xsd:string.

• Returns: value of type xsd:string.

G.7.17.3 getClockDriverPeriod

Description: Clock period of the given clock.

• Input: elementID of type xsd:string.

• Legal value: clockDriverID of type xsd:string.

• Legal value: clockDriverUID of type xsd:string.

• Returns: floatValue of type xsd:float.

G.7.17.4 getClockDriverPeriodUnits

Description: Units of the clock period of the given clock. (New in 1.5)

• Input: clockDriverID of type xsd:string.

• Returns: units of type xsd:string.

G.7.17.5 getClockDriverPulseDuration

Description: Clock period of the given clock.

• Input: elementID of type xsd:string.

• Legal value: clockDriverID of type xsd:string.

• Legal value: clockDriverUID of type xsd:string.

• Returns: floatValue of type xsd:float.

G.7.17.6 getClockDriverPulseDurationUnits

Description: Units of the clock pulse duration of the given clock. (New in 1.5)

• Input: clockDriverID of type xsd:string.

• Returns: units of type xsd:string.

G.7.17.7 getClockDriverPulseOffset

Description: Clock pulse offset of the given clock.

• Input: elementID of type xsd:string.

• Legal value: clockDriverID of type xsd:string.

• Legal value: clockDriverUID of type xsd:string.

• Returns: floatValue of type xsd:float.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 335
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 335
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.17.8 getClockDriverPulseOffsetUnits

Description: Units of the clock pulse offset of the given clock. (New in 1.5)

• Input: clockDriverID of type xsd:string.

• Returns: units of type xsd:string.

G.7.17.9 getClockDriverPulseValue

Description: Clock pulse value of the given clock.

• Input: elementID of type xsd:string.

• Legal value: clockDriverID of type xsd:string.

• Legal value: clockDriverUID of type xsd:string.

• Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.17.10 getClockDriverSource

Description: Source name of the clock driver.

• Input: clockDriverID of type xsd:string.

• Returns: value of type xsd:string.

G.7.17.11 getPortAccessHandle

Description: Alternate name to be used when accessing this port. (Modified in 1.5)

• Input: portID of type xsd:string.

• Returns: accessHandle of type xsd:string.

G.7.17.12 getPortAccessType

Description: Indicates the access type for this port. (Modified in 1.5)

• Input: portID of type xsd:string.

• Returns: accessType of type xsd:string.

G.7.17.13 getPortClockDriverID

Description: Element ID of clock driver element, if present.

• Input: portID of type xsd:string.

• Returns: clockDriverID of type xsd:string.

G.7.17.14 getPortConstraintSetIDs

Description: List of constraint sets IDs of the port.

• Input: portID of type xsd:string.

• Returns: portConstraintSetIDs of type spirit:soapStringArrayType.

G.7.17.15 getPortDefaultValue

Description: Default value of the port, if not set returns "".

• Input: elementID of type xsd:string.
336 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

336 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Legal value: portID of type xsd:string.

• Legal value: portUID of type xsd:string.

• Returns: value of type xsd:string.

G.7.17.16 getPortDirection

Description: Direction of the port.

• Input: portID of type xsd:string.

• Returns: value of type xsd:string.

G.7.17.17 getPortMaxAllowedConnections

Description: Max allowed connections for this transactional port.

• Input: portID of type xsd:string.

• Returns: value of type xsd:string.

G.7.17.18 getPortMinAllowedConnections

Description: Min allowed connections for this transactional port.

• Input: portID of type xsd:string.

• Returns: value of type xsd:string.

G.7.17.19 getPortRange

Description: List of the left and right range of the port.

• Input: portID of type xsd:string.

• Returns: integerArrayValue of type spirit:integerArrayType. array of left and right or zero
element array if not specified.

G.7.17.20 getPortServiceID

Description: ID of element representing the service of a transactional port.

• Input: portID of type xsd:string.

• Returns: serviceID of type xsd:string.

G.7.17.21 getPortSingleShotDriverID

Description: Element ID of single shot driver element, if present.

• Input: portID of type xsd:string.

• Returns: singleShotDriverID of type xsd:string.

G.7.17.22 getPortSingleShotPulseDuration

Description: Clock period of the port.

• Input: elementID of type xsd:string.

• Legal value: singleShotDriverID of type xsd:string.

• Legal value: singleShotDriverUID of type xsd:string.

• Returns: floatValue of type xsd:float.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 337
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 337
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.17.23 getPortSingleShotPulseOffset

Description: Clock pulse offset of the port.

• Input: singleShotDriverID of type xsd:string.

• Returns: floatValue of type xsd:float.

G.7.17.24 getPortSingleShotPulseValue

Description: Clock pulse value of the port.

• Input: singleShotDriverID of type xsd:string.

• Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.17.25 getPortStyle

Description: Returns 'wire' or 'transactional' to indicate the port style.

• Input: portID of type xsd:string.

• Returns: value of type xsd:string.

G.7.17.26 getPortTransactionalTypeDefID

Description: The type definition for a transactional portID. (New in 1.5)

• Input: portID of type xsd:string.

• Returns: transactionalTypeDefID of type xsd:string.

G.7.17.27 getPortWireTypeDefIDs

Description: List of typeDefs for a wire portID. (New in 1.5)

• Input: portID of type xsd:string.

• Returns: wireTypeDefIDs of type spirit:soapStringArrayType.

G.7.17.28 setClockDriverPeriod

Description: Set period of the given clock port.

• Input: clockDriverID of type xsd:string.

• Input: floatValue of type xsd:float.

• Returns: status of type xsd:boolean.

G.7.17.29 setClockDriverPulseDuration

Description: Set pulse duration of the given clock port.

• Input: clockDriverID of type xsd:string.

• Input: floatValue of type xsd:float.

• Returns: status of type xsd:boolean.

G.7.17.30 setClockDriverPulseOffset

Description: Set pulse offset value of the given clock port.

• Input: clockDriverID of type xsd:string.

• Input: floatValue of type xsd:float.
338 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

338 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Returns: status of type xsd:boolean.

G.7.17.31 setClockDriverPulseValue

Description: Set pulse value of the given clock port.

• Input: clockDriverID of type xsd:string.

• Input: spiritNumberTypeValue of type spirit:spiritNumberType.

• Returns: status of type xsd:boolean.

G.7.17.32 setPortDefaultValue

Description: Set default value of the given port.

• Input: portID of type xsd:string.

• Input: value of type xsd:string.

• Returns: status of type xsd:boolean.

G.7.17.33 setPortRange

Description: Set left/right range for the given port.

• Input: portID of type xsd:string.

• Input: integerArrayMessage of type spirit:integerArrayType.

• Returns: status of type xsd:boolean.

G.7.17.34 setPortSingleShotPulseDuration

Description: Set pulse duration of given single shot port.

• Input: singleShotDriverID of type xsd:string.

• Input: floatValue of type xsd:float.

• Returns: status of type xsd:boolean.

G.7.17.35 setPortSingleShotPulseOffset

Description: Set pulse offset of given single shot port.

• Input: singleShotDriverID of type xsd:string.

• Input: floatValue of type xsd:float.

• Returns: status of type xsd:boolean.

G.7.17.36 setPortSingleShotPulseValue

Description: Set pulse value of given single shot port.

• Input: singleShotDriverID of type xsd:string.

• Input: spiritNumberTypeValue of type spirit:spiritNumberType.

• Returns: status of type xsd:boolean.

G.7.18 Register file operations

G.7.18.1 getRegisterFileAddressOffset

Description: The offset from the base address. (New in 1.5)
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 339
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 339
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Input: registerFileID of type xsd:string.

• Returns: offset of type spirit:spiritNumberType.

G.7.18.2 getRegisterFileDimensions

Description: Dimensions of a register file array. (New in 1.5)

• Input: registerFileID of type xsd:string.

• Returns: dimensions of type spirit:nonNegativeIntegerArrayType.

G.7.18.3 getRegisterFileRange

Description: The register file range in number of addressable units. (New in 1.5)

• Input: elementID of type xsd:string.

• Legal value: registerFileID of type xsd:string.

• Legal value: registerFileUID of type xsd:string.

• Returns: range of type xsd:positiveInteger.

G.7.18.4 getRegisterFileRegisterFileIDs

Description: List of IDs for the register files of the given register file. (New in 1.5)

• Input: registerFileID of type xsd:string.

• Returns: registerFileIDs of type spirit:soapStringArrayType.

G.7.18.5 getRegisterFileRegisterIDs

Description: List of IDs for the registers of the given register file. (New in 1.5)

• Input: registerFileID of type xsd:string.

• Returns: registerIDs of type spirit:soapStringArrayType.

G.7.18.6 setRegisterFileRange

Description: Set the register file range in addressable units. (New in 1.5)

• Input: registerFileID of type xsd:string.

• Input: range of type xsd:positiveInteger.

• Returns: status of type xsd:boolean.

G.7.19 Register operations

G.7.19.1 getRegisterAccess

Description: The accessibility of the data in the register.

• Input: elementID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Returns: value of type xsd:string.

G.7.19.2 getRegisterAddressOffset

Description: The offset from the base address.
340 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

340 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: registerID of type xsd:string.

• Returns: offset of type spirit:spiritNumberType.

G.7.19.3 getRegisterAlternateGroups

Description: Indicates the group names for an alternate register. (New in 1.5)

• Input: alternateRegisterID of type xsd:string.

• Returns: groupNames of type spirit:soapStringArrayType.

G.7.19.4 getRegisterAlternateRegisterIDs

Description: List of IDs for the alternate registers of the given register. (New in 1.5)

• Input: registerID of type xsd:string.

• Returns: alternateRegisterIDs of type spirit:soapStringArrayType.

G.7.19.5 getRegisterDimensions

Description: Dimensions of a register array.

• Input: registerID of type xsd:string.

• Returns: dimensions of type spirit:nonNegativeIntegerArrayType.

G.7.19.6 getRegisterFieldIDs

Description: List of IDs for the fields of the given register. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Input: registerID of type xsd:string.

• Returns: regFieldIDs of type spirit:soapStringArrayType.

G.7.19.7 getRegisterResetMask

Description: Mask to be ANDed with the value before comparing to reset value. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerUID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: alternateRegisterUID of type xsd:string.

• Returns: mask of type spirit:spiritNumberType.

G.7.19.8 getRegisterResetValue

Description: Register value at reset. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerUID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Legal value: alternateRegisterUID of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 341
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 341
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
• Returns: value of type spirit:spiritNumberType.

G.7.19.9 getRegisterSize

Description: The register size in bits.

• Input: elementID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: registerUID of type xsd:string.

• Returns: size of type xsd:positiveInteger.

G.7.19.10 getRegisterVolatility

Description: Indicates whether or not the data is volatile. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Returns: value of type xsd:string. returns "true", "false" or "".

G.7.19.11 setRegisterResetMask

Description: Set the mask to be ANDed with the value before comparing to reset value. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Input: mask of type spirit:spiritNumberType.

• Returns: status of type xsd:integer.

G.7.19.12 setRegisterResetValue

Description: Set register value at reset. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: registerID of type xsd:string.

• Legal value: alternateRegisterID of type xsd:string.

• Input: value of type spirit:spiritNumberType.

• Returns: status of type xsd:integer.

G.7.19.13 setRegisterSize

Description: Set the register size in bits.

• Input: registerID of type xsd:string.

• Input: size of type xsd:positiveInteger.

• Returns: status of type xsd:boolean.

G.7.20 Remap operations

G.7.20.1 getRemapStatePortIDs

Description: List of remap port IDs of a remap state.
342 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

342 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: remapStateID of type xsd:string.

• Returns: remapStatePortIDs of type spirit:soapStringArrayType.

G.7.20.2 getRemapStatePortPortID

Description: Port ID for the remap state.

• Input: remapStatePortID of type xsd:string.

• Returns: portID of type xsd:string.

G.7.20.3 getRemapStatePortPortIndex

Description: Index of the port if a vector for the remap state.

• Input: remapStatePortID of type xsd:string.

• Returns: value of type xsd:string.

G.7.20.4 getRemapStatePortPortValue

Description: Value of the port for the remap state.

• Input: remapStatePortID of type xsd:string.

• Returns: spiritNumberTypeValue of type spirit:spiritNumberType.

G.7.21 Service operations

G.7.21.1 getAbstractionDefAbstractionServiceTypeDefIDs

Description: List of type definitions for an abstractionServiceID. (New in 1.5)

• Input: abstractionServiceID of type xsd:string.

• Returns: abstractionServiceTypeDefIDs of type spirit:soapStringArrayType.

G.7.21.2 getAbstractionDefServiceIDs

Description: List of typeDefs for an abstractionServiceID. (Invalid in 1.5)

• Input: abstractionServiceID of type xsd:string.

• Returns: typeDefIDs of type xsd:string.

G.7.21.3 getAbstractionDefServiceInitiative

Description: Port service initiative from the abstraction definition.

• Input: abstractionServiceID of type xsd:string.

• Returns: initiative of type xsd:string.

G.7.21.4 getServiceInitiative

Description: Initiative of the service.

• Input: serviceID of type xsd:string.

• Returns: initiative of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 343
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 343
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.21.5 getServiceTypeDefIDs

Description: List of typeDefs for a serviceID. (Modified in 1.5)

• Input: serviceID of type xsd:string.

• Returns: serviceTypeDefIDs of type spirit:soapStringArrayType.

G.7.22 TypeDef operations

G.7.22.1 getTypeDefConstrained

Description: Is the type name constrained. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: wireTypeDefID of type xsd:string.

• Legal value: transactionalTypeDefID of type xsd:string.

• Legal value: serviceTypeDefID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.22.2 getTypeDefImplicit

Description: Is the type name implicit. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: serviceTypeDefID of type xsd:string.

• Legal value: abstractionServiceTypeDefID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.22.3 getTypeDefTypeDefinitions

Description: List of type definition for the given type. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: wireTypeDefID of type xsd:string.

• Legal value: transactionalTypeDefID of type xsd:string.

• Legal value: serviceTypeDefID of type xsd:string.

• Returns: typeDefinitions of type spirit:soapStringArrayType.

G.7.22.4 getTypeDefTypeName

Description: Name of the type. (Modified in 1.5)

• Input: elementID of type xsd:string.

• Legal value: wireTypeDefID of type xsd:string.

• Legal value: transactionalTypeDefID of type xsd:string.

• Legal value: serviceTypeDefID of type xsd:string.

• Legal value: abstractionServiceTypeDefID of type xsd:string.

• Returns: value of type xsd:string.

G.7.22.5 getTypeDefTypeViewIDs

Description: List of type viewIDs for the given type. (Modified in 1.5)
344 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

344 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: wireTypeDefID of type xsd:string.

• Returns: viewIDs of type spirit:soapStringArrayType.

G.7.23 View operations

G.7.23.1 getViewDefaultFileBuilderIDs

Description: List of default file builder IDs of the view.

• Input: viewID of type xsd:string.

• Returns: fileBuilderIDs of type spirit:soapStringArrayType.

G.7.23.2 getViewDesignID

Description: ID of the design associated with a hierarchical view.

• Input: viewID of type xsd:string.

• Returns: designID of type xsd:string.

G.7.23.3 getViewEnvIdentifiers

Description: List of environment identifiers of the view.

• Input: viewID of type xsd:string.

• Returns: envIdentifiersValue of type spirit:soapStringArrayType.

G.7.23.4 getViewFileSetIDs

Description: List of fileSet IDs for fileSets referenced by the view.

• Input: viewID of type xsd:string.

• Returns: fileSetIDs of type spirit:soapStringArrayType.

G.7.23.5 getViewLanguage

Description: View Language.

• Input: viewID of type xsd:string.

• Returns: value of type xsd:string.

G.7.23.6 getViewLanguageIsStrict

Description: Value of 'strict' attribute on view language element.

• Input: viewID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.23.7 getViewModelName

Description: Get the model name for this view.

• Input: viewID of type xsd:string.

• Returns: modelName of type xsd:string.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 345
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 345
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
G.7.23.8 getViewPortConstraintSetIDs

Description: Constraint set ID for the port referenced by the view. (Modified in 1.5)

• Input: portID of type xsd:string.

• Input: viewID of type xsd:string.

• Returns: portConstraintSetIDs of type spirit:soapStringArrayType.

G.7.23.9 getViewWhiteboxElementRefIDs

Description: List of whitebox element reference IDs of the view.

• Input: viewID of type xsd:string.

• Returns: whiteboxRefIDs of type spirit:soapStringArrayType.

G.7.24 Whitebox operations

G.7.24.1 getWhiteboxElementDrivable

Description: Indicates whether or not the whitebox element is drivable.

• Input: whiteboxElementID of type xsd:string.

• Returns: booleanValue of type xsd:boolean.

G.7.24.2 getWhiteboxElementRefID

Description: White box element reference ID.

• Input: whiteboxRefID of type xsd:string.

• Returns: whiteboxElementID of type xsd:string.

G.7.24.3 getWhiteboxElementRegisterID

Description: Register reference ID of the whitebox element. (Invalid in 1.5)

• Input: whiteboxElementID of type xsd:string.

• Returns: registerIDs of type xsd:string.

G.7.24.4 getWhiteboxElementRegisterIDs

Description: Register reference IDs of the whitebox element. (New in 1.5)

• Input: whiteboxElementID of type xsd:string.

• Returns: registerIDs of type spirit:soapStringArrayType.

G.7.24.5 getWhiteboxElementType

Description: Type of the whitebox element.

• Input: whiteboxElementID of type xsd:string.

• Returns: value of type xsd:string.

G.7.24.6 getWhiteboxRefPathIDs

Description: List of path IDs of the white box element reference.
346 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

346 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
• Input: whiteboxRefID of type xsd:string.

• Returns: whiteboxRefPathIDs of type spirit:soapStringArrayType.

G.7.24.7 getWhiteboxRefPathName

Description: Name of the whitebox reference path element.

• Input: whiteboxRefPathID of type xsd:string.

• Returns: value of type xsd:string.

G.7.24.8 getWhiteboxRefPathRange

Description: List of left and right range of the whitebox reference path element.

• Input: whiteboxRefPathID of type xsd:string.

• Returns: nonNegativeIntegerArrayValue of type spirit:nonNegativeIntegerArrayType.

G.7.25 TGI ID types

Summary of defined TGI ID types.

— abstractionDefID

— abstractionDefPortID

— abstractionDefPortModeConstraintID

— abstractionDefPortModeID

— abstractionServiceID

— abstractionServiceTypeDefID

— abstractorID

— abstractorInstanceID

— adHocConnectionID

— adHocExternalPortReferenceID

— adHocInternalPortReferenceID

— addressBlockID

— addressBlockUID

— addressSpaceID

— addressSpaceUID

— alternateRegisterID

— alternateRegisterUID

— argumentID

— argumentUID

— bankID

— bankUID

— bridgeID

— busdefID

— channelID

— choiceEnumerationID

— choiceID

— clockDriverID
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 347
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 347
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
— clockDriverUID

— componentID

— componentInstanceID

— cpuID

— designID

— driveConstraintID

— elementID

— executableImageID

— executableImageUID

— fileBuilderID

— fileBuilderUID

— fileDefineID

— fileDefineUID

— fileID

— fileSetGroupID

— fileSetID

— fileUID

— functionID

— functionSourceFileID

— functionUID

— generatorID

— hierConnectionID

— interconnectionID

— interfaceID

— interfacePortMapID

— interfaceUID

— linkerCommandFileID

— linkerCommandFileUID

— loadConstraintID

— localMemoryMapID

— memoryMapElementID

— memoryMapID

— memoryRemapID

— monitorInterconnectionID

— parameterID

— parameterUID

— portConstraintSetID

— portID

— portMapID

— portMapUID

— portUID

— regFieldID

— regFieldUID
348 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

348 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
— regFieldValueID

— registerFileID

— registerFileUID

— registerID

— registerUID

— remapAddressID

— remapStateID

— remapStatePortID

— segmentID

— segmentUID

— serviceID

— serviceTypeDefID

— singleShotDriverID

— singleShotDriverUID

— subspaceMapID

— subspaceMapUID

— timingConstraintID

— transactionalTypeDefID

— typeDefID

— viewID

— whiteboxElementID

— whiteboxRefID

— whiteboxRefPathID

— wireTypeDefID
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 349
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 349
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
350 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

350 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Annex H

(informative)

Bridges and channels

This annex describes the basic address calculations of the two interconnect schemes contained inside an IP-
XACT component: a bridge statement which describes an interconnect between a slave interface and a
master interface and a channel statement which describes an interconnect between a mirrored-master
interface and a mirrored-slave interface. Figure H1 highlights bridge and channel components in IP-XACT.
For precise details on the addressing equations, see Clause 11.

Figure H1—Bridge and channel components

H.1 Transparent bridge

A transparent bridge locates the start of the master interface’s address space at the start of the address space
seen at the slave interface; thus, the address is not modified from the slave interface of the bridge into the
addressSpace of the master interface. In Figure H2, the master interface address space range 0x0000 to
0x0FFF maps to the address range 0x0000 to 0x0FFF as seen in the address space at the slave interface.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 351
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 351
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
Figure H2—Transparent bridge slave interface address range

An address block from another component connected to the bridge’s master interface may appear in the
master’s address space. The base address of the connected address block is offset in the address space of the
master interface by the master/addressSpaceRef/baseAddress. This also offsets the address block by the
same amount in the address space at the slave interface. In Figure H3, the addressBlock from the connected
slave range 0x0000 to 0x07FF maps to the address range 0x0600 to 0x0DFF (offset by master/
addressSpaceRef/baseAddress = 0x0600) as seen in the address space of the master interface and to the
address range 0x0600 to 0x0DFF as seen in the address space at the slave interface.

Figure H3—Offsetting an address block in a transparent bridge

Figure H4 shows it is also possible to offset the addressBlock from the connected slave in the negative
direction. The addressBlock from the connected slave range 0x7000 to 0x77FF maps to the address
range 0x0000 to 0x07FF (offset by master/addressSpaceRef/baseAddress = -0x7000) as seen in the
address space of the master interface and to the address range 0x0000 to 0x07FF as seen in the address
space at the slave interface.
352 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

352 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Figure H4—Negative offsetting of an address block in a transparent bridge

Figure H5 shows the references between the various elements and attributes in a transparent bridge.

Figure H5—Transparent bridge references

H.2 Opaque bridge

H.2.1 Without an address space segment reference

An opaque bridge that only references a master interface locates the start of the master interface’s address
space at the base address specified in the subspace map referenced by the slave interface; thus, the address is
modified (offset by subspaceMap/baseAddress) from the slave interface into the addressSpace of the
master interface. In Figure H6, the slave interface address range 0x1000 to 0x1FFF maps to address range
0x0000 to 0x0FFF in the master interface’s address space. The range of the addresses mapped is
determined by the range of the addressSpace.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 353
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 353
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
Figure H6—Opaque bridge slave interface address range without segment reference

H.2.2 With an address space segment reference

An opaque bridge with an addressSpace segment reference locates the start of the master interface’s
address space segment at the base address specified in the subspace map referenced by the slave interface;
thus, the address is modified (offset by subspaceMap/baseAddress) from the slave interface into the
addressSpace of the master interface. In Figure H7, the slave interface address range 0x1000 to 0x17FF
maps to address range 0x2000 to 0x27FF in the master interface’s address space. The range of the
addresses mapped is determined by the range of the address space’s segment.

Figure H7—Opaque bridge slave interface address range with segment reference

It is also possible to preserve the addressing across an opaque bridge. In Figure H8, the slave interface
address range 0x1000 to 0x17FF maps to address range 0x1000 to 0x17FF in the master interface’s
354 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

354 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
address space. The range of the addresses mapped is determined by the range of the address space’s
segment.

Figure H8—Opaque bridge with transparent addressing

H.2.3 Effect of a master interface address space base address

The effect of the master interface address space base address applies with or without a segment reference.
An address block from another component connected to the bridge’s master interface may appear in the
master’s address space. The base address of the connected address block is offset in the address space of the
master interface by the master/addressSpaceRef/baseAddress. This also offsets the address block by the
same amount in the address space at the slave interface. In Figure H9, the addressBlock from the connected
slave range 0x0000 to 0x07FF maps to the address range 0x0500 to 0x0CFF (offset by master/
addressSpaceRef/baseAddress = 0x0500) as seen in the address space of the master interface and to the
address range 0x1500 to 0x1CFF (offset by subspaceMap/baseAddress = 0x1000) as seen in the
address space at the slave interface.

Figure H9—Offsetting an address block in an opaque bridge
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 355
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 355
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
Figure H10 shows it is also possible to offset the addressBlock from the connected slave in the negative
direction. The addressBlock from the connected slave range 0x7000 to 0x77FF maps to the address
range 0x0500 to 0x0CFF (offset by master/addressSpaceRef/baseAddress = -0x6B00) as seen in the
address space of the master interface and to the address range 0x1500 to 0x1CFF (offset by
subspaceMap/baseAddress = 0x1000)as seen in the address space at the slave interface.

Figure H10—Negative offsetting of an address block in an opaque bridge

Figure H11 shows the references between the various elements and attributes in an opaque bridge.

Figure H11—Opaque bridge references
356 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

356 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
H.3 Channel with address remapping

A mirrored-slave interface that is part of a channel may provide a remap address for the connected slave
interface. This remap address is an offset of the base address of the address block in the connected slave
interface, as shown in Figure H12. This offset is the addition the remapAddress element’s value (see 6.9) to
the base address of the memory map from the slave. The range element also modifies (and potentially
narrows) the range of the entire memory map of the connected slave. In Figure H12, the slave interface
address range 0x0000 to 0x0FFF maps to the address range 0x1000 to 0x17FF (offset by mirrorSlave/
baseAddress/remapAddress = 0x1000 and narrowed by mirrorSlave/baseAddress/range = 0x0800) in
the address space as seen at the mirrored-slave interface.

Figure H12—Address remapping in a channel

Figure H13 shows the references between the various elements and attributes in a channel with address
remapping.

Figure H13—Channel with remapping references
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 357
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 357
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
H.4 Channel with bit steering

A mirrored-slave interface that is part of a channel may have a bitSteering element. If the bitSteering
element is on, the base address and range of an address block as seen across a channel is modified only by
the ratio of the bitsInLau of the mirrored-slave and the mirrored-master interfaces. In Figure H14, the slave
interface address range 0x0000 to 0x07FF maps to the address range 0x1000 to 0x17FF (offset by
mirrorSlave/baseAddress/remapAddress = 0x1000) in the address space as seen at the mirrored-slave
interface and maps to the address range 0x1000 to 0x17FF (multiplied by the ratio of the mirrored-slave
and mirrored-master bitsInLau 8/8 = 1, and independent of the width of the logical data ports) in the
address space as seen at the mirrored-master interface.

Figure H14—Channel with equal bitsInLau and bitSteering = on

In Figure H15, the bitSteering element is on and there are differing bitsInLau across the channel. The slave
interface address range 0x0000 to 0x0FFF maps to the address range 0x1000 to 0x1FFF (offset by
mirrorSlave/baseAddress/remapAddress = 0x1000) in the address space as seen at the mirrored-slave
interface and maps to the address range 0x0800 to 0x0FFF (multiplied by the ratio of the mirrored-slave
and mirrored-master bitsInLau 4/8 = 1/2, and independent of the width of the logical data ports) in the
address space as seen at the mirrored-master interface.
358 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

358 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Specification IP-XACT v1.5/D5.1, May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55

IP-XACT v1.5/D5.1 May 28, 2009

1

5

10

15

20

25

30

35

40

45

50

55
Figure H15—Channel with non-equal bitsInLau and bitSteering = on

If bitSteering is off, the base address and range of an address block as seen across a channel is modified by
the ratio of the bitsInLau and the logical data-width of the mirrored-slave and mirrored-master interfaces.
In Figure H16, the slave interface address range 0x0000 to 0x07FF maps to the address range 0x1000 to
0x17FF (offset by mirrorSlave/baseAddress/remapAddress = 0x1000) in the address space as seen at
the mirrored-slave interface and maps to the address range 0x2000 to 0x2FFF (multiplied by the ratio of
mirrored-slave and mirrored-master bitsInLau 8/8 = 1, and multiplied by the ratio mirrored-master
logical data-width divided by the mirrored-slave logical data-width 16/8 = 2) in the address space as seen
at the mirrored-master interface.

Figure H16—Channel with bitSteering = off

Figure H17 shows the references between the various elements and attributes in a channel with bitSteering
references.
Copyright © 2007 The SPIRIT Consortium. All rights reserved. 359
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved. 359
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

IP-XACT v1.5/D5.1, May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55

May 28, 2009 IP-XACT v1.5/D5.1

1

5

10

15

20

25

30

35

40

45

50

55
Figure H17—Channel with bitSteering references
360 Copyright © 2007 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

360 Copyright © 2005-2009 The SPIRIT Consortium. All rights reserved.
This is an unapproved IP-XACT Standards Draft, subject to change.

Embargoed from distribution beyond The SPIRIT Consortium reviewing membership

	IP-XACT Draft/D5: A specification for XML meta-data and tool interfaces
	IP-XACT v1.5/D5: A specification for XML meta-data and tool interfaces
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Design environment (DE)
	1.3.1 IP-XACT design environment
	1.3.2 IP-XACT object descriptions
	1.3.3 Object interactions
	1.3.4 IP-XACT generators
	1.3.5 IP-XACT design environment interfaces
	1.3.6 Tight generator interface
	1.3.7 Design intellectual property

	1.4 IP-XACT enabled implementations
	1.4.1 Design environments
	1.4.2 Point tools
	1.4.3 IPs
	1.4.4 Generators

	1.5 Conventions used
	1.5.1 Visual cues (meta-syntax)
	1.5.2 Notational conventions
	1.5.3 Syntax examples
	1.5.4 Graphics used to document the schema

	1.6 Use of color in this standard
	1.7 Contents of this standard

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Interoperability use model
	4.1 Roles and responsibilities
	4.1.1 Component IP provider
	4.1.2 SoC design IP provider
	4.1.3 SoC design IP consumer
	4.1.4 Design tool supplier

	4.2 IP-XACT IP exchange flows
	4.2.1 Component or SoC design IP provider use model
	4.2.2 Generator provider use model
	4.2.3 System design tool provider use model

	5. Interface definition descriptions
	5.1 Definition descriptions
	5.2 Bus definition
	5.2.1 Schema
	5.2.2 Description
	5.2.3 Example

	5.3 Abstraction definition
	5.3.1 Schema
	5.3.2 Description
	5.3.3 Example

	5.4 Ports
	5.4.1 Schema
	5.4.2 Description
	5.4.3 Example

	5.5 Wire ports
	5.5.1 Schema
	5.5.2 Description
	5.5.3 Example

	5.6 Qualifiers
	5.6.1 Schema
	5.6.2 Description
	5.6.3 Example

	5.7 Wire port group
	5.7.1 Schema
	5.7.2 Description
	5.7.3 Example

	5.8 Wire port ‘mode’ constraints
	5.8.1 Schema
	5.8.2 Description
	5.8.3 Example

	5.9 Wire port mirrored-‘mode’ constraints
	5.9.1 Schema
	5.9.2 Description
	5.9.3 Example

	5.10 Transactional ports
	5.10.1 Schema
	5.10.2 Description
	5.10.3 Example

	5.11 Transactional port group
	5.11.1 Schema
	5.11.2 Description
	5.11.3 Example

	5.12 Extending bus and abstraction definitions
	5.12.1 Extending bus definitions
	5.12.2 Extending abstraction definitions
	5.12.3 Modifying definitions
	5.12.4 Interface connections

	5.13 Clock and reset handling

	6. Component descriptions
	6.1 Component
	6.1.1 Schema
	6.1.2 Description
	6.1.3 Example

	6.2 Interfaces
	6.2.1 Direct interface modes
	6.2.2 Mirrored interface modes
	6.2.3 Monitor interface modes

	6.3 Interface interconnections
	6.3.1 Direct connection
	6.3.2 Mirrored-non-mirrored connection
	6.3.3 Monitor connection
	6.3.4 Interface logical to physical port mapping

	6.4 Complex interface interconnections
	6.4.1 Channel
	6.4.2 Bridge
	6.4.3 Combining channels and bridges

	6.5 Bus interfaces
	6.5.1 busInterface
	6.5.2 Interface modes
	6.5.3 Master interface
	6.5.4 Slave interface
	6.5.5 Mirrored slave interface
	6.5.6 Port map

	6.6 Component channels
	6.6.1 Schema
	6.6.2 Description
	6.6.3 Example

	6.7 Address spaces
	6.7.1 addressSpaces
	6.7.2 Segments
	6.7.3 executableImage
	6.7.4 languageTools
	6.7.5 fileBuilder
	6.7.6 linkerCommandFile
	6.7.7 Local memory map

	6.8 Memory maps
	6.8.1 memoryMaps
	6.8.2 Address block
	6.8.3 Address block definition group
	6.8.4 memoryBlockData group
	6.8.5 Bank
	6.8.6 Banked address block
	6.8.7 Banked bank
	6.8.8 Banked subspace
	6.8.9 Subspace map

	6.9 Remapping
	6.9.1 Memory remap
	6.9.2 Remap states

	6.10 Registers
	6.10.1 Register data
	6.10.2 Register
	6.10.3 Register definition group
	6.10.4 Alternate registers
	6.10.5 Alternate register definition group
	6.10.6 Register file
	6.10.7 Register reset value
	6.10.8 Register bit-fields
	6.10.9 Field data group
	6.10.10 Enumeration values
	6.10.11 Write value constraint

	6.11 Models
	6.11.1 Model
	6.11.2 Views
	6.11.3 Component ports
	6.11.4 Component wire ports
	6.11.5 Component wireTypeDef
	6.11.6 Component driver
	6.11.7 Component driver/clockDriver
	6.11.8 Component driver/singleShotDriver
	6.11.9 Implementation constraints
	6.11.10 Component wire port constraints
	6.11.11 Port drive constraints
	6.11.12 Port load constraints
	6.11.13 Port timing constraints
	6.11.14 Load and drive constraint cell specification
	6.11.15 Other clock drivers
	6.11.16 Component transactional port type
	6.11.17 Component transactional port type definition
	6.11.18 Component transactional port service
	6.11.19 Phantom ports
	6.11.20 modelParameters

	6.12 Component generators
	6.12.1 Schema
	6.12.2 Description
	6.12.3 Example

	6.13 File sets
	6.13.1 fileSets
	6.13.2 file
	6.13.3 buildCommand
	6.13.4 define
	6.13.5 defaultFileBuilder
	6.13.6 function
	6.13.7 argument
	6.13.8 sourceFile

	6.14 Choices
	6.14.1 Schema
	6.14.2 Description
	6.14.3 Example

	6.15 Whitebox elements
	6.15.1 Schema
	6.15.2 Description
	6.15.3 Example

	6.16 Whitebox element reference
	6.16.1 Schema
	6.16.2 Description
	6.16.3 Example

	6.17 CPUs
	6.17.1 Schema
	6.17.2 Description
	6.17.3 Example

	7. Design descriptions
	7.1 Design
	7.1.1 Schema
	7.1.2 Description
	7.1.3 Example

	7.2 Design component instances
	7.2.1 Schema
	7.2.2 Description
	7.2.3 Example

	7.3 Design interconnections
	7.3.1 Schema
	7.3.2 Description
	7.3.3 Example

	7.4 Active, monitored, and monitor interfaces
	7.4.1 Schema
	7.4.2 Description
	7.4.3 Example

	7.5 Design ad-hoc connections
	7.5.1 Schema
	7.5.2 Description
	7.5.3 Example
	7.5.4 Ad-hoc wire connection
	7.5.5 Ad-hoc transactional connection

	7.6 Design hierarchical connections
	7.6.1 Schema
	7.6.2 Description
	7.6.3 Example

	8. Abstractor descriptions
	8.1 Abstractor
	8.1.1 Schema
	8.1.2 Description
	8.1.3 Example

	8.2 Abstractor interfaces
	8.2.1 Schema
	8.2.2 Description
	8.2.3 Example

	8.3 Abstractor models
	8.3.1 Schema
	8.3.2 Description
	8.3.3 Example

	8.4 Abstractor views
	8.4.1 Schema
	8.4.2 Description
	8.4.3 Example

	8.5 Abstractor ports
	8.5.1 Schema
	8.5.2 Description
	8.5.3 Example

	8.6 Abstractor wire ports
	8.6.1 Schema
	8.6.2 Description
	8.6.3 Example

	8.7 Abstractor generators
	8.7.1 Schema
	8.7.2 Description
	8.7.3 Example

	9. Generator chain descriptions
	9.1 generatorChain
	9.1.1 Schema
	9.1.2 Description
	9.1.3 Example

	9.2 generatorChainSelector
	9.2.1 Schema
	9.2.2 Description
	9.2.3 Example

	9.3 generatorChain component selector
	9.3.1 Schema
	9.3.2 Description
	9.3.3 Example

	9.4 generatorChain generator
	9.4.1 Schema
	9.4.2 Description
	9.4.3 Example

	10. Design configuration descriptions
	10.1 Design configuration
	10.2 designConfiguration
	10.2.1 Schema
	10.2.2 Description
	10.2.3 Example

	10.3 generatorChainConfiguration
	10.3.1 Schema
	10.3.2 Description
	10.3.3 Example

	10.4 interconnectionConfiguration
	10.4.1 Schema
	10.4.2 Description
	10.4.3 Example

	11. Addressing and data visibility
	11.1 Calculating the bit address of a bit in a memory map
	11.2 Calculating the bus address at the slave bus interface
	11.3 Address modifications of an interconnection
	11.4 Address modifications of a channel
	11.5 Addressing in the master
	11.6 Visibility of bits
	11.6.1 Visible address ranges
	11.6.2 Bit lanes in memory maps
	11.6.3 Bit lanes in address spaces
	11.6.4 Bit lanes in bus interfaces
	11.6.5 Bit lanes in channels
	11.6.6 Bit-steering in masters and slaves

	11.7 Address translation in a bridge

	Annex A - Bibliography
	Annex B - Semantic consistency rules (SCRs)
	B.1 SCR definitions
	B.1.1 Compatibility of busDefinitions
	B.1.2 Interface mode of a bus interface
	B.1.3 Compatibility of abstractionDefinitions
	B.1.4 Configurable element
	B.1.5 Element referenced by configurableElement element
	B.1.6 Memory mapping
	B.1.7 Port connection equivalence class
	B.1.8 Logical and physical ports
	B.1.9 Addressable bus interface

	B.2 Rule listings
	B.2.1 Cross-references and VLNVs
	B.2.2 Interconnections
	B.2.3 Channels, bridges, and abstractors
	B.2.4 Monitor interfaces and monitor interconnections
	B.2.5 Configurable elements
	B.2.6 Ports
	B.2.7 Registers
	B.2.8 Memory maps
	B.2.9 Addressing
	B.2.10 Hierarchy
	B.2.11 Hierarchy and memory maps
	B.2.12 Constraints
	B.2.13 Design configurations
	B.2.14 Rules requiring external knowledge

	Annex C - Common elements and concepts
	C.1 nameGroup group
	C.1.1 Schema
	C.1.2 Description

	C.2 nameGroupOptional group
	C.2.1 Schema
	C.2.2 Description

	C.3 nameGroupPort group
	C.3.1 Schema
	C.3.2 Description

	C.4 nameGroupNMTOKEN group
	C.4.1 Schema
	C.4.2 Description

	C.5 nameGroupString group
	C.5.1 Schema
	C.5.2 Description

	C.6 versionedIdentifier group
	C.6.1 Schema
	C.6.2 Description
	C.6.3 Sorting and comparing version elements
	C.6.4 Version control

	C.7 libraryRefType
	C.7.1 Schema
	C.7.2 Description

	C.8 fileSetRef
	C.8.1 Schema
	C.8.2 Description

	C.9 fileType
	C.9.1 Schema
	C.9.2 Description

	C.10 vendorExtensions
	C.10.1 Schema
	C.10.2 Description

	C.11 parameters
	C.11.1 Schema
	C.11.2 Description

	C.12 Configuration
	C.13 bool.prompt.att
	C.13.1 Schema
	C.13.2 Description

	C.14 float.prompt.att
	C.14.1 Schema
	C.14.2 Description

	C.15 long.prompt.att
	C.15.1 Schema
	C.15.2 Description

	C.16 long.att
	C.16.1 Schema
	C.16.2 Description

	C.17 string.prompt.att
	C.17.1 Schema
	C.17.2 Description

	Annex D - Types
	D.1 boolean
	D.2 configurableDouble
	D.3 float
	D.4 ID or IDREF
	D.5 instancePath
	D.6 integer
	D.7 libraryRefType
	D.8 Name
	D.9 NMTOKEN
	D.10 NMTOKENS
	D.11 nonNegativeInteger
	D.12 portName
	D.13 positiveInteger
	D.14 scaledInteger
	D.15 scaledNonNegativeInteger
	D.16 scaledPositiveInteger
	D.17 SpiritURI
	D.18 string
	D.19 token

	Annex E - Dependency XPATH
	E.1 id
	E.2 spirit:containsToken
	E.3 spirit:decode
	E.4 spirit:pow
	E.5 spirit:log
	E.6 Dependency example

	Annex F - External bus with an internal/digital interface
	F.1 Example: ethernet interfaces
	F.2 Example: I2C bus

	Annex G -Tight generator interface (TGI)
	G.1 Method of communication
	G.2 Generator invocation
	G.2.1 Resolving the URL
	G.2.2 Example

	G.3 TGI API
	G.3.1 TGI fault codes
	G.3.2 Administrative commands

	G.4 IDs and configurable values
	G.5 TGI messages
	G.6 Vendor attributes
	G.7 TGI SOAP messages
	G.7.1 TGI SOAP message index
	G.7.2 Abstraction definition operations
	G.7.2.1 getAbstractionDefBusTypeVLNV
	G.7.2.2 getAbstractionDefExtends
	G.7.2.3 getAbstractionDefID
	G.7.2.4 getAbstractionDefPortDefaultValue
	G.7.2.5 getAbstractionDefPortDriveConstraintIDs
	G.7.2.6 getAbstractionDefPortIDs
	G.7.2.7 getAbstractionDefPortIsAddress
	G.7.2.8 getAbstractionDefPortIsClock
	G.7.2.9 getAbstractionDefPortIsData
	G.7.2.10 getAbstractionDefPortIsReset
	G.7.2.11 getAbstractionDefPortLoadConstraintIDs
	G.7.2.12 getAbstractionDefPortLogicalName
	G.7.2.13 getAbstractionDefPortMirroredConstraintIDs
	G.7.2.14 getAbstractionDefPortModeBitWidth
	G.7.2.15 getAbstractionDefPortModeDirection
	G.7.2.16 getAbstractionDefPortModeGroup
	G.7.2.17 getAbstractionDefPortModeID
	G.7.2.18 getAbstractionDefPortModeIDs
	G.7.2.19 getAbstractionDefPortModePresence
	G.7.2.20 getAbstractionDefPortModeServiceID
	G.7.2.21 getAbstractionDefPortModeServiceIDs
	G.7.2.22 getAbstractionDefPortNonMirroredConstraintIDs
	G.7.2.23 getAbstractionDefPortRequiredDriverType
	G.7.2.24 getAbstractionDefPortRequiresDriver
	G.7.2.25 getAbstractionDefPortStyle
	G.7.2.26 getAbstractionDefPortTimingConstraintIDs
	G.7.2.27 getAbstractionDefVLNV

	G.7.3 Abstractor instance operations
	G.7.3.1 getAbstractorInstanceAbstractorID
	G.7.3.2 getAbstractorInstanceName
	G.7.3.3 getAbstractorInstanceVLNV
	G.7.3.4 getAbstractorInstanceXML

	G.7.4 Abstractor operations
	G.7.4.1 getAbstractorAbstractorInterfaceIDs
	G.7.4.2 getAbstractorAbstractorMode
	G.7.4.3 getAbstractorBusTypeVLNV
	G.7.4.4 getAbstractorChoiceIDs
	G.7.4.5 getAbstractorFileSetIDs
	G.7.4.6 getAbstractorGeneratorIDs
	G.7.4.7 getAbstractorModelParameterIDs
	G.7.4.8 getAbstractorPortIDs
	G.7.4.9 getAbstractorViewIDs

	G.7.5 Address map operations
	G.7.5.1 getAddressBlockAccess
	G.7.5.2 getAddressBlockBaseAddress
	G.7.5.3 getAddressBlockRange
	G.7.5.4 getAddressBlockRegisterFileIDs
	G.7.5.5 getAddressBlockRegisterIDs
	G.7.5.6 getAddressBlockUsage
	G.7.5.7 getAddressBlockVolatility
	G.7.5.8 getAddressBlockWidth
	G.7.5.9 getAddressSpaceAddressUnitBits
	G.7.5.10 getAddressSpaceLocalMemoryMapID
	G.7.5.11 getAddressSpaceRange
	G.7.5.12 getAddressSpaceSegmentIDs
	G.7.5.13 getAddressSpaceWidth
	G.7.5.14 getBankAccess
	G.7.5.15 getBankAlignment
	G.7.5.16 getBankBaseAddress
	G.7.5.17 getBankUsage
	G.7.5.18 getBankVolatility
	G.7.5.19 getExecutableImageFileBuilderIDs
	G.7.5.20 getExecutableImageFileSetIDs
	G.7.5.21 getExecutableImageIDs
	G.7.5.22 getExecutableImageLinkerCommand
	G.7.5.23 getExecutableImageLinkerCommandFileID
	G.7.5.24 getExecutableImageLinkerFlags
	G.7.5.25 getExecutableImageType
	G.7.5.26 getLinkerCommandFileEnable
	G.7.5.27 getLinkerCommandFileLineSwitch
	G.7.5.28 getLinkerCommandFileName
	G.7.5.29 getLinkerCommandGeneratorIDs
	G.7.5.30 getMemoryMapAddressUnitBits
	G.7.5.31 getMemoryMapElementIDs
	G.7.5.32 getMemoryMapElementType
	G.7.5.33 getMemoryMapRemapElementIDs
	G.7.5.34 getMemoryRemapStateID
	G.7.5.35 getSegmentAddressOffset
	G.7.5.36 getSegmentRange
	G.7.5.37 getSubspaceMapBaseAddress
	G.7.5.38 getSubspaceMapMasterID
	G.7.5.39 getSubspaceMapSegmentID
	G.7.5.40 getTypeIdentifier
	G.7.5.41 setAddressBlockBaseAddress
	G.7.5.42 setAddressBlockRange
	G.7.5.43 setAddressBlockWidth
	G.7.5.44 setAddressSpaceRange
	G.7.5.45 setAddressSpaceWidth
	G.7.5.46 setBankBaseAddress
	G.7.5.47 setExecutableImageLinkerCommand
	G.7.5.48 setExecutableImageLinkerFlags
	G.7.5.49 setLinkerCommandFileEnable
	G.7.5.50 setLinkerCommandFileLineSwitch
	G.7.5.51 setLinkerCommandFileName
	G.7.5.52 setSegmentAddressOffset
	G.7.5.53 setSegmentRange
	G.7.5.54 setSubspaceMapBaseAddress

	G.7.6 Bus definition operations
	G.7.6.1 getBusDefinitionDirectConnection
	G.7.6.2 getBusDefinitionExtends
	G.7.6.3 getBusDefinitionID
	G.7.6.4 getBusDefinitionIsAddressable
	G.7.6.5 getBusDefinitionMaxMasters
	G.7.6.6 getBusDefinitionMaxSlaves
	G.7.6.7 getBusDefinitionSystemGroupNames
	G.7.6.8 getBusDefinitionVLNV

	G.7.7 Bus interface operations
	G.7.7.1 getBridgeIsOpaque
	G.7.7.2 getBridgeMasterID
	G.7.7.3 getBusInterfaceBitSteering
	G.7.7.4 getBusInterfaceBitsInLAU
	G.7.7.5 getBusInterfaceConnectionRequired
	G.7.7.6 getBusInterfaceEndianness
	G.7.7.7 getBusInterfaceGroupName
	G.7.7.8 getBusInterfaceMasterAddressSpaceID
	G.7.7.9 getBusInterfaceMasterBaseAddress
	G.7.7.10 getBusInterfaceMirroredSlaveRange
	G.7.7.11 getBusInterfaceMirroredSlaveRemapAddressIDs
	G.7.7.12 getBusInterfaceMonitorInterfaceMode
	G.7.7.13 getBusInterfaceSlaveBridgeIDs
	G.7.7.14 getBusInterfaceSlaveFileSetGroupIDs
	G.7.7.15 getBusInterfaceSlaveMemoryMapID
	G.7.7.16 getRemapAddressRemapStateID
	G.7.7.17 getRemapAddressValue
	G.7.7.18 setBusInterfaceBitSteering
	G.7.7.19 setBusInterfaceMasterBaseAddress
	G.7.7.20 setBusInterfaceMirroredSlaveRange
	G.7.7.21 setRemapAddressValue

	G.7.8 Component instance operations
	G.7.8.1 getComponentInstanceComponentID
	G.7.8.2 getComponentInstanceName
	G.7.8.3 getComponentInstanceVLNV
	G.7.8.4 getComponentInstanceXML

	G.7.9 Component operations
	G.7.9.1 getChannelBusInterfaceIDs
	G.7.9.2 getComponentAddressSpaceIDs
	G.7.9.3 getComponentBusInterfaceIDs
	G.7.9.4 getComponentChannelIDs
	G.7.9.5 getComponentChoiceIDs
	G.7.9.6 getComponentCpuIDs
	G.7.9.7 getComponentElementType
	G.7.9.8 getComponentFileSetIDs
	G.7.9.9 getComponentGeneratorIDs
	G.7.9.10 getComponentMemoryMapIDs
	G.7.9.11 getComponentModelParameterIDs
	G.7.9.12 getComponentOtherClockDriverIDs
	G.7.9.13 getComponentPortIDs
	G.7.9.14 getComponentRemapStateIDs
	G.7.9.15 getComponentVLNV
	G.7.9.16 getComponentViewIDs
	G.7.9.17 getComponentWhiteboxElementIDs
	G.7.9.18 getCpuAddressSpaceIDs

	G.7.10 Constraint operations
	G.7.10.1 getDriveConstraintType
	G.7.10.2 getDriveConstraintValue
	G.7.10.3 getLoadConstraintCount
	G.7.10.4 getLoadConstraintType
	G.7.10.5 getLoadConstraintValue
	G.7.10.6 getPortConstraintSetDriveConstraintIDs
	G.7.10.7 getPortConstraintSetLoadConstraintIDs
	G.7.10.8 getPortConstraintSetRange
	G.7.10.9 getPortConstraintSetReferenceName
	G.7.10.10 getPortConstraintSetTimingConstraintIDs
	G.7.10.11 getTimingConstraintClockDetails
	G.7.10.12 getTimingConstraintValue

	G.7.11 Design operations
	G.7.11.1 addAdHocConnection
	G.7.11.2 addAdHocExternalPortReference
	G.7.11.3 addAdHocInternalPortReference
	G.7.11.4 addComponentInstance
	G.7.11.5 addHierConnection
	G.7.11.6 addHierarchicalMonitorInterconnection
	G.7.11.7 addInterconnection
	G.7.11.8 addMonitorInterconnection
	G.7.11.9 appendAbstractorInstance
	G.7.11.10 getAdHocConnectionExternalPortDetails
	G.7.11.11 getAdHocConnectionExternalPortReferenceIDs
	G.7.11.12 getAdHocConnectionInternalPortReferenceDetails
	G.7.11.13 getAdHocConnectionInternalPortReferenceIDs
	G.7.11.14 getAdHocConnectionTiedValue
	G.7.11.15 getComponentInstanceID
	G.7.11.16 getDesignAdHocConnectionIDs
	G.7.11.17 getDesignComponentInstanceIDs
	G.7.11.18 getDesignHierConnectionIDs
	G.7.11.19 getDesignID
	G.7.11.20 getDesignInterconnectionAbstractorInstanceIDs
	G.7.11.21 getDesignInterconnectionIDs
	G.7.11.22 getDesignMonitorInterconnectionIDs
	G.7.11.23 getDesignVLNV
	G.7.11.24 getHierConnectionDetails
	G.7.11.25 getInterconnectionActiveInterfaces
	G.7.11.26 getMonitorInterconnectionInterfaces
	G.7.11.27 removeAbstractorInstance
	G.7.11.28 removeAdHocExternalPortReference
	G.7.11.29 removeAdHocInternalPortReference
	G.7.11.30 removeComponentInstance
	G.7.11.31 removeHierConnection
	G.7.11.32 removeHierarchicalMonitorInterconnection
	G.7.11.33 removeInterconnection
	G.7.11.34 removeMonitorInterconnection
	G.7.11.35 replaceAbstractorInstance
	G.7.11.36 replaceComponentInstance

	G.7.12 Field operations
	G.7.12.1 getRegisterFieldAccess
	G.7.12.2 getRegisterFieldBitOffset
	G.7.12.3 getRegisterFieldBitWidth
	G.7.12.4 getRegisterFieldModifiedWriteValue
	G.7.12.5 getRegisterFieldReadAction
	G.7.12.6 getRegisterFieldTestConstraint
	G.7.12.7 getRegisterFieldTestable
	G.7.12.8 getRegisterFieldValue
	G.7.12.9 getRegisterFieldValueIDs
	G.7.12.10 getRegisterFieldValueName
	G.7.12.11 getRegisterFieldValueUsage
	G.7.12.12 getRegisterFieldVolatility
	G.7.12.13 getRegisterFieldWriteValueConstraintMinMax
	G.7.12.14 getRegisterFieldWriteValueConstraintUseEnumeratedValues
	G.7.12.15 getRegisterFieldWriteValueConstraintWriteAsRead
	G.7.12.16 setRegisterFieldBitWidth

	G.7.13 File and fileset operations
	G.7.13.1 getFileBuildCommandFlags
	G.7.13.2 getFileBuildCommandFlagsIsAppend
	G.7.13.3 getFileBuildCommandName
	G.7.13.4 getFileBuildCommandReplaceDefaultFlags
	G.7.13.5 getFileBuildCommandTargetName
	G.7.13.6 getFileBuilderCommand
	G.7.13.7 getFileBuilderFileType
	G.7.13.8 getFileBuilderFlags
	G.7.13.9 getFileBuilderReplaceDefaultFlags
	G.7.13.10 getFileDefineSymbolIDs
	G.7.13.11 getFileDependencies
	G.7.13.12 getFileExportedNames
	G.7.13.13 getFileHasExternalDeclarations
	G.7.13.14 getFileImageTypes
	G.7.13.15 getFileIsIncludeFile
	G.7.13.16 getFileLogicalName
	G.7.13.17 getFileLogicalNameDefault
	G.7.13.18 getFileName
	G.7.13.19 getFileSetDependencies
	G.7.13.20 getFileSetFileBuilderIDs
	G.7.13.21 getFileSetFileIDs
	G.7.13.22 getFileSetFunctionIDs
	G.7.13.23 getFileSetGroupFileSetIDs
	G.7.13.24 getFileSetGroupName
	G.7.13.25 getFileSetGroups
	G.7.13.26 getFileType
	G.7.13.27 getFunctionArgumentDataType
	G.7.13.28 getFunctionArgumentIDs
	G.7.13.29 getFunctionDisabled
	G.7.13.30 getFunctionEntryPoint
	G.7.13.31 getFunctionFileID
	G.7.13.32 getFunctionReplicate
	G.7.13.33 getFunctionReturnType
	G.7.13.34 getFunctionSourceFileIDs
	G.7.13.35 getFunctionSourceFileName
	G.7.13.36 getFunctionSourceFileType
	G.7.13.37 setFileBuildCommandFlags
	G.7.13.38 setFileBuildCommandName
	G.7.13.39 setFileBuildCommandReplaceDefaultFlags
	G.7.13.40 setFileBuildCommandTargetName
	G.7.13.41 setFileBuilderCommand
	G.7.13.42 setFileBuilderFlags
	G.7.13.43 setFileBuilderReplaceDefaultFlags
	G.7.13.44 setFileName
	G.7.13.45 setFunctionDisabled

	G.7.14 Generator operations
	G.7.14.1 getGeneratorApiType
	G.7.14.2 getGeneratorExecutable
	G.7.14.3 getGeneratorGroups
	G.7.14.4 getGeneratorIsHidden
	G.7.14.5 getGeneratorPhase
	G.7.14.6 getGeneratorScope
	G.7.14.7 getGeneratorTransportMethods

	G.7.15 Interface operations
	G.7.15.1 getInterfaceAbstractionTypeVLNV
	G.7.15.2 getInterfaceBusTypeVLNV
	G.7.15.3 getInterfaceMode
	G.7.15.4 getInterfacePortMapIDs
	G.7.15.5 getLogicalPhysicalMapIDs
	G.7.15.6 getPortMapRange
	G.7.15.7 setPortMapRange

	G.7.16 Miscellaneous operations
	G.7.16.1 end
	G.7.16.2 getChoiceEnumerationHelp
	G.7.16.3 getChoiceEnumerationIDs
	G.7.16.4 getChoiceEnumerationText
	G.7.16.5 getChoiceEnumerationValue
	G.7.16.6 getChoiceName
	G.7.16.7 getDescription
	G.7.16.8 getDisplayName
	G.7.16.9 getErrorMessage
	G.7.16.10 getGeneratorContextComponentInstanceID
	G.7.16.11 getIdValue
	G.7.16.12 getModelParameterDataType
	G.7.16.13 getModelParameterUsageType
	G.7.16.14 getName
	G.7.16.15 getParameterIDs
	G.7.16.16 getUnconfiguredID
	G.7.16.17 getValue
	G.7.16.18 getValueAttribute
	G.7.16.19 getVendorAttribute
	G.7.16.20 getVendorExtensions
	G.7.16.21 getWarningCount
	G.7.16.22 getXMLForVLNV
	G.7.16.23 init
	G.7.16.24 message
	G.7.16.25 registerVLNV
	G.7.16.26 setValue
	G.7.16.27 setVendorAttribute
	G.7.16.28 setVendorExtensions

	G.7.17 Port operations
	G.7.17.1 getAllLogicalDirectionsAllowed
	G.7.17.2 getClockDriverName
	G.7.17.3 getClockDriverPeriod
	G.7.17.4 getClockDriverPeriodUnits
	G.7.17.5 getClockDriverPulseDuration
	G.7.17.6 getClockDriverPulseDurationUnits
	G.7.17.7 getClockDriverPulseOffset
	G.7.17.8 getClockDriverPulseOffsetUnits
	G.7.17.9 getClockDriverPulseValue
	G.7.17.10 getClockDriverSource
	G.7.17.11 getPortAccessHandle
	G.7.17.12 getPortAccessType
	G.7.17.13 getPortClockDriverID
	G.7.17.14 getPortConstraintSetIDs
	G.7.17.15 getPortDefaultValue
	G.7.17.16 getPortDirection
	G.7.17.17 getPortMaxAllowedConnections
	G.7.17.18 getPortMinAllowedConnections
	G.7.17.19 getPortRange
	G.7.17.20 getPortServiceID
	G.7.17.21 getPortSingleShotDriverID
	G.7.17.22 getPortSingleShotPulseDuration
	G.7.17.23 getPortSingleShotPulseOffset
	G.7.17.24 getPortSingleShotPulseValue
	G.7.17.25 getPortStyle
	G.7.17.26 getPortTransactionalTypeDefID
	G.7.17.27 getPortWireTypeDefIDs
	G.7.17.28 setClockDriverPeriod
	G.7.17.29 setClockDriverPulseDuration
	G.7.17.30 setClockDriverPulseOffset
	G.7.17.31 setClockDriverPulseValue
	G.7.17.32 setPortDefaultValue
	G.7.17.33 setPortRange
	G.7.17.34 setPortSingleShotPulseDuration
	G.7.17.35 setPortSingleShotPulseOffset
	G.7.17.36 setPortSingleShotPulseValue

	G.7.18 Register file operations
	G.7.18.1 getRegisterFileAddressOffset
	G.7.18.2 getRegisterFileDimensions
	G.7.18.3 getRegisterFileRange
	G.7.18.4 getRegisterFileRegisterFileIDs
	G.7.18.5 getRegisterFileRegisterIDs
	G.7.18.6 setRegisterFileRange

	G.7.19 Register operations
	G.7.19.1 getRegisterAccess
	G.7.19.2 getRegisterAddressOffset
	G.7.19.3 getRegisterAlternateGroups
	G.7.19.4 getRegisterAlternateRegisterIDs
	G.7.19.5 getRegisterDimensions
	G.7.19.6 getRegisterFieldIDs
	G.7.19.7 getRegisterResetMask
	G.7.19.8 getRegisterResetValue
	G.7.19.9 getRegisterSize
	G.7.19.10 getRegisterVolatility
	G.7.19.11 setRegisterResetMask
	G.7.19.12 setRegisterResetValue
	G.7.19.13 setRegisterSize

	G.7.20 Remap operations
	G.7.20.1 getRemapStatePortIDs
	G.7.20.2 getRemapStatePortPortID
	G.7.20.3 getRemapStatePortPortIndex
	G.7.20.4 getRemapStatePortPortValue

	G.7.21 Service operations
	G.7.21.1 getAbstractionDefAbstractionServiceTypeDefIDs
	G.7.21.2 getAbstractionDefServiceIDs
	G.7.21.3 getAbstractionDefServiceInitiative
	G.7.21.4 getServiceInitiative
	G.7.21.5 getServiceTypeDefIDs

	G.7.22 TypeDef operations
	G.7.22.1 getTypeDefConstrained
	G.7.22.2 getTypeDefImplicit
	G.7.22.3 getTypeDefTypeDefinitions
	G.7.22.4 getTypeDefTypeName
	G.7.22.5 getTypeDefTypeViewIDs

	G.7.23 View operations
	G.7.23.1 getViewDefaultFileBuilderIDs
	G.7.23.2 getViewDesignID
	G.7.23.3 getViewEnvIdentifiers
	G.7.23.4 getViewFileSetIDs
	G.7.23.5 getViewLanguage
	G.7.23.6 getViewLanguageIsStrict
	G.7.23.7 getViewModelName
	G.7.23.8 getViewPortConstraintSetIDs
	G.7.23.9 getViewWhiteboxElementRefIDs

	G.7.24 Whitebox operations
	G.7.24.1 getWhiteboxElementDrivable
	G.7.24.2 getWhiteboxElementRefID
	G.7.24.3 getWhiteboxElementRegisterID
	G.7.24.4 getWhiteboxElementRegisterIDs
	G.7.24.5 getWhiteboxElementType
	G.7.24.6 getWhiteboxRefPathIDs
	G.7.24.7 getWhiteboxRefPathName
	G.7.24.8 getWhiteboxRefPathRange

	G.7.25 TGI ID types

	Annex H - Bridges and channels
	H.1 Transparent bridge
	H.2 Opaque bridge
	H.2.1 Without an address space segment reference
	H.2.2 With an address space segment reference
	H.2.3 Effect of a master interface address space base address

	H.3 Channel with address remapping
	H.4 Channel with bit steering

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

