
V E R S I O N

TDS

LANGUAGES
GUIDE

2007.1

Table of Contents
Chapter 1—Language Overview
1.1 Waveform Generation ... 1
1.2 Test Control .. 1

Chapter 2—Waveform Generation Language
2.1 Introduction ... 1
2.2 When to Use WGL ... 1
2.3 WGL and Wavemaker .. 2
2.4 WGL Language Conventions ... 4

2.4.1 WGL Syntax Notation Conventions ... 4
2.4.2 Comments ... 5
2.4.3 Identifiers .. 6
2.4.4 Numbers .. 7
2.4.5 Reserved Words .. 7
2.4.6 Strings ... 8

2.5 WGL Syntax ... 8
2.5.1 General Syntax .. 8
2.5.2 Program Block Syntax .. 13
2.5.3 Generic Program Blocks ... 14
2.5.4 Equation-Specific Program Blocks ... 52
2.5.5 Tester-Specific Program Blocks ... 71

2.6 Additional Features ... 80
2.6.1 Macros .. 81
2.6.2 Include Files .. 86
2.6.3 Annotations ... 87
2.6.4 Global Mode ... 88

2.7 Examples ... 91
2.7.1 Using WGL Macros and Include Files ... 91
2.7.2 WGL and Scan Test Hardware ... 96
2.7.3 Using Annotations in WGL .. 99

2.8 Binary WGL ... 103
2.8.1 WGL Binary Interface .. 104
2.8.2 Binary File Format .. 107
Languages, Vol. II, R2007.1 iii
Test Systems Strategies Inc

Table of Contents (cont)
2.8.3 Examples of ASCII and the Equivalent Binary .. 126
2.9 Glossary of WGL Terminology .. 133

Chapter 3—Test Control Language
3.1 Introduction ... 1
3.2 When to Use TCL ... 2
3.3 TCL Language Conventions ... 3

3.3.1 TCL Syntax Notation Conventions ... 3
3.3.2 Comments ... 6
3.3.3 Reserved Words .. 7

3.4 General TCL Syntax ... 9
3.5 General Program Block Syntax .. 12
3.6 ATE Constraints ... 12

3.6.1 Compression Spacing Constraints .. 17
3.6.2 Configuration Controls ... 18
3.6.3 Cycle Constraints .. 19
3.6.4 Signal Pin DC Controls ... 21
3.6.5 Signal Sequence Control ... 23
3.6.6 Power Supply DC Controls ... 25
3.6.7 Fixture Controls .. 28
3.6.8 Force/Compare/Drive Constraints .. 30
3.6.9 Format Controls .. 39
3.6.10 Loop Constraints ... 40
3.6.11 Microcode Constraints .. 43
3.6.12 Multiple Clocking Constraints .. 45
3.6.13 Pattern ATE Controls .. 48
3.6.14 Timeout Control .. 50
3.6.15 Pin ATE Controls .. 51
3.6.16 Probe Constraints .. 52
3.6.17 Repeat Constraints .. 57
3.6.18 Scan Controls .. 59
3.6.19 Subroutine Constraints .. 63
3.6.20 TimePlate Matching Preference Control .. 67
iv Languages, Vol. II, R2007.1
Test Systems Strategies Inc

Table of Contents (cont)
3.6.21 Timeset Controls ... 68
3.6.22 Timing Expressions .. 68
3.6.23 Transform .. 71

3.7 Pin Groups .. 74
3.8 Message Overrides .. 77
3.9 TRC Directives ... 80
3.10 Match Directives ... 82
3.11 Program Control Directives .. 91
3.12 Pattern Load Directives .. 103
3.13 TCL Quick Reference ... 109

Index
Languages, Vol. II, R2007.1 v
Test Systems Strategies Inc

vi Languages, Vol. II, R2007.1
Test Systems Strategies Inc

1—Language Overview Waveform Generation
Chapter 1
Language Overview

1.1 Waveform Generation
The Waveform Generation Language (WGL) is a data description language. It is used to
convey an editable ASCII representation of the data contained in the Waveform DataBase
(WDB), allowing you to use your system’s text editor to fully customize the database.

A binary format for the ScanState and Pattern sections is supported, to be used (if desired)
in place of ASCII pattern data. (Do not edit a WGL file that contains binary pattern data;
null pattern bits may be deleted by the editor.)

WGL supports both scan hardware and test program generation that uses defined variables
and embedded equation expressions.

NOTE
WGL constructs supporting scan hardware and equations are preserved in the WDB
only if you have a TDS WaveBridge that includes scan support and equation support
for your tester.

WGL programs are contained in an ASCII file called a WGL file. In this chapter, the term
“WGL file” is used to denote an ASCII file that contains a WGL program. The term
“WGL program” denotes the programming constructs contained within the WGL file.

For a complete description of the WGL, refer to Chapter 2 in this guide.

1.2 Test Control
The Test Control Language (TCL) provides control over TDS WaveBridge module
processing. This section provides a brief overview of the roles that TCL plays in TDS
operations.

Three basic types of TCL files can serve as input to TDS operations:
Languages, Vol. II, R2007.1 1-1
Test Systems Strategies Inc

Test Control 1—Language Overview
n Tester file, which describes tester-specific characteristics, such as the range of legal
pin numbers, the maximum number of pattern rows allowed, and minimum cycle
length. Typically, you will use the default Tester file that is provided for each tester,
but you can create a customized version as well. For more information, refer to
Section 4.10 of the Getting Started Guide.

n Override TCL file, which is an optional file that contains tester operating parameters
that supercede the same parameters that were previously read from the Tester file. An
override TCL file annot contain any Burst Blocks because the output files are
specified using the Interactive Setup Form or DeskTop parameters.

n User TCL file, which is an optional file that defines the operations to be performed,
the input and output databases, and the override information described in the previous
bullet. A user TCL file provides more control over the operation of the TDS operation
than is available from the TDS Shell Interactive Setup Form or the DeskTop
Properties window.

For a complete description of TCL statements and syntax, refer to Chapter 3: Test Control
Language in this guide.
1-2 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Introduction
Chapter 2
Waveform Generation Language

2.1 Introduction
The Waveform Generation Language (WGL) is a data description language. It is used to
convey an editable ASCII representation of the data contained in a Waveform DataBase
(WDB), allowing you to use your system’s text editor to fully customize the database.

2.2 When to Use WGL
Since you can easily convert an existing TDS Standard Events Format (SEF) database to a
WDB using the WaveMaker Browser, and edit a new or existing database using the
WaveMaker editors, you may have little occasion to use WGL. However, WGL permits
you to modify some parts of the WDB that are not accessible by WaveMaker’s editors.

Use WGL to:

n Transfer a WDB from one host platform type to another type. WDBs are not otherwise
portable.

n View and edit the ATE-specific portions of the WDB. Such portions of the WDB are
not accessible by WaveMaker’s editors.

n Create a WDB solely from WGL. This permits users who have a TDS WaveBridge
module, but do not have WaveMaker, to run WaveBridge with a WDB.

n Use binary pattern data from the CAE simulation as input to TDS. (For more
information, see Binary WGL on page 2-103.)

n Use your favorite text editor to perform sophisticated text manipulation operations,
such as search and replace. (Do not edit a WGL file that contains binary pattern data;
null pattern bits may be deleted by the editor.)

WGL is designed to be used in conjunction with the TDS WGL In Converter and WGL
Out Converter modules. For details on how to use the WGL In Converter and the WGL
Languages, Vol. II, R2007.1 2-1
Test Systems Strategies Inc

WGL and Wavemaker 2—Waveform Generation Language
Out Converter, see Chapter 16 in the In Converters Guide and Chapter 17 in the Out
Converters Guide.

2.3 WGL and Wavemaker
Since WGL describes a WDB, the language necessarily reflects the structure of the WDB.
If you have used the WaveMaker editors to view a WDB, you will recognize this
similarity. Many of the entities (such as ATE Pin and DUT Pin fields) that are visible in
WaveMaker’s editors are easily identifiable in WGL. Some WGL structures, however, are
associated with ATE-specific descriptions, and are not visible in the WaveMaker Editors.
The WGL Formats program block is an example of such a structure.

An example of the similarity of structure between the WaveMaker editors and WGL
program structure is the WaveMaker Timing Editor. The WaveMaker Timing Editor
allows you to edit a TDS timing template, or TimePlate. The TimePlate contains slots for
one or more signals (identified by signal, group, or bus name), a signal direction indicator,
and a waveform track. Slots are the area in which the signal name or names are entered.

Figure 2-1 shows the Timing Editor’s view of a TimePlate named Fetch. Note the
TimePlate name, the signal names, the signal directions, and the waveform tracks; all of
2-2 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL and Wavemaker
these entities can be described using WGL. Timing channels are arbitrary entities that
contain signal, group, or bus names, direction information, and event and timing data.

The corresponding WGL description of the TimePlate Fetch is shown in the following
example. Note how the TimePlate name, the signal name, direction, waveform track, and
channel correspond to the same entities shown in the Timing Editor.

Figure 2-1. WaveMaker Timing Editor showing the TimePlate Fetch
Languages, Vol. II, R2007.1 2-3
Test Systems Strategies Inc

WGL Language Conventions 2—Waveform Generation Language
Start Example

timeplate Fetch period 300nS

 CS_ENABLE := input[0pS:P, 30nS:S];
 CLOCK := input[0pS:D, 50nS:U, 100nS:D, 150nS:U, 200nS:D, 250nS:U,
300nS:D];
 A-BUS := input[0pS:D, 120nS:S, 260nS:D];
 LOAD := input[0pS:P, 30nS:S];
. . .
. . .
. . .

End Example

end

2.4 WGL Language Conventions
A WGL program is an ASCII text version of the information in the WDB.1 The language
is free-form (multiple white spaces are treated as a single white space and line returns are
ignored) and limited to a line length of 512 characters. WGL reserved words are not case
sensitive; keywords may be entered in any mix of upper and lower case letters. For
user-defined names and pattern state characters, case is significant. The language uses the
ASCII set of printable characters as legal input characters. WGL supports such features as
macros, include files, in-line comments, post-compilation annotation, and many other
operations normally available in programming languages.

2.4.1 WGL Syntax Notation Conventions
In describing the syntax of WGL, the following variation of the Backus-Naur Formalism
(BNF) is used:

n Two colons followed by an equivalence sign (::=) denote a syntactic category to
syntactic rules relationship.

n Double quotation marks (“ ”) or Bold typeface denote the literal use of a reserved
word, typographical symbol, or parameter. If double quotation marks are to be used
literally, they are enclosed within single quotation marks (‘ ’).

1. Binary pattern files use the WGL syntax notation plus have additional notations. Binary File Format on
page 2-107.
2-4 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Language Conventions
n Angle brackets (< >) denote the use of a user-defined name, integer, or floating
number.

n An equivalence sign (=) denotes the definition of a WGL reserved word or lexical
primitive.

n Brackets ([]) denote optional syntax, appearing 0 or one time.

n Braces ({ }) denote an unspecified repetition (0 to n times) of the enclosed syntax.
(This notation implies that the enclosed syntax is optional, since zero repetitions of a
syntax is optional usage.)

n A vertical bar (|) denotes separate choices of syntax.

n Parentheses (()) denote grouping of syntax options.

The use of italics in a text reference to a WGL syntactical element indicates higher-level
BNF constructs. Such constructs are expanded to their full definition in the BNF
accompanying the reference. For example, references to FormatDecl would appear in the
appropriate BNF production as follows:

FormatDecl ::= <formatName> “:” “[” <TDSstate> { “,”
<TDSstate> } “]” “;”

User-defined identifiers, such as <TDSstate>, are defined in the Glossary of WGL
Terminology on page 2-133.

NOTE
Do not confuse the BNF use of such typographical symbols as braces ({ }) with
WGL’s use of the same symbol. BNF uses braces to show a repetition of the action
enclosed within the braces, while WGL uses braces to mark database annotations.

2.4.2 Comments
As in other programming languages, you can add explanatory comments to a WGL
program to aid functional clarity. These comments are preceded by the pound sign (#),
and are not included in the WDB when the WGL In Converter is run.
Languages, Vol. II, R2007.1 2-5
Test Systems Strategies Inc

WGL Language Conventions 2—Waveform Generation Language
Comments can be inserted into any part of a WGL program except WGL annotations.1
(See Annotations on page 2-63.) To insert a comment into a WGL program, enter a pound
sign (#), followed by a text string. All characters on the line, starting with the pound sign
and the terminating with the carriage return marking the end of the line, are included in the
comment.

A complete BNF syntactical representation of the Comment feature follows.

Comment ::= “#” <any explanatory text> <end-of-line>

Example of WGL comments in a WGL program:

Start Example

Signal block
signal

clk: input; # system clock
dataReady: output;
in: input;
readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus
addr [0..15]: input; # 16-bit address bus

End Example

end

2.4.3 Identifiers
An identifier is the alphanumeric name of a signal, bus, group, TimePlate, format, timing
generator, pattern, subroutine, et cetera. Identifiers must begin with an alphabetic
character, and may not contain white space (such as blanks, tabs,and newline characters)
or any of the following delimiting characters:

1. The binary pattern file cannot have comments, only annotations.

(pound sign)
{ (left brace)
} (right brace)
“ (left double quotation marks)
” (right double quotation marks)
.. (double periods)
((left parenthesis)
) (right parenthesis)

+ (plus sign)
, (comma)
: (colon)
; (semi-colon)
[(left bracket)
] (right bracket)
. (period)
2-6 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Language Conventions
Identifiers must not conflict with any of the WGL reserved words. Any names that contain
special characters or reserved words must be entered as a string surrounded by double
quotation marks (“ ”).

In the WGL syntax descriptions in this chapter, identifiers are enclosed in angle brackets (
< >).

2.4.4 Numbers
Unless noted otherwise, user-defined numeric values are integers that range from zero to
the maximum integer that can be represented on your system’s architecture. Any
exceptions are noted in the appropriate WGL syntax description section of this chapter.

In the WGL syntax descriptions in this chapter, user-defined numeric values are enclosed
in angle brackets (< >).

2.4.5 Reserved Words
WGL reserves certain words as its linguistic set, from which data descriptions and
procedural instructions can be synthesized. These reserved words can appear only in WGL
statements in the correct syntax.

The following list shows the WGL reserved words:

Unlike conventional programming languages, WGL cannot restrict or filter the use of
reserved words. If a design has a signal name (or any other application-specific name) that

atepin
bidir
binary
boolean
call
channel
compare
decimal
direction
dont_care
dutpin
edge
end
equationdefaults
equationsheet

event
exprset
feedback
for
force
force_or_z
format
hex
hexadecimal
i
in
initialp
input
integer
last_drive

last_force
loop
macro
ms
mux
ns
o
octal
out
output
pattern
period
pingroup
pmode
procedure

ps
radix
reference
registe
repeat
scan
scancell
scanchain
scanstate
signal
skip
subroutine
symbolic
tg
time

timegen
timeplate
timeset
timing
to
us
vector
wavedata
waveform
when
window
Languages, Vol. II, R2007.1 2-7
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
conflicts with any of the WGL reserved words, the signal name must be enclosed by
double quotation marks (“ ”) to differentiate the signal name from the reserved word.
This must be done throughout the program wherever the signal name occurs.

2.4.6 Strings
Strings are any sequence of characters surrounded by double quotation marks (“ ”).
Within a string, if you want to use double quotation marks, you must precede each
occurrence with a back slash (\). If you want to use a back slash within a string, you must
precede each occurrence with a back slash. For example, the string:

\design“1”\

The equivalent WGL syntax is:

“\\design\“1\”\\”

2.5 WGL Syntax
WGL is a block-structured language. The body of the WGL program comprises one large
structure, bracketed by opening and closing statements. Within the overall structure are
smaller, more specialized structures, or blocks, each bracketed by opening and closing
statements.

A discussion of WGL’s syntactic elements follows.

2.5.1 General Syntax
In its simplest form, a WGL source file uses the following syntax:

waveform <waveFormName>
{ WaveformBlocks }
end
2-8 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Valid syntax for the optional WaveformBlocks is any of sixteen program sections. These
sections are referred to as WGL programming blocks or blocks. The block names are:

The block names act as block identifiers that categorize the information in each of the
program blocks used. The blocks are optional and can occur in any order, subject to the
restriction that all items in a block must be defined before they are used, and a pattern
block must be defined before a subroutine that uses it is defined. It is possible to create an
empty WDB, a WDB with only signals defined, a WDB with signals and timing defined, a
WDB with only signals and patterns defined, or a WDB with all components defined (as
represented by inclusion of all program blocks describing WDB objects).

A high-level BNF syntactical representation of the WGL program follows:

WaveformProgram ::= “waveform” <waveFormName> [“()”]
{ WaveformBlocks } “end”

WaveformBlocks ::= (EquationSheet | EquationDefaults |
GlobalMode |
Formats |TimeGens | PinGroups | Signals |
TimingSets | Registers | TimePlates | Symbolics | Patterns
|
Subroutines | ScanCells | ScanChain | ScanState)

EquationSheet ::= “equationsheet” <equationSheetName>
{ ExpessionDecl } “end”

EquationDefaults ::= “equationdefaults” DefaultsDecl “end”

GlobalMode ::= “pmode” “[” PmodeOption “]” “;”

Formats ::= “format” { FormatDecl } “end”

TimeGens ::= “timegen” { TgDecl } “end”

EquationDefaults
EquationSheet
Formats
GlobalMode
Patterns
Pin Groups
Registers
ScanCells

ScanChain
ScanState
Signals
Subroutines
Symbolics
TimeGens
TimePlates
TimingSets
Languages, Vol. II, R2007.1 2-9
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
PinGroups := “pingroup” { PinGroupDecl } “end”

Signals ::= “signal” { SignalDecl } “end”

TimingSets ::= “timeset” <tsNumber> { TgAssign } end”

Registers ::= “register” “(” PinList “)” { RegisterDecl }
“end”

TimePlates ::= “timeplate” <timeplateName> TimePlate “end”

Symbolics ::= “symbolic” SignalReference [SymDirection]
Radix
SymbolicAssignment “end”

Patterns ::= “pattern” <patternName> “(”
PatternParameters “)”
PatternRows “end”

Subroutines ::= “subroutine” <subroutineName> “()”
PatternRows “end”

ScanCells ::= “scanCell” { ScanCellDecl } “end”

ScanChain ::= “scanChain” { ChainDecl } “end”

ScanState ::= “scanState” { ScanStateDecl } “end”

An example of a typical WGL program is:

Start Example

waveform generic
 signal
 CS_ENABLE : input

dutpin[P1:1]
atepin[CSENAB:1];

 A-BUS [15..0] : input
radix hexadecimal
dutpin[P2:2, P3:3, P4:4, P5:5, P6:6,
P7:7, P8:8, P9:9, P10:10, P11:11,
P12:12, P13:13, P14:14, P15:15, P16:16,
P17:17]
atepin[ABUS15:2, ABUS14:3, ABUS13:4, ABUS12:5,
ABUS11:6, ABUS10:7, ABUS9:8, ABUS8:9, ABUS7:10,
ABUS6:11, ABUS5:12, ABUS4:13, ABUS3:14, ABUS2:15,
2-10 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
ABUS1:16, ABUS0:17];
 LOAD : input

dutpin[P18:18]
atepin[LOAD:18];

. . .

. end

 timeplate Fetch period 300nS
 CS_ENABLE := input[0pS:P, 30nS:S];
 A-BUS := input[0pS:D, 120nS:S, 260nS:D];
 LOAD := input[0pS:P, 100nS:S];
 ENP := input[0pS:P, 50nS:S];
 DR := input[0pS:P, 100nS:S];
 RO := input[0pS:U, 70nS:S, 180nS:U];
 D-BUS := output[0pS:X, 100nS:Q, 250nS:X];
 DB-BUS := output[0pS:X, 100nS:Q, 250nS:X];
 AD-BUS := input[0pS:P, 100nS:S];
 end
 timeplate R_W period 200nS
 CS_ENABLE := input[0pS:P, 30nS:S];
 A-BUS := input[0pS:D, 60nS:S, 190nS:D];
 LOAD := input[0pS:S];
 ENP := input[0pS:S];
 DR := input[0pS:S];
 RO := input[0pS:U, 40nS:S, 180nS:U];
 D-BUS := output[0pS:X, 60nS:Q, 190nS:X];
 DB-BUS := output[0pS:X, 40nS:Q, 180nS:X];
 AD-BUS := input[0pS:P, 60nS:S];
 end
. . .

 symbolic DB-BUS input radix hexadecimal
 RESET := [1ED8];
 JMP := [BE43];
 LDA := [062D];
 end
 symbolic DB-BUS output radix binary
 end

 pattern group_ALL (CS_ENABLE,A-BUS,LOAD,ENP,DR,RO,D-BUS,DB-BUS:I,DB-BUS:O,

 AD-B S:I,AD-BUS:O)
 repeat 5
 vector(0, 0pS, Startup) := [1 FFFF 0 0 0 1 3D66 RESET ---------------- AD --];
{ This is the COMMENT for the first row. This STARTUP TimePlate allows the tester
to start ALL stimulus at the LOW state, and initializes the device.}
Languages, Vol. II, R2007.1 2-11
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language

 vector(5, 2.5uS, Fetch) := [1 ADBB 0 0 1 0 3CDA ---- 0011111000000100 BB --];

{ During the FETCH cycle, the address on the A-Bus is “fetched” and will be valid
(displayed) on the D-Bus until after the next FETCH cycle.}

 vector(6, 2.8uS, R_W) := [0 0C13 1 0 1 1 ADBB ---- 0010100100101101 84 --];
 vector(7, 3uS, Write) := [0 8D18 0 1 0 0 ADBB JMP ---------------- -- 99];
{ The WRITE cycle contains “mid-cycle I/O” on the DB-Bus.}
 vector(8, 3.4uS, Fetch) := [0 EF57 0 1 0 1 ADBB ---- 1100001001000100 98 --];
 vector(9, 3.7uS, R_W) := [0 82DD 1 0 1 0 EF57 ---- 0110000001110101 7B --];
call sub1();
 vector(16, 5.7uS, Write) := [0 8D18 0 1 0 0 ADBB JMP ---------------- -- 99];
 vector(17, 6.1uS, Fetch) := [0 EF57 0 1 0 1 ADBB ---- 1100001001000100 98 --];
 vector(18, 6.4uS, R_W) := [0 82DD 1 0 1 0 EF57 ---- 0110000001110101 7B --];
 vector(19, 6.6uS, Write) := [0 2927 1 1 0 0 AA03 LDA ---------------- -- 81];
 vector(20, 7uS, Fetch) := [0 84F5 0 1 1 1 AA03 ---- 0100000110110111 A4 --];
 vector(21, 7.3uS, R_W) := [1 8DB4 1 0 1 1 84F5 ---- 1100001100010001 97 --];
call sub1();
 vector(28, 9.3uS, Write) := [0 7306 1 1 0 0 84F5 00DF ---------------- -- 17];
. . .

 vector(107, 33.1uS, Fetch) := [0 9DF1 1 1 0 1 140F ---- 0010100101000010 98 --];
{ This is the LAST vector row}
 end

subroutine sub1()
 vector(0, 0pS, Write) := [1 59E7 1 0 1 1 EF57 5FC9 ---------------- -- 65];
 vector(1, 400nS, Fetch) := [0 E327 0 0 0 0 EF57 ---- 0111100101000100 BF --];
 vector(2, 700nS, R_W) := [0 28E7 1 0 1 1 E327 ---- 1101001110000110 CA --];
 vector(3, 900nS, Write) := [1 898B 1 1 0 1 E327 5F8B ---------------- -- A0];
 vector(4, 1.3uS, Fetch) := [1 AA03 0 0 0 1 E327 ---- 1001111010101101 83 --];
 vector(5, 1.6uS, R_W) := [0 1ECD 1 0 1 0 AA03 ---- 0010001101010101 23 --];
 end

End Example

end
2-12 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
2.5.2 Program Block Syntax
All WGL program blocks begin with one of the WGL reserved word block names, and
terminate with the reserved word end. Between these two delimiting reserved words are
one or more WGL statements used to define data. These WGL statements themselves are
subdivided into smaller structures that address more specific operations, such as setting
timing for individual signal channels.

A colon (:) is used to assign an attribute (such as force or input) to an identifier. A
colon-and-equivalence (:=) is used as an assignment operator, assigning a value (such as
a numeric value) to an identifier. See the previous example of a typical WGL program for
these usages.

In permitted instances commas and semi-colons are used as delimiters. When several
parameters occupy the same line, each entry may be delimited by a comma (,). Each
separate WGL statement must be delimited by a semicolon (;). Check the BNF notation
for each WGL block for details of permissible usages. See the WGL program example on
page 2-10.

Generally speaking, the WGL blocks are of three types: generic, tester-specific, and
equation-specific.

The generic blocks let you address data that are related to the test waveforms.

The tester-specific blocks allow you to specify WDB data values that are directly related
to the type of tester you are using.

The equation-specific blocks let you assign expressions and constant values to variables
that can later be used in place of time values in timing sets and TimePlates. The results of
these equations are then included in the test program you can generate using a TDS
WaveBridge module.

While it is useful to consider the WGL blocks in these three general categories, it is
important to remember that some blocks contain generic, tester-specific, and
equation-specific components. For example, Signals blocks and TimePlates blocks contain
both generic and tester-specific WGL statements. TimePlate blocks and TimingSet blocks
contain generic, tester-specific, and equation-specific WGL statements.
Languages, Vol. II, R2007.1 2-13
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Table 2-1 defines the block type of each of the sixteen WGL program blocks.1

2.5.3 Generic Program Blocks
This section discusses the specific syntax for each of the generic program blocks. The
following list shows the WGL generic program blocks:

Table 2-1. WGL program block types

WGL Program Block Type

EquationDefaults equation-specific

EquationSheet equation-specific

Formats tester-specific

GlobalMode generic

Patterns generic

Pin Groups tester-specific

Registers tester-specific

Scan Cells generic

Scan Chain generic

Scan State generic

Signals generic, tester-specific

Subroutines generic

Symbolics generic

TimeGens tester-specific

TimePlates generic, tester-specific, equation-specific

TimingSets tester-specific, equation-specific

1. WGL constructs supporting equations are preserved in the WDB only if you have a TDS WaveBridge that
includes equation support for your tester.

Signals
Scan Cells
Scan State
Scan Chain

TimePlates
Patterns
Subroutines
Symbolics
2-14 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Use the generic program blocks to define WDB objects that are not specific to any tester.
The generic program blocks are presented in the likely order of use when creating a WDB.

2.5.3.1 Signals
The Signals block is used to declare four types of signal definitions: single-bit signals,
multi-bit buses, groups, and multiplexed signals or buses. Groups may include signals,
buses, or other groups.

Signal attributes must be defined in the same entry. For example,

signal
reset: input;

...

reset: radix symbolic;
end

is incorrect. The correct way to state these signal attributes is:

signal
reset: input radix symbolic;
end

The syntax of the WGL Signals block is:

signal
SignalDecl
end

A complete BNF syntactical representation of the Signals block follows:

Signals ::= “signal” { SignalDecl } “end”

SignalDecl ::= <signalName> [BusOrGroup] [“:”
SignalAttributes]
[Pstate] “;”

BusOrGroup ::= (BusRange | GroupMembers | MuxMembers)

BusRange ::= “[” <bitNumber> “..” <bitNumber> “]”

GroupMembers ::= “[” [SignalReference { “,”
SignalReference }] “]”
Languages, Vol. II, R2007.1 2-15
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

MuxMembers ::= [MuxPartList] [Range]

MuxPartList ::= “[” <muxPartName> “,” <muxPartName> [{
“,” <muxPartName> }] “]”

SignalAttributes ::= ([“mux”] [Direction]) { Strobe }
[Radix] [DutPins]
[AtePins]

Direction ::= (“input” | “output” | “bidir”) [(
“reference” | “timing”)]

Strobe ::= (“in” | “out”) “when” “[” <validityClause>
“]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex”
| “hexadecimal” | “symbolic”)

DutPins ::= “dutpin” “[” DutPinGroup { “,” DutPinGroup }
“]”

DutPinGroup ::= (PinInfo | “(” PinInfo { “,” PinInfo }
“)”)

PinInfo ::= PinName| PinNumber

PinName ::= <pinName> [PinNumber]

PinNumber ::= “:” <pinNumber>

AtePins ::= “atepin” “[” AtePinGroup { “,” AtePinGroup }
“]”

AtePinGroup ::= (AtePinInfo | “(” AtePinInfo { “,”
AtePinInfo } “)”)

AtePinInfo ::= PinInfo [“tg” “[” <timeGenName> { “,”
<timeGenName> } “]”]

Pstate ::= “initialp” “[” <TDSstate> “]”
2-16 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
The SignalDecl begins with a user-defined identifier or string. The SignalDecl can be any
of four types:

n Single-bit signals

n Multi-bit buses

n Groups of signals, buses, or other groups

n Multiplexed signals or buses

Single-Bit Signals

Single-bit signals are defined by an identifier followed by a list of attributes. The
following is an example of a WGL Signals block with only single-bit signals defined.

Start Example

signal
clk: input;
dataReady: output;
in_1: input;
readWrite: bidir;

End Example

end

Buses

Buses are defined by an identifier followed by the range of the bus, enclosed in brackets (
[]). The total, combined number of single-bit signals and buses that can be defined is
limited to 16384.

The following is an example of a WGL Signals block with single-bit signals and buses
defined.
Languages, Vol. II, R2007.1 2-17
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Start Example

signal
clk: input; # system clock
dataReady: output;
in_1: input;
readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus
addr [0..15]: input; # 16-bit address bus

End Example

end

Groups

Groups are defined by a list of previously defined single-bit signals, buses, bus members,
or other groups. Groups can name single-bit signals, buses, bus members, or groups only
once in the list. The number of groups used does not contribute to the combined total of
16384.

The following is an example of a WGL Signals block with single-bit signals, buses, and
groups defined:

Start Example

signal
clk: input; # system clock
dataReady: output;
in_1: input;
readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus
addr [0..15]: input; # 16-bit address bus
busses [data, addr]; # both busses together
data0_8 [data[0..8]];
oddAddr [addr[1], addr[3], addr[5], addr[7]];
inputs [clk, in];

End Example

end

There are predefined groups available that you can use in any correct syntax for groups.
The predefined group names must be entered as upper-case characters, as shown. They
are:
2-18 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
ALL

This predefined group contains all signals, buses, and multiplexed signals and buses (but
not multiplexed parts). Groups are not included.

ALLINPUT

This predefined group contains all signals, buses, and multiplexed signals and buses (but
not multiplexed parts) with the input signal direction attribute.

 ALLOUTPUT

This predefined group contains all signals, buses, and multiplexed signals and buses (but
not multiplexed parts) with the output signal direction attribute.

ALLBIDIR

This predefined group contains all signals, buses, and multiplexed signals and buses (but
not multiplexed parts) with the bidir (bidirectional) signal direction attribute.

ALLMUX

This predefined group contains all multiplexed signals and multiplexed buses (but not
multiplexed parts) with the mux (multiplexed) signal attribute.

There is no limit to the number of groups that can be defined.

Multiplexed Signals or Buses

Multiplexed signals are defined by an identifier followed by a list of multiplexed parts,
enclosed in brackets ([]); multiplexed buses are defined by an identifier followed by a
list of multiplexed parts, enclosed in brackets ([]), and followed by the Range, which is
also enclosed within brackets ([]).

Do not confuse multiplexed parts (<muxPartName>s) with signals; multiplexed parts
describe the ATE resources used to supply pattern data to a multiplexed signal or bus.
Multiplexed parts function in much the same manner as signals in the TimePlates, carrying
timing parameters and pattern data that is eventually associated with a multiplexed signal
defined in the Signals block.

An example of a WGL Signals block with definitions of a multiplexed signal, a single-bit
signal, and a multiplexed bus follows. Note the use of the mux attribute:
Languages, Vol. II, R2007.1 2-19
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Start Example

signal
fastClock [edge1, edge2]: mux input; # Multiplexed parts edge1,

edge2 on multiplexed
signal fastClock

rd/_wr:output;
Databus [bus1, bus2] [0..31]: mux bidir; # Multiplexed parts bus1,

bus2 on multiplexed
bus Databus

End Example

end

When waveforms are more complicated than those supported by the target tester’s
formatting set, multiplexed signals and buses are typically used to generate test programs
that contain pin multiplexing for these complicated waveforms. By using this ability, you
can multiply the effective frequency of the tester. If multiple pattern bits are needed to
define a waveform (for example, multiple pulses in a single tester cycle), you should
define such signals or buses as multiplexed signals or buses.

Following the optional BusOrGroup syntax are other attributes that are associated with the
current signal declaration. If you are defining a group, only the radix attribute is
applicable.

atepin

ATE pin information is defined in the Signals block using the reserved word atepin. The
AtePinInfo syntax is used to describe the mapping of the current signal declaration to
tester pins and the binding between a tester pin and its timing generators. The atepin value
is an alphanumeric string. When multiple ATE pins are specified for a multi-bit bus, the
mapping is one-to-one unless parentheses are used to group two or more pin declarations
with a single signal.

ATE timing generator information is also defined in the signals block. The timing
generator binding is introduced with the reserved word tg. The tgName is the name of the
tester-specific timing generator that is generating the timing for all the edges of the signals
in the current signal declaration. Multiple tgNames indicate that the timing generators are
being multiplexed or the existing timing generators (defined in a TimeGens block) are
responsible for multiple edges.
2-20 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
NOTE
Pin information and timing generator information are both tester-specific

The following is an example of a WGL Signals block with dutpin and atepin attributes
defined:

Start Example

signal
clk : input dutpin [c:p1] atepin [fclock:123 tg [ACLK1]];
dr : input dutpin [r:p2] atepin [p124:124 tg [BCLK1,CCLK1]];
data : output dutpin [d:p3] atepin [p2:2 tg [STRB1]];

End Example

end

direction

The direction attribute describes the direction of a signal and controls how the signal is
used in test program generation.

A signal may be forcing (input), sensing (output), or both forcing and sensing at different
times (bidir); the default is input. A direction may not be specified for groups. If a bus has
a direction of input or output, all the bits of the bus must have the same direction;
otherwise, only bidir is legal.

To control how the signal is used in test program generation, you can choose either
reference or timing. If neither of these is specified, the signal is considered in TimePlate
matching and tester program generation. If the clause is used with timing specified, the
signal is considered in TimePlate binding but not in test program generation. If reference
is specified, the signal is not considered in either TimePlate binding or test program
generation. When this clause is used, complete WGL syntax is still required for the signal
(signal, TimePlate track, and data).

The following is an example of a WGL Signals block with signals I1 and I3 use
restricted:
Languages, Vol. II, R2007.1 2-21
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Start Example

signal
I1 : input reference;
I2 : input;
I3 : input timing;
. . .

End Example

end

Strobe Clause

Signals and buses may include strobe clauses after their direction attributes. Use strobe
clauses to specify:

1. that an input or output signal is valid only when another signal takes a certain value, or

2. the conditions under which a bidirectional signal is an input, and those under which it
is an output.

Strobe clauses take the form

in|out when [signal_name state_character]

See Chapter 4 in the Getting Started Guide for detailed information about Signal
Definition file syntax.

In the following example, the bus named data only contains valid output when signal
cntrl has the value ‘D’. In addition, the bidirectional signal dr is an input when cntrl
has the value ‘D’, and an output when cntrl has the value ‘U’:

Start Example

signal
cntrl : input;
dr : bidir in when [cntrl D] out when [cntrl U];
data[7..0] : output out when [cntrl D];

End Example

end
2-22 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
dutpin

The dutpin attribute specifies the names (and optional numbers) of the pins on the
device-under-test associated with the signal. The dutpin value is an alphanumeric string. If
a device has multiple pins dedicated to the same signal, or different pins in use when a
bidirectional signal is input or output, more than one pin may be specified. dutpin may not
be specified for groups.

If multiple pins are specified in a multi-bit bus declaration, the mapping is assumed to be
one-to-one between the bus elements and the pins, in a left-to-right, most-significant-pin
to least-significant-pin order. Other distributions of pins to signals (such as that required
for multiplexed pins) can be accomplished by grouping the pin declarations within
parentheses. This indicates that multiple pins are bound to single-bit bus member.

The following is an example of a WGL Signals block with dutpin attribute defined:

Start Example

signal
clk : input dutpin [c:1];
data[0..7]: bidir

dutpin [(d0i, d0o), (d1i, d1o), (d2i, d2o), (d3i, d3o),
(d4i, d4o), (d5i, d5o), (d6i, d6o), (d7i, d70)];

End Example

end

mux

The mux attribute defines a signal or bus as a multiplexed signal or bus. The signal or bus
receives pattern data from a list of multiplexed parts. If the multiplexed parts are
themselves buses, these buses must be followed by the range of the bus enclosed in
brackets ([]).

The names of the multiplexed parts must be identified for the first time in the current
signal definition; it is illegal to use the names of other signals, groups, or buses that have
been previously defined in the Signals block of the WGL file.

See page 2-19 for an example of the use of the mux attribute.

initialp

Each signal definition may have an optional initialp state specified. P states are resolved to
this state the first cycle of the waveform. Any legal TDS state may be specified. If the
Languages, Vol. II, R2007.1 2-23
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
initialp clause is omitted, the default is D (FORCE_LO). initialp may not be specified for
groups.

The following is an example of a WGL Signals block with initialp specified for signals
clk and bus:

Start Example

signal
clk : input initialp[U];
bus[0..7]: output initialp[X];

End Example

end

Radix

The radix attribute describes the base in which the pattern data for the bus is described in
the Patterns block. The radix attribute can be binary, hexadecimal, octal,
decimal, or symbolic. Only binary and symbolic are legal for single-bit signals. The
default radix is binary when the radix attribute is unspecified.

The symbolic radix indicates that identifiers defined in subsequent symbolic blocks
may be used in pattern vectors. Decimal radix may only be specified for buses and groups
with 32 or fewer scalar member signals.

NOTE
Legal binary pattern characters are 1, 0, Z, X, and -; if you specify a non-binary
radix (hexadecimal, decimal, octal, symbolic) in the WGL file, and edit the WDB using
the WaveMaker Pattern Editor, do not use the 1 or 0 binary pattern characters in
conjunction with the Z, X, or - characters. Since the X, Z, or - characters represent an
ambiguous data bit, the pattern data for the entire digit (four bits for hexadecimal,
three bits for octal, one or two bits for decimal, or n bits for symbolic) is discarded
and replaced with a question mark (?). If all the bits are Z, the hexadecimal or octal
digit is replaced with Z. If all the bits are X, the hexadecimal or octal digit is replaced
with X.
2-24 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
2.5.3.2 Scan Cells
The Scan Cells block is used to represent internal storage registers of a device that may be
loaded or observed using serial shift scan circuitry. The total number of scan cells allowed
in a single WGL In file is limited to 32767.

It is important to distinguish scan cells from signals. WDB stores continuous waveform
information for signals. Scan cells, however, can represent only logic states at particular
instants. Scan cells do not have direction and there is no direct association with ATE or
DUT pins. Scan cells cannot be referenced in TimePlates or pattern parameter lists.

The syntax of the WGL Scan Cells block is:

scancell
ScanCellDecl
end

A complete BNF syntactical representation of the Scan Cells block follows:

ScanCells ::= “scanCell” { ScanCellDecl } “end”

ScanCellDecl ::= <cellName> [ScanGroup] [“:” Radix]
“;”

ScanGroup ::= “[” [ScanRange | ScanGroupMembers] “]”

ScanRange ::= <bitNumber> “..” <bitNumber>

ScanGroupMembers ::= CellReference { “,” CellReference }

CellReference ::= (<cellName> [Range])

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex”
| “hexadecimal” | “symbolic”)

The ScanGroup statement allows you to specify a logical grouping of scan cells. The scan
cells in a group may be from multiple scan chains. Each ScanGroupMember must be
previously defined, unless it is the name of another scan group.

The optional Radix specification for scan groups and registers is used in scan state vectors.
The supported radices are implemented by using the WGL reserved words: binary, hex,
octal, decimal, and symbolic.
Languages, Vol. II, R2007.1 2-25
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
An example of a ScanCells block is:

Start Example

scancell
latchA;
latchB;
datareg[0..7]: radix hexadecimal;
group_1[latchA, latchB, datareg[7]]: radix octal;

End Example

end

The Scan Cells block example names scan-able cells within the device. Cells may be
single-bit latches, such as latchA, or multi-bit registers, such as datareg. Logical
groups of scan cells, such as group_1, also may be specified.

A complete example of WGL scan structures is provided on page 2-96 of this chapter.

NOTE
Regardless of the order in which signals are defined in a scangroup declaration, it is
the order in which they are defined in a scanchain declaration that determines how
pattern bits are assigned to a cell.

2.5.3.3 Scan State
Each state declaration in a Scan State block defines the entire state of the set of all scan
cells at some instant in time. The goal of input scanning is to achieve that state; the goal of
output scanning is to observe that state. A scan state vector may be referenced from zero
or more scan pattern rows. It may take multiple scan chains to load or observe all the cells
in a state.

A binary format of the scan vectors is supported. For more information, see Binary WGL
on page 2-103. This capability allows you to use binary data from a CAE simulation as
input to TDS.

The syntax of the WGL Scan State block is:

scanstate
ScanStateDecl
end
2-26 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
A complete BNF syntactical representation of the Scan State block follows:

ScanState ::= “scanState” { ScanStateDecl } “end”

ScanStateDecl ::= <stateName> “:=” { StateVectorElement }
“;”

StateVectorElement ::= <chainName> “(“ { <stateString> }
“)”

ScanStateDecl specifies a name for the scan state and the values of all the scan cells for
that state. The <stateName> is an identifier; some special characters may be used if the
<stateName> is enclosed within double quotation marks (“ ”). <stateNames> occupy
their own name space but must be unique among all other states. The StateVectorElements
are assigned by naming the cell, register, cell group, or chain and appending a
<stateString> value in parentheses. The <stateString> is interpreted in the radix of the
associated cell reference similar to the technique used for pattern states. The WGL Out
Converter always generates state vectors using ALLSCAN as the only cell reference. The
<chainName> is an identifier and must be unique among all other scan chain names.

The value of any cell not specified in the scan state declaration is implicitly X, the TDS
state character representing a compare unknown state. The actual value used by a tester to
drive X is technology-dependent and programmed in TDS Test Control Language (TCL).
If that portion of the state is scanned out, the comparison is masked. For more information
on how to use TCL, see Chapter 3: Test Control Language in this guide.

Legal characters in the stateString are 0, 1, Z, and X for binary radix, 0-9, A-F, Z, and X
for hexadecimal radix, 0-7, Z, and X for octal radix, and 0-9 for decimal radix.

The following is an example of a Scan State block. The bit order of the scan group
ALLSCAN is the order that the scan cells (and scan registers) are defined in the Scan Cell
block of the WGL file. If you choose to specify scan state vectors using the ALLSCAN
group, you must specify a bit for every scan cell element that is listed in the Scan Cell
block.
Languages, Vol. II, R2007.1 2-27
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Start Example

scanState
state1 := latchA(1) latchB(0) datareg(3F);
state2 := latchA(0) latchB(1) datareg(01);
state3 := ALLSCAN(XX00000000);
stateX := ;

End Example

end

The stateX state declaration in this example sets up a state of all X (compare unknown)
values.

A complete example of WGL scan structures is provided on page 2-96 of this chapter.

2.5.3.4 Scan Chain
The Scan Chain block defines the configuration of a circuit path connecting edge signals
to scan cells and inverters. Each chain is named with an identifier or quoted string that
must be unique among signals, scan cells, buses, scan registers, groups, and other scan
chains.

The syntax of the WGL Scan Chain block is:

scanchain
ChainDecl
end

A complete BNF syntactical representation of the Scan Chain block follows:

ScanChain ::= “scanChain” { ChainDecl } “end”

ChainDecl ::= <chainName> “[” ChainMembers “]” [“:” Radix
] “;”

ChainMembers ::= (InEdgeSignal | ChainMemList |
OutEdgeSignal)

InEdgeSignal ::= SignalReference ”,”

OutEdgeSignal ::= “,” SignalReference

ChainMemList ::= ChainMemReference { “ , ”
ChainMemReference }
2-28 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
SignalReference ::= <signalName>

ChainMemReference ::= (CellReference | “!”)

CellReference ::= (<cellName> [Range])

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex”
| “hexadecimal” | “symbolic”)

The <chainName> is an identifier and must be unique among all other scan chain names.

The ChainMembers list represents the ordered sequence of scan chain elements where the
implied shift direction is left-to-right.

Either the InEdgeSignal or the OutEdgeSignal can be omitted, but if the chain is directly
referenced by a scan pattern row, at least one must be present.

The SignalReference for an InEdgeSignal must have been previously declared as a 1-bit
wide input or bidirectional signal. The SignalReference for an OutEdgeSignal must have
been previously defined as a 1-bit wide output or bidirectionalsignal. The reserved symbol
! indicates state inversion. Scan chains may be members of other chains as long as the
declaration is not recursive.

If the Radix is omitted, binary radix is supplied by default.

An example of a Scan Chain block is:

Start Example

scanchain
chain1 [SC1_IN, datareg[0], latchA, datareg[2], SC1_OUT] : radix octal;
chain2 [SC2_IN, datareg[1], !, datareg[7], datareg[5], latchB,
datareg[4], !, datareg[6]];

End Example

end

The Scan Chain block example shows the order of scan cells on two physical chains. The
first and last elements of the chain1 cell list are the names of edge signals SC1_IN and
SC1_OUT, which must have been previously defined in a Signals block. chain2 has an
input signal SC2_IN but no corresponding output signal. Therefore, chain2 may be
used to control the state of the listed scan cells but there is no way to observe their state.
The reserved symbol ! appears twice in the chain2 cell list. This indicates that states are
Languages, Vol. II, R2007.1 2-29
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
inverted when they shift between datareg[1] and datareg[7], and between
datareg[4] and datareg[6].

Parallel scan chains are supported, but the scan chains can not be identical. The following
is an example of the legal use of parallel scan chains.

Start Example

waveform t1
scancell

latch1; latch2; latch3; latch4;
latch5; latch6; latch7; latch8;

end
scanstate

state1 := latch1(0) latch2(0) latch3(0) latch4(0);
state2 := latch1(0) latch2(0) latch3(0) latch4(1);
state3 := latch1(0) latch2(0) latch3(1) latch4(1);
state4 := latch1(0) latch2(1) latch3(0) latch4(0);
state5 := latch1(0) latch2(1) latch3(0) latch4(1);

estate1 := latch5(1) latch6(1) latch7(1) latch8(0);
estate2 := latch5(1) latch6(1) latch7(0) latch8(1);
estate3 := latch5(1) latch6(1) latch7(0) latch8(0);
estate4 := latch5(1) latch6(0) latch7(1) latch8(1);
estate5 := latch5(1) latch6(0) latch7(1) latch8(0);
estateX := ;

end
signal

clock : input;
scanIO : bidir;
scanOut : output;
enable : input;

end
scanChain

chain1 [scanIO, latch1, latch2, latch3, latch4];
chain3 [latch1, latch2, latch3, latch4, scanIO];
chain2 [latch5, latch6, latch7, latch8, scanOut];

end

timeplate scanTiming period 200ns

clock := input [0ps:D, 50ns:S, 100ns:D];
enable := input [0ps:S];
scanIO := input [0ps:S];
scanIO := output [0ps:X, 50ns:Q];
scanOut := output [0ps:X, 50ns:Q, 90ns:X];
2-30 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
end
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)
 vector(+, scanTiming) := [1 1 1 - X];
 scan(+,scanTiming) := [1 1 - - -], input[chain1:state1],

output[chain3:estate1];
 vector(+, scanTiming) := [1 1 1 - X];
 scan(+,scanTiming) := [1 1 - - -], input[chain1:state2],

output[chain2:estate2];
 vector(+, scanTiming) := [1 1 1 - X];
 scan(+,scanTiming) := [1 1 - - -], input[chain1:state3],

output[chain2:estate3];
 vector(+, scanTiming) := [1 1 1 - X];
 scan(+,scanTiming) := [1 1 - - -], input[chain1:state4],

output[chain2:estate4];
 vector(+, scanTiming) := [1 1 1 - X];
 scan(+,scanTiming) := [1 1 - - -], input[chain1:state5],

output[chain2:estate5];
end

End Example

end

A complete example of WGL scan structures is provided on page 2-96 of this chapter.

Note that the order in which signals are defined in a scanchain declaration determines how
pattern bits are assigned to a cell, not the order of those in a scangroup. For example, the
resulting scan chain bit order for the example below would be 110, instead of the intended
011.

signal
sin : input;
sout : output;
end

scancell
 c1;c2;c3;
end;

scangroup
 grp1 [c3, c2, c1]; (note cell order)
end

scanstate
Languages, Vol. II, R2007.1 2-31
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
 st1 := grp1(011);
end

scanchain
 chn1 [sin, c1, c2, c3, sout]; (note cell order)
end

2.5.3.5 TimePlates
The TimePlates block is used to define the timing component of the waveforms. The
TimePlates convey the unique kinds of timing that are present in the overall waveforms.

The syntax of the WGL TimePlate block is:

timeplate <timeplateName>
TimePlate
end

A complete BNF syntactical representation of the TimePlates block follows:

Timeplates ::= “timeplate” <timeplateName> TimePlate “end”

TimePlate ::= “period” TimeReference [“timeset”
<tsNumber>] Channels

TimeReference ::= (Time | <variableName>)

Time ::= <timeValue> Unit

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

Channels ::= { SignalReference { “,” SignalReference }
“:=” Track }

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Track ::= [Direction] [“[” FirstEvent { “,” Event } “]”
] “;”

Direction ::= (“input” | “output” | “bidir”) [(
“reference” | “timing”)]

FirstEvent ::= “0” Unit “:” <TDSstate> [“ ’ ” (“edge” |
2-32 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
“window”)]

Event ::= TimeReference “:” <TDSstate> [“ ’ ” (“edge” |
“window”)]

<timeplateName> is an identifier used to reference the TimePlate throughout later portions
of the WGL program. An overall timing period is assigned to each TimePlate by the
reserved word period. The TimePlate declaration is a definition of the constituent parts of
the TimePlate.

<variableName> is the name of a variable that has been previously defined in the ExprSet
sub-block of an EquationSheet block. (For more information, see ExprSet on page 2-55.)

Each TimePlate is given an overall time period applying to the length of the cycle
following the reserved word period. The period can be a numeric value greater than zero,
or a variable having been previously defined in the ExprSet sub-block of an EquationSheet
block. (For more information, see ExprSet on page 2-55.)

NOTE
A variable used in the TimePlates block must have a value that is meaningful when
expressed in units of time.

A TimePlate contains a list of signal channels. Conceptually, a channel is a container for
one or more signal names, each of which is followed by a track. Each channel can contain
one or more signals, buses, groups, or multiplexed parts. These entities must have been
previously declared in the Signals block. Each channel associates the signals with a track.
The track itself contains the actual information about the direction, shape, and timing of
the waveform. The TDS states that are used to represent the waveform must be consistent
with those available for the direction (input or output). (For a list of TDS state characters,
see Table 2-7 on page 2-72.) All the signals that share the channel must have a compatible
direction.

NOTE
It is important to note that while multiplexed parts are permitted, multiplexed signals
or buses (those signals or buses tagged with the mux attribute in the Signals block that
receive their timing parameters from multiplexed parts) are not permitted. In effect,
timing is defined for the multiplexed parts, which then supply data for the multiplexed
signal or bus with which they are associated in the Signals block.
Languages, Vol. II, R2007.1 2-33
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
The first event in a track must have a literal time value of 0. Timing supplied by a variable
is not legal for the first event. Subsequent events can use either a literal time value or a
variable to specify the timing of the event. A variable, if used, must have been previously
defined in the ExprSet sub-block of an EquationSheet block. (For more information, see
 ExprSet on page 2-55.)

The reserved word timeset lets you define a tester-specific timing set name that is
associated with the timing in the TimePlate. The timing set is defined in the WDB that is
produced by a WaveBridge run.

The following is an example of a simple TimePlates block:

Start Example

timeplate read period 250ns timeset 1
clock:= input [0ps:D, 50ns:U, 100ns:D, 150ns:U, 200ns:D,

250ns:U];
in := input [0ps:D,170ns:U];
out := output [0ps:X,180ns:Q’edge, 220ns:X];

End Example

end

A bidirectional signal can occupy one channel if the direction is specified using the
reserved word bidir, or two channels if the direction is defined using both of the reserved
words input and output. In the first instance, the channel is doing intra-cycle input/output
switching; in the second instance, the channel is doing inter-cycle input/output switching.
These two can be combined to make a maximum of three channels per signal.

Contained within each track is a comma-separated list of events. Each event consists of a
time value defined by time and a TDS state. For input channels, the TDS force logic state
characters must be used; for output channels, TDS expect logic state characters must be
used; for bidirectional channels, both force and expect TDS state characters may be used.
The TDS state character S indicates that the actual state character is to be “substituted”
into the waveform at that point. The actual state character comes from the data bit in the
corresponding column in a pattern block. In other words, when Track contains an S state
character, the actual state is derived from the pattern data. The TDS state character P
indicates that the state is to be provided from the previous state (from the previously
juxtaposed template). The TDS state character C indicates that the state is the complement
of the substituted state. See Table 2-7 on page 2-72 for a list of TDS logic state characters.

For output channels, the compare logic states must be used. The TDS state character Q
indicates that the state is to be substituted from the data bit from the corresponding column
2-34 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
in a pattern block. The TDS state character R indicates that the state is the complement of
the substituted state. The optional reserved words edge or window (default) can follow an
output state to indicate edge or window strobing. During a WaveBridge run, the
WaveBridge resource allocation attempts to allocate the type of strobe specified by the
reserved word. (The example above uses the reserved word edge.)

An example of a typical TimePlates block, including the corresponding signal definitions
in the Signals block and the pattern data defined in the Patterns block, follows. (Note the
use of multiplexed buses.)

Start Example

signal

#===
FastClock is generated using eight multiplexed components.
Databus bus is made up of two separate busses, bus1 and bus2.

#===
FastClock[edge0, edge1, edge2, edge3, edge4, edge5, edge6, edge7]: mux input;
rd/_wr : output;
Databus[bus1, bus2][0..3] : mux bidir; # Multiplexed the two four bit

 # busses to get a byte-wide bus.
end

timeplate writeTP period 80ns

edge0: input[0ps:D, 2ns:U, 8ns:D, 10ns:?]; # Clock for data bit bus1[0]
edge1: input[0ps:?, 10ns:D, 12ns:U, 18ns:D, 20ns:?]; # Clock for data bit

bus1[1]
edge2: input[0ps:?, 20ns:D, 22ns:U, 28ns:D, 30ns:?]; # Clock for data bit

bus1[2]
edge3: input[0ps:?, 30ns:D, 32ns:U, 38ns:D, 40ns:?]; # Clock for data bit

bus1[3]
edge4: input[0ps:?, 40ns:D, 42ns:U, 48ns:D, 50ns:?]; # Clock for data bit

bus2[0]
edge5: input[0ps:?, 50ns:D, 52ns:U, 58ns:D, 60ns:?]; # Clock for data bit

bus2[1]
edge6: input[0ps:?, 60ns:D, 62ns:U, 68ns:D, 70ns:?]; # Clock for data bit

bus2[2]
edge7: input[0ps:?, 70ns:D, 72ns:U, 78ns:D, 80ns:?]; # Clock for data bit

bus2[3]
rd/_wr: input[0ps:?, 20ns:D, 80ns:?]; # Indicate write cycle

bus1[0]: input[0ps:D, 5ns:S, 10ns:?]; # Data bit 0
bus1[1]: input[0ps:?, 10ns:D, 15ns:S, 20ns:?];# Data bit 1
Languages, Vol. II, R2007.1 2-35
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
bus1[2]: input[0ps:?, 20ns:D, 25ns:S, 30ns:?];# Data bit 2
bus1[3]: input[0ps:?, 30ns:D, 35ns:S, 40ns:?];# Data bit 3
bus2[0]: input[0ps:?, 40ns:D, 45ns:S, 50ns:?]; # Data bit 4
bus2[1]: input[0ps:?, 50ns:D, 55ns:S, 60ns:?]; # Data bit 5
bus2[2]: input[0ps:?, 60ns:D, 65ns:S, 70ns:?]; # Data bit 6
bus2[3]: input[0ps:?, 70ns:D, 75ns:S, 80ns:?]; # Data bit 7

end

pattern load1(FastClock, rd/_wr, Databus)
 vector(+, writeTP) := (11111111 1 10101010XXXXXXXX);

End Example

end

You can see in the example that the multiplexed parts do not need be defined as
contiguous sections of the timing track; gaps in the defined timing for the multiplexed
parts are allowed to support the requirements of your particular tester.

The multiplexed parts can occur in any order in the TimePlate block, as can the timing
defined in the timing track. For example, the timing for edge7 and edge2 could legally be
defined as:

edge2: input[0ps:?, 70ns:D, 72ns:U, 78ns:D, 80ns:?];
. . .
edge7: input[0ps:?, 20ns:D, 22ns:U, 28ns:D, 30ns:?];

As you can see, the timing values are in the reverse order of those shown in the example.

The pattern data (11111111 1 10101010XXXXXXXX) is mapped to the buses and
signals, as described in Patterns on page 2-38.

An edge strobe is an instruction to the tester comparator hardware to take an instantaneous
sample of the DUT output, and compare it with the expect data. A window strobe tells the
tester comparator hardware to verify that the expect data is appearing at the DUT
throughout a window of time. If neither reserved word is specified, the event is assumed
by the WaveBridge you are using to be a window strobe.

When defining a track, make sure that you assign increasing time values for each event
subsequently defined, whether using a constant time value or a variable; the first event of
the waveform must always begin at 0pS, and it is unacceptable to define a second event at
20nS and a third event at 15nS. Remember that all event times are relative to the
beginning of the cycle.
2-36 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
TimePlates used with scan pattern rows must satisfy certain requirements. Those signals
that terminate scan chains referenced from the same pattern row must have sample states;
that is, signals that appear at the start of a scan chain must have an S state character, and
signals that appear at the end of a scan chain must have a Q state character in their
respective waveform shapes. Any other state characters violate these restrictions,
generating a TDS WDB Checker Utility error message when you run the TDS WGL In
Converter, or a TDS Tester Rules Checker error message when you use the WDB
containing the TimePlate as input to a TDS ScanBridge module. Pattern values are
available, but not required, for other signals. For more information, see Patterns on
page 2-38.

The following is an example of a TimePlates block that can be used with scan pattern
rows:

Start Example

timeplate runSC period 500ns
SC1_IN := input[0pS:S, 250nS:D];
SC2_IN := input[0pS:S, 250nS:D];
SC1_OUT := output[0pS:X, 250nS:Q];
SC_CLOCK := input[0pS:U, 250nS:D];
SC_EN := input[0pS:U];
BUS_D := output[0pS:X];
ADDR_IN := input[0pS:P];

End Example

end

NOTE
In the above example, only signals containing TDS state characters for unresolved
states (such as S or Q) are scan signals (signals that terminate scan chains).

The TimePlates block example shows how to encode a protocol that exercises both
chain1 and chain2 in parallel. (Scan chains were previously defined in the Scan Chain
block example, on page 2-29.) A common scan clock SC_CLOCK and enable pin SC_EN
are shared by both chains. Inputs SC1_IN and SC2_IN are driven during the first half of
the cycle, and the output SC1_OUT is sampled during the second half. Other input signals
not associated with the scan chain, such as ADDR_IN, are held at the “previous” value
(that is, at the value they held before the scan operation began). Non-scan outputs, such as
BUS_D, are masked. For more information, see the following Patterns section.
Languages, Vol. II, R2007.1 2-37
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
You can use variables in the place of literal time values in the TimePlates block. The
variables must be previously defined in a default ExprSet sub-block of an EquationSheet
block. (For more information, see ExprSet on page 2-55.)

Variables can be substituted for the TimePlate period value and any event time. You can
intermix literal time values and variables, although the initial event in a time track must
occur at 0pS, and it must be expressed as a literal time value.

The following example shows how variables that were defined in an EquationSheet block
can be used in a TimePlate block. The use of variables is highlighted in Bold typeface:

Start Example

timeplate ts1 period write_cycle
clk := input[0pS:D, 20nS:U, tclk1:D, 90nS:U];
ale := input[0pS:D, t1:S, t2:D];
RE := input[0pS:D, 20nS:S, 50nS:D];
OE := input[0pS:P, 30nS:S];
strobe := output[0pS:X, t3:Q, 90nS:X];

End Example

end

2.5.3.6 Patterns
The Patterns block is used to define rows of data bits. These rows are also called vectors.
The vectors defined in the Patterns block are to be modulated through the TimePlate that
is associated with each vector. The result of this modulation creates the waveform.

A binary format of the pattern vectors, to be used in place of ASCII pattern data, is
supported. This capability allows you to use binary pattern data from a CAE simulation as
input to TDS. You cannot mix ASCII pattern vectors and binary pattern data within a
Pattern block. However, you can have an ASCII Pattern block and a binary Pattern block
within a WGL file. For more information about binary vectors, see Binary WGL on
page 2-103.

The syntax of the WGL Patterns block is:

pattern <patternName> PatternParameters
PatternRows
end

A complete BNF syntactical representation of the Patterns block follows:
2-38 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Patterns ::= “pattern” PattName “(” PatternParameters “)”
PatternRows “end”

PattName ::= (<patternName> | <patternNameStr>)

PatternParameters ::= PatternParam { “,” PatternParam }

PatternParam ::= SignalReference [“:” (“I” | “O”)]

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

PatternRows ::= { [<vectorLabel> “:”] (Loop | Repeat |
ScanRow) }

Loop ::= “loop” [<loopName>] <loopCount>
PatternRows “end” [<loopName>]

Repeat ::= [“repeat” <repeatCount>] (Vector | Call |
Offset)

Vector ::= “vector” Address “:=” PatternExpression [
TimeComment] “;”

Address ::= “(” AddressElement { “,” AddressElement } “)”

AddressElement ::= (“+” | <cycleNumber> | [Time] |
<timeplateName>)

Time ::= <timeValue> Unit

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

PatternExpression ::= “[” { (<stateString> |
<patternIdentifier>) } “]”

TimeComment ::= “(” Time “)”

Call ::= “call” <subroutineName> “()” “;”

Offset ::= “skip” Time “;”

ScanRow ::= “scan” Address “:=” ScanRowElement { “,”
ScanRowElement } “;”
Languages, Vol. II, R2007.1 2-39
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
ScanRowElement ::= (PatternExpression | ScanRun)

ScanRun ::= ScanDir “[” <chainName> “:” <stateName> “]”

ScanDir ::= (“input” | “output” | “feedback”)

Multiple Pattern blocks are allowed in WGL and can be used to partition a test program
into pattern bursts when the WDB is processed by a WaveBridge.

<patternName> is a user-defined name such as Group_ALL. <patternNameStr> is a
user-defined name such as “Group+two”. (String notation allows the use of characters
not otherwise permitted.) The <patternName> and <patternNameStr> user-defined names
are stored in the WDB.

The PatternExpression defined for each identifier must contain legal pattern
<stateString>s. The number of bits in the PatternExpression must be the same as the
number of bits in the corresponding signal, bus, group, or multiplexed signal or bus that is
associated with it.

PatternParameters is a parentheses-enclosed list of signal names that have already been
defined in the Signals block. The PatternParameters are used to map signals, buses,
groups, and multiplexed signals or buses (defined in the Signals block) to columns in the
PatternExpressions. If multiplexing is used for signals or buses, the pattern bits are
combined under the control of the associated radix, in exactly the same manner that the
pattern bits are controlled for non-multiplexed buses. For multiplexed parts, the binding
order of the pattern bits is left-to-right as specified in the multiplexed signal definition in
the Signals block. Each PatternParam in the parameter list corresponds in order of
occurrence to columns of data in each vector statement. See the TimePlate example on
page 2-34.

PatternRows are definitions of rows of data bits used to supply data to waveforms when
modulated through a TimePlate, as defined in the TimePlate block.

The optional TimeComment provides a mechanism for binding a time to a Vector. It is
stored in the database as a comment only. (TDS Output Converters may construct these
from simulation output times.)

A Vector consists of an Address and an associated pattern expression. The simplest form
of an Address is an integer cycle number. A plus sign (+) can be used as an address to
automatically increment the cycle number from the previous row. The starting time of the
cycle may also appear in the address. If a <timeplateName> is mentioned in an Address, it
must reference an existing TimePlate.
2-40 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
All fields of an Address except the TimePlate designation (+, <cycleNumber>, and Time)
are ignored by the WGL In Converter. These fields are provided for compatibility with the
WGL Out Converter, which generates the fields for documentation purposes.

The <patternIdentifier> can be used in subroutines, pattern blocks, or scan state vectors as
a shorthand for PatternExpression when the radix of the associated signal, bus, group, or
scan element is set using the reserved word symbolic. See the Symbolics section in this
chapter for more information on how to use the reserved word symbolic.

The following vector declaration uses an integer address (0), starting time of the cycle (
0pS), the TimePlate name with which the vector is associated (t1), and the pattern data
([1 ZZZZZZZZ]).

vector(0, 0pS, t1) := [1 ZZZZZZZZ];

The vector declaration below uses only automatic increment address (+) and the pattern
data ([1- 1111111100000000 1 -]).

vector(+) := [1- 1111111100000000 1 -];

Vectors and subroutine calls may have optional repeat counts. To cause the vector to be
used more than once, the reserved word repeat and a repeat count are used.

The following is an example of a simple WGL Patterns block:

Start Example

pattern group_ALL (C0,C1,C2,C3,C4,C5,C6,C7,C8)

vector(0, TimeSet0_0) := [0 0 0 1 1 0 1 1 0];
vector(1, TimeSet1_0) := [1 1 1 0 0 1 1 1 1];
vector(2, TimeSet1_1) := [0 1 1 0 1 1 0 1 0];
vector(3, TimeSet2_0) := [1 1 1 1 1 1 0 1 1];
vector(4, TimeSet3_0) := [0 0 0 0 0 0 1 1 1];
vector(5, TimeSet3_1) := [0 0 0 0 1 0 1 0 0];

End Example

end

The example below is a WGL Patterns block with a repeat statement that describes a
waveform which has a periodic clock for two cycles and an 8-bit data bus that has a value
of all Hi-Z for the first cycle, and a value of 0001 1010 for the second cycle. The repeat
statement causes third through sixth cycles of the waveform to all have the same value on
the data bus.
Languages, Vol. II, R2007.1 2-41
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Start Example

signal
clock : input;
data[0..31] : input radix binary;

end

timeplate t1 period 200ns

clock := input[0ps:D, 100ns:S, 150ns:D];
data := input[0ps:Z, 120ns:S] radix binary;

end

pattern load1 (clock, data[8..15])

vector(0, 0pS, t1) := [1 ZZZZZZZZ] (100ns);
vector(1, 200nS, t1) := [1 00011010] (300ns);
repeat 4 vector(3, 200nS, t1) := [1 00011010];

End Example

end

Bidirectional patternParameters always require twice the number of pattern columns to
account for input and output directions. If a bidirectional single-bit signal is mentioned as
a pattern parameter, two adjacent bits are required (no space between them is allowed). If
a bidirectional signal is mentioned with an :I or :O, this counts as one parameter per
occurrence. A space is required between them if both directions are used. Bidirectional
buses have all of their input pattern bits mentioned first, followed by the output pattern
bits. If an :I or :O is used on a bidirectional bus, this counts as one pattern parameter,
and at least one space is required as a separator.

The number of bits for each pattern parameter must be the same as the width of the signal,
bus, group, or multiplexed signal or bus. The number of bits for a bus is the difference
between its upper and lower bounds, plus one. The number of bits in a group is the sum of
the number of bits of all the group members. The number of bits for a single direction
multiplexed bus is the width of the bus times the number of multiplexed parts. The number
of bits for a bidirectional multiplexed bus is the width of the bus times the number of the
multiplexed parts times two.

The following is an example of a WGL Patterns block with bidirectional bus pattern
spacing:
2-42 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Start Example

signal
foo[0..7] : bidir radix binary;
fee[0..7] : bidir radix hexadecimal;
fum[0..7] : bidir radix hexadecimal;

end

pattern load1 (foo,fee,fum:I,fum:O)

End Example

vector(+) := [10101010-------- FF-- F- --];

The :I and :O can only be used with bidirectional signals, buses, groups, multiplexed
signals or buses, or parts of multiplexed signals or buses.

If the number of the pattern bits in the vector statement does not equal the sum of the bits
assigned to the buses defined in the Signals block (that is, the bus range, see Buses on
page 2-17), an error is reported.

The reserved word call invokes a pattern subroutine, as indicated by the
<subroutineName>. The rows of the subroutine are treated exactly as if they had been
included in-line at the point of the call. Like vectors, calls may have optional repeat counts
specified.

The following is an example of a WGL Patterns block with subroutine call foo:

Start Example

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ];
call foo();
vector(+, t1) := [1 00011010];

end

subroutine foo()

vector(t1) := [1 00011111];

End Example

end

The reserved word loop allows a sequence of other vectors, calls, and loops to be repeated
a specified number of times. Loops can be nested to any depth. Loops have optional names
that have no significance other than as a commentary tag.
Languages, Vol. II, R2007.1 2-43
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
The following is an example of a WGL Patterns block with loop loopName:

Start Example

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ];
loop loopName 3

call foo();
vector(+, t1) := [1 00011010];

 end loopName

End Example

end

The reserved word skip provides for the declaration of a time period when the waveform
state is unspecified. Signal states and event timing are suppressed during the skipped
period.

The following is an example of a WGL Patterns block with a skip of 400nS:

Start Example

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ];
vector(+, t1) := [1 00011010];
skip 400nS;
vector(+, 0pS, t1) := [1 ZZZZZZZZ];
vector(+, t1) := [1 00011010];

End Example

end

Scan pattern rows may appear in pattern blocks freely intermixed with the other row types.
Each row represents an arbitrary number of cycles dependent on the lengths of the scan
chains that it references.

Note that the scan state defines the values of all scan cells in the device. Only those scan
cells on the indicated scan chain(s) are loaded or observed by a particular scan row. Other
scan cells not referenced by a chain in the pattern row are not affected by the row.
Multiple combinations of chain, state, and direction may appear in each scan row. This
provides for parallel scan chains or simultaneous loading and observing of a single chain.
It is illegal, however, for a scan row to specify the same chain more than once if the
direction of the chain is the same but state values associated with the chain are different.

The following is an example of parallel scan chains:
2-44 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Start Example

pattern pat1 (clock, enable, scanIn, scanOut, scanIn1, scanOut1)
 vector(+, scanTiming) := [1 1 1 1 1 1];
 scan(+,scanTiming) := [1 1 - - - -],

input[chain1:state1],
output[chain2:estate1],
input[chain11:state3],
output[chain12:estate3] ;

 vector(+, scanTiming) := [1 1 1 1 1 1];
 scan(+,scanTiming) := [1 1 - - - -],

input[chain11:state4],
output[chain12:estate4],
input[chain1:state2],
output[chain2:estate2];

 vector(+, scanTiming) := [1 1 1 1 1 1];

End Example

end

It is illegal for a scan chain with no input edge signal to follow the reserved word input. It
is illegal for a scan chain with no output edge signal to follow the reserved word output.

The reserved word feedback indicates that the signals appearing on the chain output
should be directed back into the chain input while simultaneously comparing against the
specified scan state vector. Chains referenced in a feedback clause must have both an input
and an output signal. For more information, see Scan Chain on page 2-28.

It is important to make certain that signals that terminate scan chains have the proper state
character supplied to them, as described on page 2-37 , either from parallel pattern data or
from the scan chain associated with the scan run. The following example illustrates a
common error made in using scan chains.

Start Example

waveform t1
scancell

latch1; latch2; latch3; latch4;
latch5; latch6; latch7; latch8;

end
scanstate

state1 := latch1(0) latch2(0) latch3(0) latch4(0);
state2 := latch1(0) latch2(0) latch3(0) latch4(1);
. . .
estate1 := latch5(1) latch6(1) latch7(1) latch8(0);
Languages, Vol. II, R2007.1 2-45
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
estate2 := latch5(1) latch6(1) latch7(0) latch8(1);
estate3 := latch5(1) latch6(1) latch7(0) latch8(0);

. . .
end
signal
clock : input;

scanIO : bidir;
scanOut : output;
enable : input;

end
scanChain

chain1 [scanIO, latch1, latch2, latch3, latch4];
chain3 [latch1, latch2, latch3, latch4, scanIO];
chain2 [latch5, latch6, latch7, latch8, scanOut];

end
timeplate scanTiming period 200ns

clock := input [0ps:D, 50ns:S, 100ns:D];
enable := input [0ps:S];
scanIO := input [0ps:S];
scanIO := output [0ps:X, 50ns:Q];
scanOut := output [0ps:X, 50ns:Q, 90ns:X];

end
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)
vector(+, scanTiming) :=[1 1 1 - X];
scan(+,scanTiming) :=[1 1 - - -], input[chain1:state1],

output[chain3:estate1];
. . .
end

End Example

end

Edge signals terminating scan chains that are used in the scan runs of a scan pattern row
must contain a sample state of the appropriate directionality in the TimePlate referred to
by the scan pattern row. Signals that appear at the start of a scan chain (input) must include
an S state character, and signals that appear at the end of a scan chain (output) must
include a Q state character in their respective waveform shapes. A given scan chain may
appear in some, but not all, scan pattern rows in a WDB. A single TimePlate may be used
in all scan pattern rows, as long as the state of the edge signal in the scan chain is supplied
by the parallel pattern data of the pattern rows that do not use the scan chain in a scan run.

In the parallel scans chain example on page 2-44, the edge signal scanOut, which is a
part of the scan chain chain2, contains a sample state (Q) in the TimePlate
scanTiming. Problems arise because the associated pattern column contains the
2-46 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
placeholder character (-). In this case, because the edge signal contains the sample state
Q, and the Q state requires that a state exists to be sampled, the associated parallel pattern
data must supply that state. The example does not, and hence is erroneous.

To repair the error you must either supply a state value in the parallel pattern data, or use
chain2 instead of chain3 as the terminal chain in the scan run. The remedial sections
of the examples below are highlighted in Bold type face.

An example of state character supplied in the parallel pattern data is:

Start Example

. . .
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)
vector(+, scanTiming) := [1 1 1 - X];
scan(+,scanTiming) := [1 1 - - X], input[chain1:state1],

output[chain3:estate1];
. . .
end

End Example

end

An example of state characters supplied by a scan chain is:

Start Example

. . .
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)
vector(+, scanTiming) :=[1 1 1 - X];
scan(+,scanTiming) :=[1 1 - - -], input[chain1:state1],

output[chain3:estate1], output[chain2:estate1];
. . .
end

End Example

end

A complete example of WGL scan structures is provided on page 2-96 of this chapter.

2.5.3.7 Subroutines
The Subroutines block is used to define pattern sequences that are called repeatedly from a
Patterns block.
Languages, Vol. II, R2007.1 2-47
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
The syntax of the WGL Subroutines block is:

subroutine <subroutineName>
PatternRows
end

A complete BNF syntactical representation of the Subroutines block follows:

Subroutines ::= “subroutine” <subroutineName> “()”
PatternRows “end”

PatternRows ::= { [<vectorLabel> “:”] (Loop | Repeat |
ScanRow) }

Loop ::= “loop” [<loopName>] <loopCount>
PatternRows “end” [<loopName>]

Repeat ::= [“repeat” <repeatCount>] (Vector | Call |
Offset)

Vector ::= “vector” Address “:=” PatternExpression [
TimeComment] “;”

Address ::= “(” AddressElement { “,” AddressElement } “)”

AddressElement ::= (“+” | <cycleNumber> [Unit] |
<timeplateName>)

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

PatternExpression ::= “[” { (<stateString> |
<patternIdentifier>) } “]”

TimeComment ::= “(” Time “)”

Time ::= <timeValue> Unit

Call ::= “call” <subroutineName> “()” “;”

Offset ::= “skip” Time “;”

ScanRow ::= “scan” Address “:=” ScanRowElement { “,”
ScanRowElement } “;”

ScanRowElement ::= (PatternExpression | ScanRun)
2-48 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
ScanRun ::= ScanDir “[” <chainName> “:” <stateName> “]”

ScanDir ::= (“input” | “output” | “feedback”)

<subroutineName> is a user-defined name, such as patterns_1, that is used to define a
specific subroutine. PatternRows are definitions of rows of data bits used to supply data to
waveforms when modulated through a TimePlate, as defined in the TimePlate block. The
interpretation of pattern state information is the same as in the most recently preceding
Patterns block; the pattern parameter from the preceding Patterns block also defines the
column interpretation in the subroutines that follow.

You define the contents of a subroutine in the Subroutines block, and access the
subroutine using the reserved word call. When you call the subroutine you defined in the
Subroutines block, WGL jumps to the beginning of the corresponding Subroutines block.
On completion of the subroutine, WGL returns to the part of the WGL code immediately
after the call statement.

An example of a WGL Subroutines block is:

Start Example

subroutine foo()
vector(t1) := [1 00011111];

End Example

end

The following is an example of a WGL call statement for the subroutine defined in the
example above:

Start Example

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ];
loop loopName 3

call foo();
vector(+, t1) := [1 00011010];

 end loopName

End Example

end
Languages, Vol. II, R2007.1 2-49
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
2.5.3.8 Symbolics
The Symbolics block is used to associate an identifier with a bit pattern for a specific
signal, bus, group, scan cell, scan register, or scan group, making it easier to specify
hardware operation codes. Also, if a single-bit signal, bus, or group was defined with a
symbolic radix, a Symbolics block must be created that corresponds to the definition.

The syntax of the WGL Symbolics block is:

symbolic SigReference [SymDirection] Radix
SymbolicAssignment
end

A complete BNF syntactical representation of the Symbolics block follows:

Symbolics ::= “symbolic” SignalReference [SymDirection]
Radix
SymbolicAssignment “end”

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

SymDirection ::= (“input” | “output”) [(“reference” |
“timing”)]

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex”
| “hexadecimal”)

SymbolicAssignment ::= [<patternIdentifier>] “:=”
PatternExpression “;”

PatternExpression ::= “[” { (<stateString> |
<patternIdentifier>) } “]”

Symbols defined in the Symbolics block can be used in place of the corresponding pattern
states in the vectors in the Patterns block.

Each Symbolics block refers to the name of a previously defined signal, bus, group, scan
cell, scan register, or scan group. The reserved word input or output must be omitted for
scan elements. Signals defined using the reserved word bidir may be associated with two
Symbolics blocks. Radix, the radix of the Symbolics block, must also be specified.
PatternExpressions within the block are interpreted in the specified radix.
2-50 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
The <patternIdentifier> can be used in subroutines, pattern blocks, or scan state vectors as
a shorthand for PatternExpression when the radix of the associated signal, bus, group, or
scan element is set using the reserved word symbolic. If a bit pattern is to be entered for
which there is no defined identifier, the pattern may be entered in the radix defined in the
Symbolics block.

The PatternExpression defined for each identifier must contain legal pattern stateStrings.
The number of bits in the PatternExpression must be the same as the number of bits in the
corresponding signal, bus, or group that is associated with it. Scan State on page 2-26 for
more information about stateStrings.

The following is an example of a WGL Symbolics block, and a symbolic radix assignment
in pattern block group_in:

Start Example

signal
inst [0..7] : input radix symbolic;
foo : input;
bar : output;

end
symbolic inst input radix binary

add := [00000001];
sub := [00000010];
mul := [00000011];
div := [00000100];
xor := [10000000];
lsl := [11000000];
asl := [11100000];

end
pattern group_in (foo, inst, bar)

vector(+) := [1 add 0];
vector(+) := [0 div 1];
vector(+) := [1 add 1];

End Example

end

All the pattern expressions that make up a Symbolics block must be unique. All the
identifiers must also be unique. Note that WGL supports partially specified symbolic
blocks. It is possible to have identifiers without pattern expressions or pattern expressions
without identifiers.
Languages, Vol. II, R2007.1 2-51
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Pattern data that does not match one of the defined symbols may be entered directly in the
pattern block in the table radix. If an identifier could also be a legal pattern expression, it
is recognized as an identifier. Decimal radix may only be used with buses and groups with
32 or fewer scalar member signals.

The following is an example of Symbolics block with unspecified pattern expressions and
identifiers:

Start Example

 signal
data[0..7]: input radix symbolic;

end

symbolic data input radix hex

GO := [00];
STOP := [FF];
IDLE := [A2];
missing := [];

:= [22];
end

pattern sample (data)

vector(+) := [GO];
vector(+) := [IDLE];
vector(+) := [01];
vector(+) := [3B];
vector(+) := [STOP];

End Example

end

2.5.4 Equation-Specific Program Blocks
This section discusses the specific syntax for each of the equation-specific program blocks
that have not been discussed previously. The WGL equation-specific program blocks are:

Use the equation-specific program blocks to assign variable timing values for edge
placement and current, voltage, and frequency level values for signal strength. You enable
equation support by programmatically declaring an EquationSheet block containing at

EquationSheet
EquationDefaults
2-52 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
least one ExprSet sub-block. The ExprSet sub-block contains a list of variables that you
create, paired with their assigned constant values, or expressions used to determine the
variable value.

You can add more control over which variables are used when you create a test program
by declaring the optional EquationDefaults block. The EquationDefaults block specifies
which sets of expressions or constant values assigned to variables in the ExprSet
sub-blocks are used during subsequent transactions with TDS products that interact with a
WDB.

The following example shows the structure of the equation-specific program blocks in a
WGL file, and the order in which they are declared. While some of the programming
blocks used in the example are optional, the example portrays all possible
equation-specific blocks and sub-blocks.

Start Example

equationsheet <sheet name>
exprset <expression set name>

expression information goes here
end
exprset <expression set name>

expression information goes here
end

.
end
equationsheet <sheet name>

exprset <expression set name>
expression information goes here

end
.

end
equationdefaults

default information goes here

End Example

end

The ExprSet sub-block must be contained within an EquationSheet block and cannot be
used as a stand-alone block.
Languages, Vol. II, R2007.1 2-53
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
NOTE
The right side of the equation, delimited by the equal sign (=) on one side and the
terminating newline character, cannot exceed 247 characters. The total includes white
spaces.

In the following manual sections, the equation-specific program blocks are presented in
the order that you would be most likely to use them when creating a WDB that includes
equations.

2.5.4.1 EquationSheet
EquationSheet blocks allow for the overall organization of variable declarations. An
EquationSheet block contains one or more ExprSet sub-blocks.

The ExprSet sub-blocks contain variable declarations, that is, expressions or constant
values assigned to variable names. To support equations in your WGL file, the WGL file
must contain at least one EquationSheet block with at least one ExprSet sub-block. The
number of EquationSheet blocks in a WGL file cannot exceed 100.

EquationSheet blocks and ExprSet sub-blocks must be declared before they are referenced
in an EquationDefaults block. For this reason, it is a good idea to declare all
EquationSheet blocks before you declare any EquationDefaults blocks. Additionally, the
EquationSheets blocks must be declared before the TimePlate block.

The syntax of the WGL EquationSheet block is:

equationsheet <equationSheetName>
ExpressionDecl
end

A complete BNF syntactical representation of the EquationSheet block follows:

EquationSheet ::= “equationsheet” <equationSheetName>
{ ExpessionDecl } “end”

ExpressionDecl ::= “exprset” <exprSetName> { VariableDecl
} “end”

The identifier <equationSheetName> is used to name the specific instance of an Equation
Sheet block of the WGL program; it is the unique name of that block.
2-54 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
An <equationSheetName> must be unique within a WGL file and must conform to the
naming conventions for identifiers, as described in Identifiers on page 2-6. An
<equationSheetName> has the same length limitations as signal name for your tester and
automatic truncation is performed when EquationSheet names are too long. Any
<equationSheetName> that is identical to a WGL reserved word (see the WGL reserved
word list on page 2-7) is flagged by the WGL parser as illegal. You can still use an
<equationSheetName> that is the same as a WGL reserved word by enclosing the name in
double quotation marks (“ ”).

The identifier <exprSetName> refers to an ExprSet sub-block declared within the
EquationSheet block of the WGL program. (For details of the WGL constructs contained
in the ExprSet sub-block, see ExprSet on page 2-55.) The <exprSetName> identifier must
conform to the naming conventions for identifiers, as described in Identifiers on page 2-6.

The following is an example of two EquationSheet declarations:

Start Example

equationsheet AC
exprset SET1

tclk1 := tclk + 10nS;
write_cycle := tclk1*3;
tclk := 35nS;
Vcc := 4.5V;

end
exprset SET2

tclk1 := tclk + 20nS;
write_cycle := tclk1*2;
tclk := 40nS;
Vcc := 5.0V;

end
equationsheet AC_control

exprset Control_set
Vih := Vcc-0.5V;
Vil := Vih-3.0V;

end

End Example

end

2.5.4.2 ExprSet

ExprSet sub-blocks are contained within EquationSheet blocks. They contain precise
assignments of expressions and constant values to variables.
Languages, Vol. II, R2007.1 2-55
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
The syntax of the WGL ExprSet sub-block is:

exprset <exprSetName>
{ VariableDecl }
end

A complete BNF syntactical representation of an ExprSet sub-block follows:

VariableDecl ::= <variableName> “:=” [Expression] [“[“
MinMax “]”] “;”

Expression ::= Constant | <variableName>
| Expression Operator Expression
| “(“ Expression “)” | (“+” | “-”) Expression | BuiltInVar
| BuiltInFunc (Expression [, Expression])
| (“++” | “--”) Expression | Expression (“++” | “--”)

BuiltInVar ::= “PI” | “E” | “DEG”

BuiltInFunc ::= “ACOS” | “ASIN” | “ATAN” | “CEIL” | “COS”
| “COSH”
| “EXP” | “FABS” | “FLOOR” | “LOG’ | “LOG10”
“ SIN” | “SINH” | “SQRT” | “TAN” | “TANH” | “ATAN2”
| “POW”

Operator ::= (“+” | “-” | “*” | “/” | “^”)

Constant ::= (<integerValue> | <floatingPointValue>) [
Scale] [EqUnit]

Scale ::= (“p” | “n” | “u” | “m”)

EqUnit ::= (“A” | “V” | “S” | “H”)

MinMax ::= Constant | “,” Constant | Constant “,”
Constant

An ExprSet sub-block is contained within an EquationSheet block and must have a unique
name, the <exprSetName>, within the context of the EquationSheet block that contains it.
Multiple ExprSet sub-blocks can be declared within an EquationSheet. Multiple ExprSet
sub-blocks allow for the assignment of more than one value or expression to a variable.

The ExprSet sub-block begins with the reserved word exprset followed by the
<exprSetName>, which must conform to the naming conventions for identifiers, as
2-56 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
described in Identifiers on page 2-6. The body of the ExprSet sub-block contains a list of
<variableName>s and the values assigned to them. The sub-block ends with the block
terminator, end.

The the number of ExprSet sub-blocks within a EquationSheet block in a WGL file cannot
exceed 100. An <exprSetName> must conform to the same length limitations as signal
names for your tester; automatic truncation is performed when ExprSet sub-block names
are too long.

An <exprSetName> is case sensitive and must begin with an alphabetic character.
<exprSetName>s that are identical to WGL reserved words (see the WGL reserved word
list on page 2-7) are flagged by the WGL parser as illegal. You can still use a name that is
the same as a WGL reserved word by enclosing the name in double quotation marks (“ ”).

While no two <equationSheetName>s can be identical, there can be multiple identical
<exprSetName>s and <variableName>s, provided that identical <exprSetName>s are not
contained in the same EquationSheet block. Multiple identical <variableName>s are also
legal, provided that they are not contained in the same ExprSet sub-block.

The following example shows an illegal usage of <exprSetName>s and <variableName>s.

Start Example

THE FOLLOWING USE OF IDENTICAL EXPRSET NAMES IS ILLEGAL

equationsheet Sheet_1

exprset worst
Vcc1:= 4.5V;
TempDegC1 := 70;
Textern1 := 10nS;

end
exprset best

Vcc1 := 5.75V;
TempDegC1 := 0;
Textern1 := 0nS;

end
exprset worst{THIS EXPRSET NAME IS ILLEGAL BECAUSE IT HAS ALREADY BEEN USED

IN THIS EQUATIONSHEET BLOCK}
Vcc1:= 3.0V;
TempDegC1 := 90;
Textern1 := 50nS;
Vcc1:= 5.0V { THIS VARIABLE NAME IS ILLEGAL BECAUSE IT OCCURS IN THE SAME

EXPRSET SUB-BLOCK AS AN IDENTICALLY NAMED VARIABLE.}
end
Languages, Vol. II, R2007.1 2-57
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language

equationsheet Sheet_2

exprset worst
Vcc2:= 4.5V;
TempDegC2 := 70;
Textern2 := 10nS;

end
exprset best

Vcc2 := 5.75V;
TempDegC2 := 0;
Textern2 := 0nS;

End Example

end

Variables

The <variableName> identifier gives a unique name to a variable that can then be
referenced in other parts of the WGL file. The identifier, <variableName>, must conform
to the naming conventions for identifiers, as described in Identifiers on page 2-6. See
 Tester-Specific Program Blocks on page 2-71 and TimingSets on page 2-78 for more
information.

Once you assign a value to a <variableName> (or declare the variable) in an ExprSet
sub-block, you can reference the <variableName> in the TimePlates block to specify the
cycle period or to specify times at which events within TimePlates occur. You can also
reference <variableName>s in the TimingSets block to specify a time assignment to a
timing generator. Additionally, a <variableName> can be referenced by expressions
within ExprSet sub-blocks in EquationSheet blocks other than the one in which the
variable was declared.

All variable declarations within an EquationSheet block are unique to that EquationSheet
block. A variable of the same name cannot be declared in another EquationSheet block,
but it can be declared again in another ExprSet sub-block contained in the same
EquationSheet block. In fact, that is the main purpose of multiple ExprSet sub-blocks: to
provide a way for you to reassign the value of a variable by naming it in another ExprSet
sub-block and giving it a different value.

Any <variableName> declared in any ExprSet sub-block in the WGL file can be
referenced in other expressions in the same EquationSheet block or in other
EquationSheet blocks.
2-58 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Forward referencing of variables is allowed. This means that you can reference variables
even though those variables are not declared until later in the WGL file.

When you declare a variable in an ExprSet sub-block, the variable name is added to a
conceptual list of all the variable names that are declared in all of the ExprSet sub-blocks
contained in an EquationSheet block. The set of variable names on the list is actually
associated with the EquationSheet block containing the ExprSet sub-block in which the
variable was declared. The value assigned to the variable, however, is associated with the
ExprSet sub-block.

A conceptual model of the arrangement of equation sheet/expression set data contained
within the WDB, follows:

For example, if you have an EquationSheet block that contains three ExprSet sub-blocks,
and in each sub-block you assign values or expressions to two of the variables, the
EquationSheet block will have a list of six unique variable names associated with it. On
any given ExprSet sub-block, the two variables to which you assigned values have valid,

Figure 2-2. Conceptual model of equation sheet data organization.

Variable Description Expression Value Constraints

EXPRESSION SET_1

WDB

EQUATION SHEET_2

EQUATION SHEET_<n>

EQUATION SHEET_1

cl clock 2 2

EXPRESSION SET_2

EXPRESSION SET_<n>

e clock 50 5
e clock
e clock
e clock
e clock
Languages, Vol. II, R2007.1 2-59
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
assigned values; the other four variables associated with the EquationSheet block are
unassigned, having no value associated with them.

This becomes important when you use the EquationDefaults block to specify which
ExprSet sub-block from an EquationSheet you want to use to assign values to variables.
Since all the variables from all of the ExprSet sub-blocks are on the EquationSheet
variable name list, you must make certain to explicitly re-declare all variables from all of
the ExprSet sub-blocks contained in the EquationSheet block mutually in every other
block. Any variable name that is on the list but has no explicit value assigned to it in the
active ExprSet sub-block is given an “unassigned” value. While it is syntactically
permissible to have unassigned variables in your WGL file, it is a bad practice to do so; if
you use any variable that is not explicitly assigned a value in an ExprSet sub-block, and
that sub-block is named in the EquationDefaults block, the variable will generate an error
message when you use the TDS WGL In Converter to convert your WGL file to a WDB.
For more information on how to use the EquationDefaults block, see EquationDefaults on
page 2-66.

There is no limit to the number of variables within an ExprSet sub-block. A
<variableName> must conform to the same length limitations as signal names for your
tester; automatic truncation is performed when a <variableName> is too long.

<variableName>s are case sensitive and must begin with an alphabetic character.
<variableName>s that are identical to WGL reserved words (see the WGL reserved word
list on page 2-7) are flagged by the WGL parser as illegal. You can still use a name that is
the same as a WGL reserved word by enclosing the name in double quotation marks (“ ”
).

An example of a valid ExprSet sub-block variable is:

volt := 5.5V

where volt is the variable to which a value is assigned.

Constants

A constant can be either an integer (<integerValue>) or a floating-point number
(<floatingPointValue>).

An example of a valid ExprSet sub-block constant is:

t := 3

where 3 is the constant value assigned to the variable t.
2-60 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Expressions

An expression is a formula for combining variables, constants, or other expressions in a
mathematical way. An expression can be something as simple as a constant value, a
reference to a variable, or a combination of constants and variables related to each other
with mathematical operators (such as +, -, *, and /).

An example of a valid ExprSet sub-block expression is:

clock := 10nS*t

where 10nS*t is the expression whose calculated value is assigned to the variable
clock.

Operators and Incrementors

The ExprSet sub-block supports a list of standard mathematical operators that you can use
when writing an expression.

Table 2-2 is a list of operators, listed in order of decreasing precedence. Operators with the
same level of precedence are grouped and separated from operators of differing
precedence by bold lines:

Table 2-2. Equation Operators

Operator Operation

* multiplication

/ division

+ addition

- subtraction

^ exponent
Languages, Vol. II, R2007.1 2-61
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Built-ins

You can use any of a number of predefined variables or functions in the ExprSet
sub-block. The predefined variables (BuiltInVar) are listed in the following table:

The following example shows the use of a built-in variable, PI:

Start Example

End Example

hi_volt := low * PI

where the variable hi_volt will receive the value of another variable, low, multiple by
3.14159265358979323846.

The following table lists the built-in functions (BuiltInFunc) supported in the ExprSet
sub-block:

Table 2-3. Built-in Variables

WGL BuiltInVar Value

E 2.718281828459045523536

DEG 57.2957795130823208768

PI 3.14159265358979323846

Table 2-4. Built-in Functions

WGL BuiltInFunc Performs Operation

ACOS arc cosine

ASIN arc sine

ATAN arc tangent

CEIL ceiling (round up to integer)

COS cosine

COSH hyperbolic cosine

EXP exponential ex

FABS absolute value

FLOOR floor (round down to integer)
2-62 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
The following example shows the use of a built-in function, LOG:

Start Example

End Example

sim_time := LOG (clock)

where the variable sim_time will receive the value of the natural logarithm of another
variable, clock.

Annotations

Annotations are supported and may be attached to variables in the ExprSet sub-block
through the use of curly braces ({ }). Only one annotation is allowed per variable. If a
variable is encountered in multiple ExprSet sub-blocks with different annotations, the
contents of the annotations are concatenated in the resultant WDB. For identical
annotations, only the first instance of the annotation is stored in the WDB, the remaining
instances being discarded as redundant.

For further information on how to use WGL annotations, see Annotations on page 2-87.

Scaling

You can scale constant values assigned to variables by specifying a value for Scale.

LOG natural logarithm

LOG10 base 10 logarithm

SIN sine

SINH hyperbolic sine

SQRT square root

TAN tangent

TANH hyperbolic tangent

ATAN2 arc tangent y/x

POW xy

Table 2-4. Built-in Functions (continued)

WGL BuiltInFunc Performs Operation
Languages, Vol. II, R2007.1 2-63
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Scale works in concert with EqUnit (see Units of Measurement on page 2-64) to permit
you to adjust the unit of measurement to suit your needs. The scale prefix must follow the
constant to which it applies with no intervening white space and must precede the EqUnit
value that it modifies.

The following scale factors represent the available scaling multipliers for constants:

You can add the scaling prefix to modify the basic units of measurement, as described in
 Units of Measurement on page 2-64.

An ExprSet sub-block using a scaled constant is shown in the following example. In the
example, the scaled constant is identified by a WGL annotation:

Start Example

exprset AC

Vol := 2mV; {THIS CONSTANT IS SCALED TO 10-3 }

End Example

end

Units of Measurement

Use EqUnit to specify a unit of measurement to be associated with a constant value. You
can specify the following units of measurement in the ExprSet sub-block:

Table 2-5. Scaling prefixes

Suffix Multiplier

p (pico-) 10-12

n (nano-) 10-9

u (micro-) 10-6

m (milli-) 10-3

Table 2-6. Units of Measurement

WGL
Notation

Unit

A ampere

H hertz
2-64 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
You can add a scaling factor to modify the basic units of measurement, as described in
 Scaling on page 2-63.

A WGL fragment showing a EqUnit setting affixed to a constant value assigned to a
variable follows:

Start Example

exprset timing
clock := 200nS; { Note the use of the “S” unit value.}

End Example

end

Minimum and Maximum Ranges

MinMax lets you specify minimum and maximum values when setting a valid minium
value, a valid maximum value, or a valid range (between minium and maximum, including
both). This capability is supported through the use of square brackets ([]). If you want to
specify both minimum and maximum values you must list the minimum value first (2.2),
followed by a comma, followed by the maximum value (5.7), for example, [2.2,5.7].

To specify only the maximum value, provide a comma as a place holder, followed by the
maximum value (7.25), for example, [,7.25].

Square brackets around an individual value, for example, [2.5], is all that is required to
specify a minimum value (2.5) only. White space is optional in all cases. Minimum and
maximum values can be expressed only using constant values.

A WGL fragment showing a MinMax setting for a variable follows. The variables with
MinMax settings are identified by annotations.

S Second

V volt

Table 2-6. Units of Measurement

WGL
Notation

Unit
Languages, Vol. II, R2007.1 2-65
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Start Example

exprset AC_20mhz
tclk := 20nS;
tempDegC := 70;
Vcc := 4.5V;
V1 := Vcc/2;
Vih := Vcc-1 [, 5.5V]; {maximum value specified here }
Vil := Vih-3 [0.25V]; {minimum value specified here}
t1 := tempDegC/20*1.1nS + tclk;
write_cycle := tclk*6 [60nS, 600nS]; {min and max specified here}
cycle_time := 100nS;

End Example

end

2.5.4.3 EquationDefaults
The EquationDefaults block establishes which ExprSet sub-blocks are to be used as
defaults for calculations. The syntax of the WGL EquationDefaults block is:

equationdefaults
DefaultsDecl
end

A complete BNF syntactical representation of the EquationDefaults block follows:

EquationDefaults ::= “equationdefaults” DefaultsDecl
“end”

DefaultsDecl ::= <equationSheetName> “:” <exprSetName>
{ “,” <equationSheetName> “:” <exprSetName> } “;”

The EquationSheet blocks named by the <equationSheetName> and ExprSet sub-blocks
named by the <exprSetName> must be defined before they are referenced in an
EquationDefaults block.

All EquationSheet blocks are active in the database but only one ExprSet sub-block per
EquationSheet block is active for calculations. EquationSheet blocks and their active
ExprSet sub-blocks are explicitly identified through the use of the EquationDefaults block
and are specified using a comma-separated list of pairs ending with a semi-colon. These
“equation sheet/expression set pairs” are specified by listing the EquationSheet name first,
followed by a colon (:), followed by the ExprSet sub-block name. White space is
optional.
2-66 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
An example of an EquationDefaults block is shown below with two equation
sheet/expression set pairs. In this example, the ExprSet sub-block SET1 is associated with
EquationSheet AC and the ExprSet sub-block Control_20mhz is associated with the
EquationSheet AC_control.

Start Example

EquationDefaults
AC:SET1;
AC_control:Control_20mhz;

End Example

end

The EquationDefaults block is not required. If this block is not used, the last ExprSet
sub-block declared within each EquationSheet supplies the variable values used for
calculations.

If the EquationDefaults block is used, but is not fully specified by explicitly defining an
expression set for each equation sheet in the WDB, the variable values assigned in the last
ExprSet sub-block declared in the EquationSheet block are used.

If you use more than one EquationDefaults block in your WGL file, the equation
sheet/expression set pairs defined in the last EquationDefaults block in the WGL file
override any other equations sheet/expression set pairs in that EquationSheet block.

If any EquationSheet block is not specified in the EquationDefaults block(s), the variables
in the EquationSheet block obtain their assigned values from the last ExprSet sub-block in
that EquationSheet block.

Using more than one EquationDefaults block in your WGL program is not necessary, and
sometimes leads to confusion. For example, the following WGL fragment shows what
happens when you use two EquationDefaults blocks:

Start Example

EquationDefaults
AC : Set2;

end
EquationDefaults

timing : eq1;

End Example

end
Languages, Vol. II, R2007.1 2-67
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Assume that the only EquationSheet blocks in this WGL file are AC and timing. The
first EquationDefaults block sets the default ExprSet sub-block for the EquationSheet
block AC to Set2, and the second EquationDefaults block sets the default ExprSet
sub-block for the EquationSheet block timing to eq1. However, since every
EquationSheet block in a WGL file is active, there is an implicit equation sheet/expression
set pair for timing in the first EquationDefaults block, and a similar implicit equation
sheet/expression set pair for AC in the second Equationdefaults block. It would be much
clearer in this case to define both defaults in a single EquationDefaults block, as shown
below:

Start Example

EquationDefaults
AC : Set2;
timing : eq1;

End Example

end

A valid reason for using more than one EquationDefaults block in your WGL program is
in the case of incremental test program development. For example, you might want to
generate a test program using one set of defaults, then, after evaluating your output, you
might add another EquationDefaults block containing different values. You would
comment out the previous EquationDefaults block, so that you could keep a record of
which defaults you had used during test development. The following example uses such a
technique:

Start Example

THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_g
#EquationDefaults
AC : Set1;
timing : eq1;
#end

THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_h
#EquationDefaults
AC : Set2;
timing : eq1;
#end

#THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_i
2-68 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
#EquationDefaults
AC : Set2;
timing : eq2;
#end

THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_k
EquationDefaults

AC : Set1;
timing : eq2;

End Example

end

The above example records the defaults that were used for test 6170_g, 6170_h, and
6170_i. The last EquationDefaults block will specify the defaults for test 6170_k when it
is run. Note that the pound signs denoting comment lines do not include the last
EquationDefaults block, therefore leaving the last block uncommented and active.

An example of a typical WGL program, using many of the equation support constructs
discussed in the previous sections of this chapter, is shown next:

Start Example

waveform equation_test_case

signal

clk :input;
ale :input;
RE :input;
OE :input;
dbus[0..3]:output;

end

equationsheet AC_control

exprset worst
Vcc := 4.75V;
TempDegC := 70;
Textern := 10nS;

end
exprset best

Vcc := 5.5V;
TempDegC := 0;
Textern := 0nS;

end
exprset typical
Languages, Vol. II, R2007.1 2-69
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Vcc := 5V;
TempDegC := 20;
Textern := 5nS;

end
end

equationsheet AC_timing

exprset eq1
Vil := Vcc - 3.0;
Vih := Vcc - 1.0;
cycle_time := TempDegC/100*1nS + 5V/Vcc*1nS + 100nS;
tclk1 := 20nS;
tclk2 := tclk1 + 20nS;
t1 := TempDegC/100*1nS + 5V/Vcc*1nS + Textern + 10nS;
t2 := 20nS + t1;
t3 := t2 + tclk1;
t4 := cycle_time - 30nS;
t5 := cycle_time - 10nS;

end
end

equationdefaults

AC_timing:eq1;
AC_control:typical;

end

timeplate ts1 period cycle_time

clk := input[0pS:D, tclk1:U, tclk2:D, 90nS:U];
ale := input[0pS:D, t1:S, 80nS:D];
RE := input[0pS:D, t2:S, t3:D];
OE := input[0pS:P, 10nS:S];
dbus[0..3] := output[0pS:X, t4:Q, t5:X];

end

pattern group_ALL (clk, ale, RE, OE, dbus)

vector(0, ts1) := [- 1 1 1 1011];
vector(0, ts1) := [- 0 0 0 XXXX];
vector(0, ts1) := [- 0 0 0 XXXX];
vector(0, ts1) := [- 1 1 1 1111];

end

End Example

end
2-70 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
2.5.5 Tester-Specific Program Blocks
This section discusses the specific syntax for each of the tester-specific program blocks
that have not been discussed previously. Use the following tester-specific program blocks
to define WDB objects that contain information specific to your tester:

The tester-specific program blocks are presented in the likely order of use when creating a
WDB.

2.5.5.1 Formats
The Formats block is used to define tester-specific waveform shapes. A waveform shape
describes the general outline of a portion of a waveform. No timing information regarding
placement of waveform edges is conveyed in this program block.

The syntax of the WGL Formats block is:

format
FormatDecl
end

A complete BNF syntactical representation of the Formats block follows:

Formats ::= “format” { FormatDecl } “end”

FormatDecl ::= <formatName> “:” “[” <TDSstate> { “,”
<TDSstate> } “]” “;”

FormatDecl is composed of a <formatName>, such as non_return_to_zero,
followed by a colon (:), followed by one or more of the TDS state characters enclosed in
brackets ([]). The <formatName> must generally conform to the naming conventions of
your tester.

Formats
Registers
Pin Groups
TimeGens
TimingSets
Languages, Vol. II, R2007.1 2-71
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Table 2-7 lists TDS state characters. State characters must be expressed using the proper
case, as shown.

When the WDB you create in WaveMaker is viewed or edited in WGL format, the force
and compare low, high, unknown, and high-impedance TDS logic state characters map to
WGL pattern state characters as listed in Table 2-8.

Table 2-7. TDS logic states

TDS Logic State
Characters Meaning

D Force logic low

U Force logic high

N Force logic unknown

Z Force logic high impedance

S Force logic substituted from pattern

C Force complement of substituted shape

P Force logic using previous format shape

L Compare logic low

H Compare logic high

X Compare logic unknown (don’t care)

T Compare logic high impedance

Q Compare logic substituted from pattern

R Compare complement of substituted format shape

0 Unknown direction, logic low

1 Unknown direction, logic high

F Unknown direction, logic high impedance

? Unknown direction, logic unknown
2-72 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
NOTE
The placeholder character (-) is used when no Q, R, S, or C appears in the TimePlate
and timing track used for that cycle.

There can be multiple instances of FormatDecl. Each instance is separated by a semicolon
(;).

An example of a WGL Formats block is:

Start Example

format
non_return_to_zero : [S];
delayed_non_return_to_zero : [P,S];
return_to_zero : [D,S,D];
return_to_one :[U,S,U];
return_to_inhibit : [Z,S,Z];
surround_by_complement : [C,S,C];
force_then_compare : [D,S,D,X,Q,X];

End Example

end

Table 2-8. WGL-pattern-state to TDS-logic-state mapping

WGL Pattern State
Characters TDS Logic State Characters Meaning

0 D Force logic low

1 U Force logic high

X N Force logic unknown

Z Z Force logic high impedance

– not applicable Placeholder

0 L Compare logic low

1 H Compare logic high

X X Compare logic unknown (don’t
care)

Z T Compare logic high impedance
Languages, Vol. II, R2007.1 2-73
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
2.5.5.2 Registers
The Registers block is used for testers that use registers to control the formats applied to
particular tester pins.

Format registers are potentially as wide as the number of ATE pins declared in the
preceding Signals block. On input, the Registers block pin list may specify any subset of
the ATE pins. On output, the WGL Out Converter adds every declared ATE pin to the pin
list. Each column of each register may contain a format name declared in a preceding
Formats block or a hyphen character (-) indicating unspecified contents. The binding of
formats to pins is determined by the correspondence of the position in the register
declaration to the position in the pin list. Each register has a name that must be unique
among all the registers. Specific register names, as well as format names, and ATE pin
names, are tester specific.

The syntax of the Registers block is:

register (PinList)
RegisterDecl
end

A complete BNF syntactical representation of the Registers block follows:

Registers ::= “register” “(” PinList “)” { RegisterDecl }
“end”

PinList ::= <atepinName> { “,” <atepinName> }

RegisterDecl ::= <registerName> “:” “[” { FormatSpec } “]”
“;”

FormatSpec ::= (<formatName> | “-”)

Where <atepinName> is an identifier or string previously declared in the atepin clause of
a Signals block, <registerName> is an identifier or string unique among the register
declarations, and <formatName> is an identifier or string previously declared in a Formats
block.

An example of a WGL Registers block is:
2-74 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Start Example

register (atepin1, atepin2, atepin3, atepin4)
ForceReg1 : [- non_return_to_zero return_to_zero -];
ForceReg2 : [return_to_one - - -];
CompareReg1 : [- - - return_to_inhibit];

End Example

end

2.5.5.3 Pin Groups
The Pin Groups block is used to associate ATE pins named in the Signals block with
entities called pin groups.

A pin group is a collection of tester pins that share a common format and set of timing
generators (or strobes). Pin group assignments are normally made during the resource
allocation phase of a WaveBridge run. Pin group names and attributes, however, are
defined in the pingroup sub-block of the ATE Constraint block of the TCL file. Some
testers may have different formatting and timing capabilities associated with pins on pin
cards. Those testers organize their pin groups along the lines suggested by the pin cards.
See Chapter 3: Test Control Language in this guide for more information on how to name
pin groups and assign attributes.

A complete BNF syntactical representation of the Pin Groups block follows:

PinGroups := “pingroup” { PinGroupDecl } “end”

PinGroupDecl := <pinGrpName> “:” “[” [PinGroupList] “]”
“;”

PinGroupList := <pinElemName> { “,” < pinElemName > }
Languages, Vol. II, R2007.1 2-75
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
Any pin that is not explicitly assigned to a named pin group defined in the TCL file is
assigned automatically to the appropriate default pin group, listed in Table 2-9.

NOTE
The functions listed in Table 2-9 apply only to automatically defined pin groups; by
definition the pins in these groups are not specifically assigned to another group.

Below is an example of a Signals block mapping signals to ATE pins, with a Pin Groups
block associating the ATE pins named in the Signals block with pin groups defined in the
Pin Groups block.

Table 2-9. Default pin groups

Pin Group Function

IPIN Used as a synonym for all ATE pins that have the direction
input and that are not explicitly assigned to another pin
group.

OPIN Used as a synonym for all ATE pins that have the direction
output and that are not explicitly assigned to another pin
group.

IOPIN Used as a synonym for all ATE pins that have the direction
bidir and that are not explicitly assigned to another pin
group.
2-76 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
An example Signals block mapping signals to ATE pins follows:

Start Example

signal
clk : input atepin[P1:1 tg[BCLK1, CCLK1]];
sig1 : input atepin[P2:2 tg[ACLK1]];
sig2 : input atepin[P3:3 tg[ACLK1]];
sig3 : output atepin[P4:4 tg[WSTRB1]];
sig4 : output atepin[P5:5 tg[WSTRB1]];
sig5 : bidir atepin[P6:6 tg[BCLK2, CCLK2, WSTRB2,

DREL1, DRET1]];
end

pingroup

IPIN : [P1, P2, P3];
OPIN : [P4, P5];
IOPIN : [P6];
GRP0 : [P1];
GRP1 : [P2, P3];
GRP2 : [P4, P5];
GRP3 : [P6];

End Example

end

It is an error if a pin group element name has not been previously defined as an ATE pin of
a signal in the Signals block.

2.5.5.4 TimeGens
The TimeGens block is used to define the tester-specific timing generators for a tester. A
timing generator is used to specify the time values for edge placement in waveform
formats.

The syntax of the WGL TimeGens block is:

timegen
TgDecl
end

A complete BNF syntactical representation of the TimeGens block follows:

TimeGens ::= “timegen” { TgDecl } “end”
Languages, Vol. II, R2007.1 2-77
Test Systems Strategies Inc

WGL Syntax 2—Waveform Generation Language
TgDecl ::= <timeGenName> [“[” <edgeCount> “]”] “:”
TgType “;”

TgType ::= (“force” | “compare” | “direction”)

TimeGenDecl is composed of a <timeGenName>, such as WSTRB1[2], followed by an
optional edge count specifier, followed by a colon (:), followed by one of the following
reserved words: force, compare, or direction.

An example of a WGL TimeGens block is:

Start Example

timegen
ACLK1: force;
BCLK1: force;
CCLK1: force;
WSTRB1[2]: compare;
DRE1[2]: direction;

End Example

end

2.5.5.5 TimingSets
The TimingSets block is used to define the tester-specific timing edges required to
represent the timing waveforms of the hardware design on a tester. Each timing set has a
number and a set of values for the timing generators.

The syntax of the WGL TimingSets block is:

timeset <tsNumber>
TgAssign
end

A complete BNF syntactical representation of the TimingSets block follows:

TimingSets ::= “timeset” <tsNumber> { TgAssign } end”

TgAssign ::= <timeGenName> [“[” <edgeNumber> “]”] “:=”
TimeReference [“repeat” <repeatCount> } “;”

TimeReference ::= (Time | <variableName>)

Time ::= <timeValue> Unit
2-78 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language WGL Syntax
Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

TgAssign is composed of the following collection of elements:

n An existing timing generator name, which you define in the TimeGens block (see
 TimeGens on page 2-77)

n An optional numeric value for edge number enclosed in brackets ([])

n An assignment operator (:=)

n Either a numeric value for time expressed in a supported unit of measurement or a
variable that is defined in the ExprSet sub-block of an EquationSheet block (see
 ExprSet on page 2-55.)

NOTE
A variable that is used in the TimingSets block must have a value that is meaningful
when expressed in units of time.

An example of a WGL TimingSets block is:

Start Example

timeset 1
ACLK1:= 10ns;
BCLK1:= 20ns;
CCLK1:= 80ns;
WSTRB1[1]:= 30ns;
WSTRB1[2]:= 80ns;

end

timeset 2

ACLK1:= 10ns;
BCLK1:= 50ns;
CCLK1:= 20ns;
WSTRB1[1]:= 40ns;
WSTRB1[2]:= 60ns;

End Example

end
Languages, Vol. II, R2007.1 2-79
Test Systems Strategies Inc

Additional Features 2—Waveform Generation Language
You can use variables in the place of literal time values in the TimingSets block. The
variables must have been previously defined in an ExprSet sub-block of an EquationSheet
block (see ExprSet on page 2-55.)

You can also substitute variables for the literal time value associated with a previously
defined timing generator (see TimeGens on page 2-77.) You can intermix literal time
values and variables in the TimeSets block.

The following example shows how variables that were defined in an EquationSheet block
can be used in a TimeSets block. The use of variables is highlighted by Bold typeface.

Start Example

timeset 0 {ts1}
tgf1 [1] := 0pS;
tgf1 [2] := 20nS;
tgc1 [1] := tclk;
tgc1 [2] := 90nS;
tgd1 [1] := 0pS;
tgd1 [2] := 100nS;
tgf2 [1] := t1;
tgf2 [2] := t2;
tgd2 [1] := 0pS;
tgf3 [1] := 25nS;
tgf3 [2] := 45nS;
tgd3 [1] := 0pS;
tgf4 [1] := 30nS;
tgd4 [1] := 0pS;
tgc5 [1] := t3;
tgc5 [2] := 52nS;
tgd5 [2] := 0pS;

End Example

end

2.6 Additional Features
WGL supports additional features that can provide further control over the data contained
in the WDB. These features let you use predefined WGL statements in various places
throughout the WGL program, bring data into the current WGL file from other WGL files,
and insert comments into the WGL file.
2-80 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Additional Features
2.6.1 Macros
A WGL macro is a body of valid WGL statements that you can save for later use by giving
the body of statements a macro name (<macroName>). The WGL statements become the
body of the macro, (<macroBody>). This process defines the contents of the macro. You
can recall the contents of the macro that you defined by using a macro invocation.
Invoking a macro is essentially calling on your defined macro by name. Neither the macro
definition nor the macro invocation becomes part of a WDB.

Using a macro is a two-step process. You must first define the macro with a macro
definition. After you have defined the macro, you can invoke it as many times as you
want, in any syntactically correct place in the WGL program, with the macro invocation.

2.6.1.1 Macro Definition
The Macro Definition feature follows the same block structure format used by the WGL
program blocks. The following rules apply to the macro definition:

n You cannot define other macros within a <macroBody>.

n You cannot invoke a macro recursively; you must not define a macro that invokes
itself.

n You can use a parameter in the macro to indicate places in the macro definition where
values are to be substituted when the macro is invoked and expanded.

n You can define macros anywhere in the WGL program, but for ease of WGL program
maintenance, it is a good idea to define macros at the beginning of the WGL file, right
after the beginning program delimiter, waveform.

n You can define a macro that invokes another, previously defined macro.

The syntax of the WGL Macro Definition feature is:

macro <macroName> (MacroParameterList)
<macroBody>
endmacro

A complete BNF syntactical representation of the Macro Definition feature follows:

MacroDefinition ::= “macro” <macroName> [“(”
MacroParameterList “)”]
<macroBody> “endmacro”
Languages, Vol. II, R2007.1 2-81
Test Systems Strategies Inc

Additional Features 2—Waveform Generation Language
MacroParameterList ::= <macroParameter> { “,”
<macroParameter> }

In its simplest form, the Macro Definition feature allows you to store a text string under a
reference name. (See the example on page 2-94.) The text string may be quite lengthy,
cumbersome, and difficult to remember. You can retrieve the text string by calling upon
the reference name. This is what happens when you create a macro definition and call up
the contents of the <macroBody> using the Macro Invocation feature. Calling up the
contents of the macro is often referred to as “expanding” the macro because the contents
of the macro are inserted in-line into the code at the place they are called.

A parameter substitution is specified by the ampersand character (@), followed by the
<macroParameter> from the MacroParameterList. The value to be substituted into the
@<macroParameter> is taken from the MacroParameterList, on the first line of the macro
definition. The values for the MacroParameterList are supplied from a list of arguments in
the macro invocation. Each Macro Definition can have a maximum of 128
<macroParameter>s.

2.6.1.2 Macro Invocation
The Macro Invocation feature is the counterpart to the Macro Definition feature. To
invoke a defined macro, use the name of the defined macro (<macroName>) followed by
an optional list of arguments, the contents of which can be substituted into the optional
macro parameter list of the Macro Definition feature. If you use the argument list, the
macro parameter list must be correspondingly defined in the macro definition.

The syntax of the WGL Macro Invocation feature is:

<macroName> [(ArgumentList)]

A complete BNF syntactical representation of the Macro Invocation feature follows:

MacroInvocation ::= <macroName> [“(” ArgumentList “)”]

ArgumentList ::= <identifier> { “,” <identifier> }

2.6.1.3 Definition and Invocation without Parameters
Displayed below is an example of a simple macro definition without parameter
substitution from a macro parameter list. This example shows four separate macros: add,
sub, mul, and div.
2-82 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Additional Features
Start Example

macro add
00011111

endmacro

macro sub

10101101
endmacro

macro mul

11100001
endmacro

macro div

10111000

End Example

endmacro

An example of the macro invocation without parameter substitution is:

Start Example

pattern load1 (instBus)
vector(1) := [add];
vector(2) := [sub];
vector(3) := [mul];
vector(4) := [div];
vector(5) := [add];
vector(6) := [add];
vector(7) := [mul];
vector(8) := [sub];

End Example

end

An example of the values that exist after macro expansion is:
Languages, Vol. II, R2007.1 2-83
Test Systems Strategies Inc

Additional Features 2—Waveform Generation Language
Start Example

pattern load1 (instBus)
vector(1) := [00011111];
vector(2) := [10101101];
vector(3) := [11100001];
vector(4) := [10111000];
vector(5) := [00011111];
vector(6) := [00011111];
vector(7) := [11100001];
vector(8) := [10101101];

End Example

end

2.6.1.4 Definition and Invocation with Parameters
You can invoke a macro and substitute values into the macro parameter list by using the
optional argument list with the macro invocation. This gives you added flexibility when
using the macro to perform a repetitive task, such as filling vectors with pattern data.

The following is a macro definition with parameter substitution from a macro parameter
list. This example uses a macro to fill vectors with pattern data. The <macroParameter> s
receives a value from a list of arguments in the macro invocation diagonal_fill
displayed in the subsequent example.

An example of a macro definition with parameter substitution from the
MacroParameterList follows:

Start Example

macro diagonal_fill (s)
vector(+) : [0000000@s];
vector(+) : [000000@s0];
vector(+) : [00000@s00];
vector(+) : [0000@s000];
vector(+) : [000@s0000];
vector(+) : [00@s00000];
vector(+) : [0@s000000];
vector(+) : [@s0000000];

End Example

endmacro
2-84 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Additional Features
An example of a macro invocation with the argument list for substitution into the macro
parameter list of the macro definition follows:

Start Example

signal
data[7..0] : input radix binary;

end

pattern memCheck (data)

diagonal_fill(0);
diagonal_fill(1);
diagonal_fill(Z);
diagonal_fill(X);

End Example

end

An example of the values that exist for the first three macro invocations after expansion of
the macro in the previous example is:

Start Example

pattern memCheck (data)
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];

vector(+) : [00000001];
vector(+) : [00000010];
vector(+) : [00000100];
vector(+) : [00001000];
vector(+) : [00010000];
vector(+) : [00100000];
vector(+) : [01000000];
vector(+) : [10000000];

vector(+) : [0000000Z];
Languages, Vol. II, R2007.1 2-85
Test Systems Strategies Inc

Additional Features 2—Waveform Generation Language
vector(+) : [000000Z0];
vector(+) : [00000Z00];
vector(+) : [0000Z000];
vector(+) : [000Z0000];
vector(+) : [00Z00000];
vector(+) : [0Z000000];
vector(+) : [Z0000000];
. . .

End Example

end

2.6.2 Include Files
Data that you use repeatedly, for many different WGL programs, can be stored in separate
ASCII files and called upon by WGL programs. This lets you create a library of such data
files, with each file containing specific types of data in WGL syntax. To include this data
into a WGL program, you use the Include file feature of WGL.1

Like a WGL macro, Include files are called by an invocation statement, in this case an
“include” invocation. Also like WGL macros, when the WGL In Converter is run, Include
files are not translated and saved to the database.

You can only invoke a currently existing WGL file that contains syntactically correct
WGL statements. The Include file can contain any valid WGL statements.

The syntax of the Include Invocation feature is:

include <file name>;

A complete BNF syntactical representation of the Include file feature follows:

IncludeInvocation ::= “include” <fileName> “;”

An example file named buses, that can be invoked in a WGL program to be used as an
Include file:

1. Binary pattern files cannot be included in the WGL program via an Include file statement . Binary WGL
on page 2-103 for information on how to include binary formatted files in a WGL file.
2-86 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Additional Features
Start Example

data [31..0] : birdir;

End Example

addr [31..0] : bidir;

Use the WGL reserved word include to invoke an Include file. When you invoke the
Include file, you must specify the file name. You can also use an absolute or relative path
when naming the file to be included. The entire invocation is called an include invocation.
There cannot be any other WGL syntax, including comments or annotations, on the same
line as an include invocation.

The following is an example WGL program with an Include file invocation for a file
named buses.dat:

Start Example

waveform busArbitration
 signal
 include “busses.dat”;

End Example

end

2.6.3 Annotations
The Annotations feature allows you to insert comments that are translated for inclusion in
the WDB when the WGL In Converter is run. It is possible to view these annotations
either in the WGL file or by using WaveMaker’s editors to view the corresponding WDB.

The annotations are enclosed within braces ({ }). Generally speaking, if the annotation
occupies the same line as another WGL statement, the annotation is associated with the
characteristic described by the WGL statement. If the annotation occupies a line
exclusively, with no other WGL statement on the same line, the annotation is associated
with the WGL statement immediately following.

The syntax of the Annotations feature is:

{ . . . }

A complete BNF syntactical representation of the Annotations feature follows:

Annotation ::= “{” <any explanatory text> “}”
Languages, Vol. II, R2007.1 2-87
Test Systems Strategies Inc

Additional Features 2—Waveform Generation Language
An example of annotations in a WGL program is:

Start Example

timeplate read period 300ns
clock := input [0ps:D, 50ns:U, 100ns:D, 150ns:U, 200ns:D,250ns:U];
in := input [0ps:D, 30ns:U]; {in to clock Tsu is 10ns..40ns}
{Don’t expect data on out until at least 20ns after clock

rising edge}
out := output [0ps:X, 70ns:H];

End Example

end

WGL associates the annotations with WDB entities (or “objects”) in the database. If you
add annotations to the WDB using WGL, you must take care that the annotations are
placed precisely in the WGL program in areas that support the retention of annotations, or
the annotations may be lost or associated with the wrong object. For a complete
explanation of how WGL annotations work, see Using Annotations in WGL on page 2-99.

2.6.4 Global Mode
The Global Mode feature is used to control attributes of the WDB globally, or in every
occurrence of the object with which the attribute is associated. Currently, the only
attribute you can control with the Global Mode feature is the pmode attribute, described
next.

2.6.4.1 pmode Attribute
The pmode attribute sets the method of interpretation of the initial cycle states that are
determined by a previous cycle rather than the current cycle. This feature permits you to
tailor the initial state value of waveforms that, by default, derive their initial state value
from the previous cycle. Once a P mode has been set in a WDB, you can edit it with the
Waveform Editor in WaveMaker, which is described in Section 12.3.2 of the WaveMaker
User’s Guide.

Table 2-10 describes the supported pmode attribute options and the resulting state values.
Refer to Table 2-7, on page 2-72, for a complete list of TDS state characters.
2-88 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Additional Features
NOTE
If a shape contains more than one P state, all P states for that cycle resolve to the same
value.

Mux, or muxbus, input or bidir signals (when in input mode) have input tracks starting
with “P” and receive their values from the forcing value of the last mux member in the
previous cycle.

Table 2-10. P Mode definitions

P Mode Setting Replacement Definition

Previous Force
(last_force)

a force state
(D, U, N, or Z)

If force pattern data for the current cycle (same signal) is Z:
P is replaced by Z. Otherwise, P is replaced by the last force
state (D, U, N, or Z) in the previous cycle (same signal).

Previous Driving
(last_drive)

D, U, or Z If force pattern data for the current cycle (same signal) is Z:
P is replaced by Z. Otherwise, P is replaced by the last D or U
state in the previous cycle (same signal).

Previous, if
Force, else Z
(force_or_z)

last force state
value, else Z

If the last state for the previous cycle (same signal) is D, U, or N:
P is replaced by that state. Otherwise, P is replaced by Z.

Advantest
(advantest)

a force state If the force pattern data for the current cycle (same signal) is Z:
P is replaced by Z. Otherwise, the following conditions are
analyzed and the correspoinding value for P is assigned:

If the last state in the previous cycle (same signal) is D, U, N, or
Z:
P is replaced by that state.

If the last state in the previous cycle (same signal) is L or T:
P is replaced by D.

If the last state in the previous cycle (same signal) is H:
P is replaced by U.

If the last state in the previous cycle (same signal) is X:
P is replaced by U, except that X states that follow force states
are ignored, unless the entire previous cycle was X.
Languages, Vol. II, R2007.1 2-89
Test Systems Strategies Inc

Additional Features 2—Waveform Generation Language
The syntax of the WGL P Mode attribute is:

pmode [PModeOption];

A complete BNF syntactical representation of the P Mode Attribute feature follows:

GlobalMode ::= “pmode” “[” PmodeOption “]” “;”

PmodeOption ::= (“dont_care” | “last_force” |
“last_drive” | “force_or_z” |
“advantest” | “ims”)

An example of a pmode attribute definition is:

Start Example

waveform test.wdb
pmode[dont_care];
signal

a : bidir;
end
timeplate io period 500ns

a := input [0ps:D, 200ns:S, 300ns:D];
a := output [0ps:P, 250ns:Q, 400ns:T];

end

End Example

end

IMS
(ims)

last force state
value, else Z

For scalar (non-multiplexed) signals, if the last state in the
previous cycle (same signal) is D, U, or N:
P is replaced by that state; otherwise, P is replaced by Z.

For multiplexed signals, P substitution is done after
multiplexing. Thus, P substitution for a P state on a multiplex
member depends on states of other mux members.

Don’t care
(dont_care)

N P is replaced by N state.

Table 2-10. P Mode definitions (continued)

P Mode Setting Replacement Definition
2-90 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Examples
2.7 Examples
2.7.1 Using WGL Macros and Include Files

You can use WGL macros and include files to simplify your test development. The
following examples illustrate the use of include files and macros in a WGL program for a
microprocessor. The WGL program, example_Test_Chip.wgl, contains only the
beginning and ending statements and four include statements.

An example WGL program using Include files is:

Start Example

#--
file: example_Test_Chip.wgl
#--
An example showing the use of macros and include files, used to generate
a test for a Test_Chip microprocessor

waveform Test_Chip_test1

include “signals_Test_Chip.wgl”
include “timing_Test_Chip.wgl”
include “macros_Test_Chip.wgl”
include “patterns_1_Test_Chip.wgl”

End Example

end

An example WGL Include file containing signal data is:

Start Example

#--
file: signals_Test_Chip.wgl
#--
signalAS : output;

AVEC : input;
A[0..31] : output radix hexadecimal;
BERR : input;
BG : output;
BGACK : input;
BR : input;
CDIS : input;
CLK : input;
Languages, Vol. II, R2007.1 2-91
Test Systems Strategies Inc

Examples 2—Waveform Generation Language
DBEN : output;
DS : output;
DSACK0 : input;
DSACK1 : input;
D[0..31] : bidir radix hexadecimal;
ECS : output;
FC[0..2] : input;
HALT : bidir;
IPEND : output;
IPL[0..2] : input;
OCS : output;
RESET : bidir;
RMC : output;
”R/W” : output;
SIZ[0..1] : output;

We divide the data bus up into the instruction and data groups

 Inst [D[0..15]] : radix hexadecimal;
 Data [D[16..31]] : radix hexadecimal;

End Example

end

An example WGL Include file containing timing data is:

Start Example

#--
file: timing_Test_Chip.wgl
#--
timeplate read period 120nS

CLK := input[0pS:U, 20nS:D, 40nS:U, 60nS:D, 80nS:U, 100nS:D];
A[0..31] := output[0pS:X, 20nS:Q, 115nS:X];
FC[0..2] := input[0pS:P, 20nS:S];
SIZ[0..1] := output[0pS:X, 20nS:Q, 115nS:X];
ECS, OCS := output[0pS:X, 8nS:L, 25nS:X];
AS := output[0pS:X, 40nS:L, 100nS:X];
DS := output[0pS:X, 40nS:L, 100nS:X];
”R/W” := output[0pS:X, 10nS:H, 115ns:X];
DSACK0, DSACK1 := input[0pS:U, 70nS:D, 110nS:U];
Inst,Data := bidir[0pS:X, 80nS:S, 130nS:X];
DBEN := output[0pS:X, 50nS:L, 115nS:X];
BERR, HALT, RESET := input[0pS:U, 80nS:D];

asynch inputs
2-92 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Examples
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N, 45nS:D, 75nS:N];
asynch outputs

BG, IPEND, RMC := output[0pS:X];
end

timeplate write period 120nS

CLK := input[0pS:U, 20nS:D, 40nS:U, 60nS:D, 80nS:U, 100nS:D];
A[0..31] := output[0pS:X, 20nS:Q, 115nS:X];
FC[0..2] := input[0pS:P, 20nS:S];
SIZ[0..1] := output[0pS:X, 20nS:Q, 115nS:X];
ECS, OCS := output[0pS:X, 8nS:L, 25nS:X];
AS := output[0pS:X, 40nS:L, 100nS:X];
DS := output[0pS:X, 60nS:L, 100nS:X];
”R/W” := output[0pS:X, 10nS:L, 115ns:X];
DSACK0, DSACK1 := input[0pS:U, 65nS:D, 110nS:U];
Inst,Data := output[0pS:X, 40nS:Q, 130nS:X];
DBEN := output[0pS:X, 25nS:L, 115nS:X];
BERR, HALT, RESET := input[0pS:U, 80nS:D];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N, 45nS:D, 75nS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

timeplate idle period 40nS

CLK := input[0pS:U, 20nS:D];
A[0..31] := output[0pS:X];
FC[0..2] := input[0pS:P];
SIZ[0..1], ECS, OCS, AS, DS, “R/W” := output[0pS:X];
DSACK0, DSACK1 := input[0pS:U];
Inst, Data := output[0pS:X];
DBEN := output[0pS:X];
BERR, HALT, RESET := input[0pS:U];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

timeplate reset period 40nS

CLK := input[0pS:U, 20nS:D];
A[0..31] := output[0pS:X];
FC[0..2] := input[0pS:N];
SIZ[0..1], ECS, OCS, AS, DS, “R/W” := output[0pS:X];
Languages, Vol. II, R2007.1 2-93
Test Systems Strategies Inc

Examples 2—Waveform Generation Language
DSACK0, DSACK1 := input[0pS:N];
Inst, Data := output[0pS:X];
DBEN := output[0pS:X];
BERR, HALT := input[0pS:N];
RESET := input[0pS:D];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

End Example

end

An example WGL Include file containing macros is:

Start Example

#--
file: macros_Test_Chip.wgl
#--

Here are macros defining read and write cycles in terms of only the data
that changes, in the order that you might want to fill them out.
macro readcycle(instr, addr, data16_32, fc0_2, size)
 vector(+, read) :=

[- - @addr - - - - - - - - - -
 @instr ----
 @data16_32 ---- -
 @fc0_2 - - - --- - - - - -
 @size];

endmacro
macro writecycle(instr, addr, data16_32, fc0_2, size)
 vector(+, write) :=

[- - @addr - - - - - - - - - -
---- @instr
---- @data16_32 -
 @fc0_2 - - - --- - - - - -
2-94 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Examples
 @size];
endmacro
macro idlecycle
 vector(+, idle) := [- - -------- - - - - - - - - - - ---- ----

---- ---- - --- - - - --- - - - - - --];
endmacro
macro resetcycle
 vector(+, reset) := [- - -------- - - - - - - - - - - ---- ----

---- ---- - --- - - - --- - - - - - --];

End Example

endmacro

NOTE
The hyphens (-) in the previous example are placeholders for pattern data supplied
for the macros readcycle, writecycle, idelcycle, and resetcycle by the WGL Include file
shown in the example below.

An example WGL Include file containing pattern data is:

Start Example

#--
file: patterns_1_Test_Chip.wgl
#--

here are the patterns for test1
pattern group_ALL (AS,AVEC,A,BERR,BG,BGACK,BR,CDIS,CLK,DBEN,DS,DSACK0,DSACK1,

Inst:I,Inst:O,Data:I,Data:O,ECS,FC,HALT:I,HALT:O,

IPEND,IPL,OCS,RESET:I,RESET:O,RMC,R/W,SIZ)
repeat 512 resetcycle
readcycle(B61B, B6EE13D6, FCA3, 100, 00)
writecycle(9691, F0201827, A308, 111, 10)
idlecycle
readcycle(4281,F0201827,4314,111,10)
writecycle(30C2,E4394013,4460,011,11)
readcycle(EB3C,86F78F4C,F616,100,11)
writecycle(EE53,9C32C7BA,E9EC,101,00)
Languages, Vol. II, R2007.1 2-95
Test Systems Strategies Inc

Examples 2—Waveform Generation Language
readcycle(BF16,D44C5EB1,DF57,000,11)
writecycle(8D54,E7AB41EC,2927,100,00)
readcycle(7ABC,8316DF68,0744,001,10)
writecycle(69D0,AE31A3A2,0DF0,001,01)
idlecycle
readcycle(7A64,D3B28D8E,A4D6,011,11)
writecycle(4F7E,CFFE12F7,4850,011,11)
readcycle(9A5F,225D2C89,F66B,010,11)
writecycle(619D,7721483A,4862,000,10)

End Example

end

2.7.2 WGL and Scan Test Hardware
This example WGL file illustrates a simple scan test using the scan hardware associated
with the device shown in Figure 2-3.

The device in Figure 2-3 has a number of input, output, and bidirectional signals,
including CLK, MODE, SC_IN, and SC_OUT. Internal cells on the scan chain are declared
in the scanCell block of the following example WGL files.

Figure 2-3. Example device with scan hardware

D[0]

D[1]

D[2]

D[3]

D[4]

D[5]

D[6]

D[7]

A

B

C

SC_IN

CLK
SC_OUT

MODE

1 2 3 4

FF1 B2

LTCH[]
2-96 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Examples
A partial example WGL file supporting scan test is:

Start Example

waveform scan_example
signal

A : input;
B : input;
C : output;
SC_IN : input;
SC_OUT : output;
CLK : input;
MODE : input;
D[0..7] : bidir;

end
scanCell

FF1 ;
B2 ;
LTCH[1..4] : radix hexadecimal;

end
scanchain

chain1 [SC_IN, LTCH[1], FF1, !, B2, LTCH[4], LTCH[3], LTCH[2], SC_OUT];
end
scanState

stateX := ;
state1 := FF1(1) B2(0) LTCH(A);
state2 := FF1(1) B2(1) LTCH(X);
state3 := ALLSCAN(010101);

end

End Example

. . .

The scan chain shift order is described in the scanchain block above. Note the inverter
placed in the chain between cells FF1 and B2. The states that are set in these cells by
scan-in operations or tested during scan-out operations are declared in the scanState block.

The test waveform consists of two parallel vectors, followed by a six-cycle scan sequence
that shifts a new state into the internal cells while simultaneously sampling the scan chain
output and comparing it with another expected state. At the end of the scan operation, two
more parallel vectors are applied and the scan is repeated with different input and output
states.
Languages, Vol. II, R2007.1 2-97
Test Systems Strategies Inc

Examples 2—Waveform Generation Language
A partial example of WGL file with scan entities is:

Start Example

timeplate tp1 period 500nS
A, B, SC_IN, MODE, D := input[0pS:P, 100nS:S];
C, SC_OUT, D := output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end
timeplate scanPlate period 500nS

A, B, SC_IN := input[0pS:P, 100nS:S];
SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
D := input[0pS:P];
MODE := input[0pS:P, 100nS:U];
C, D := output[0pS:X];
CLK := input[0pS:D, 250nS:U];

end
pattern group_ALL (A, B, C, SC_IN, SC_OUT, MODE, D:I, D:O)

vector(tp1) := [1 0 X X X 0 11010000 --------];
vector(tp1) := [1 0 0 X X 0 -------- 11111110];
scan(scanPlate) := [0 1 - - - - -------- --------],

input[chain1:state1], output[chain1:stateX];
vector(tp1) := [1 1 X X X 0 00011101 --------];
vector(tp1) := [1 1 0 X X 0 -------- 01010101];
scan(scanPlate) := [0 0 - - - - -------- --------],

input[chain1:state3], output[chain1:state2];
vector(tp1) := [0 0 X X X 0 11010011 --------];
vector(tp1) := [1 1 0 X X 0 -------- 01010101];

end

End Example

end

In the example above, two TimePlates are used: tp1 and scanPlate. tp1 is used on
parallel pattern rows. scanPlate is used during scan operations. Note that S and Q
shapes appear on those tracks associated with scan in and out signals. Signals A and B use
pattern data defined in the scan rows.

The WGL Patterns block illustrates parallel vectors interspersed with scan operations. The
scan vectors refer to the scan TimePlate and specify which states are scanned in and out
using the specified chain. For example, the first scan vector scans in state1 and
simultaneously scans out stateX. Since the specified chain is six cells in length, the scan
vectors each have a duration of six cycles.
2-98 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Examples
2.7.3 Using Annotations in WGL
In WGL syntax, annotations are “legal” anywhere, as long as they are enclosed in braces (
{ }). In this sense, annotations are treated exactly like WGL comments. However, if these
annotations are not placed precisely, they may be excluded from the WDB created when
you run the TDS WGL In Converter. If you then run the TDS WGL Out Converter to
change the WDB back to a WGL file that is editable, you may find that some of the
annotations have been lost.

The example below shows a WGL file with annotations added in various locations
throughout the file. The WGL file is converted to a WDB using the WGL In Converter,
and then converted back to a WGL representation (as shown in the next example) of the
same, unmodified WDB. You can see that, depending on their original location in the
WGL file, some of the annotations remain unchanged, some have been moved, and some
have been lost.

Annotations have been added to the example WGL file named anno.wgl. All of the
annotations that have been added are syntactically legal, but those that are lost after
conversion to a WDB are labeled { lost }.

An example WGL file with annotations, before conversion to WDB is:

Start Example

{ lost }
waveform wdb1 { lost }

{ lost }

signal { lost }

a { a1 } : input;
b : input; { b1 }
c : {c1} input;

{c2}d : input;
e[1..10{e1}] : input;

end { append to last sig }

scancell

cell1; { sc1 }
cell2; { sc2 }
reg1; { reg1 }

end { lost }

scanchain
Languages, Vol. II, R2007.1 2-99
Test Systems Strategies Inc

Examples 2—Waveform Generation Language
chain1 {c1} [a, cell1 {c2}]; { lost }
end { lost }

scanstate

state1 {moved} := cell1(1) {moved} cell2(1); {s3}

end { lost }

timeplate tp1 {lost} period {t2} 200ns {t3}

a{s1},b{lost} := input[0ps:D {lost}, 50ns:S, 100ns:D]; {s4}
c{s5},d{lost} := input[0ps:D {lost}, 50ns:S, 100ns:D]; {s6}

end

pattern load1 (a)

vector (+,tp1) := [1]; {v1}
vector (+,tp1) := {v2} [1];
vector {v3} (+,tp1) := [1];
vector (+,tp1{v4}) := [1];

end

End Example

end {lost }

The following example shows the results of converting the original WGL file,
anno.wgl, to a WDB and then back to a WGL file using the WGL Converters. All
annotations labeled { lost } in the original are deleted.

Start Example

waveform anno.wdb

signal
 a : input; { a1 }
 b : input; { b1 }
 c : input; {c1}
{c2}
 d : input;
 e [1..10] : input; {e1}
{ append to last sig }
end

scanCell
 cell1 ; { sc1 }
 cell2 ; { sc2 }
2-100 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Examples
 reg1 ; { reg1 }
end

scanChain
 chain1 [a, cell1]; {c1}
{c2}
end

scanState
 state1 := ALLSCAN(11X); {moved}
{moved}
{s3}
end

timeplate tp1 period 200nS {t2}
{t3}
{s1}
 a, b := input[0pS:D, 50nS:S, 100nS:D]; {s4}
{s5}
 c, d := input[0pS:D, 50nS:S, 100nS:D]; {s6}
end

pattern load1 (a,b,c,d,e)
 vector(0, 0pS, tp1) := [1 - - - ----------]; {v1}
 vector(1, 200nS, tp1) := [1 - - - ----------]; {v2}
 vector(2, 400nS, tp1) := [1 - - - ----------]; {v3}
 vector(3, 600nS, tp1) := [1 - - - ----------]; {v4}
end

End Example

end

2.7.3.1 Master TimePlate Annotation Example
The SequenceMatch conditioner uses the concept of a master MatchPlate. A master
MatchPlate is identified as such via the WDB annotation “masterMP”. When WGL is
the source of the timing WDB used by the SequenceMatch condidtioner, then the
annotation is required as in the example below.
Languages, Vol. II, R2007.1 2-101
Test Systems Strategies Inc

Examples 2—Waveform Generation Language
Start Example

timeplate otherSignals period 100ns { masterMP }
b := input [0ns:P, 20ns:S, 60ns:D];
b := input [0ns:P, 20ns:S, 60ns:U];
b := output [0ns:X, 70ns:Q, 85ns:X];
b := output [0ns:X];
b := bidir [0ns:P, 50ns:X];
b := bidir [0ns:X, 50ns:S];

End Example

end

Track Match Priority Example

For a given signal the match priority of the tracks within the master MatchPlate is implied
by the order in which they appear– the first track that appears has top priority with the
priority descending from that point forward. Below is an example depicting track priority:

Start Example

timeplate wft period 100ns { masterMP }
b := input [0ns:D, 20ns:S, 60ns:D]; { 1st input priority }
b := input [0ns:P, 20ns:S, 60ns:D]; { 2nd input priority }
b := input [0ns:N, 20ns:S, 60ns:N]; { 3rd input priority }
b := output [0ns:X, 70ns:Q, 85ns:X]; { 1st output priority }
b := output [0ns:X, 72ns:Q, 83ns:X]; { 2nd output priority }
b := output [0ns:X, 75ns:Q, 83ns:X]; { 3rd output priority }
b := output [0ns:X, 75ns:Q, 80ns:X]; { 4th output priority }

End Example

end

Match/Spec Track Examples

Match tracks and spec tracks are associated with each via the “matchTrack” and
“specTrack” annotations. When WGL is used the created the timing WDB, the
annotations for a matchtrack/spectrack pair, the following syntax must be used:

{ matchTrack: <key> }
{ specTrack: <key> }

Where <key> is the same string of any printable characters not including space or right
brace (}). This key is used to indicate that these two tracks are associated with each
other. Consider the following example:
2-102 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
Start Example

timeplate wft period 100ns { masterMP }
a := [0ns:N, 40ns:S]; { matchTrack: 1 }
a := [0ns:P, 25ns:S]; { specTrack: 1 }
b := [0ns:P, 20ns:N, 40ns:S]; { matchTrack: b }
b := [0ns:P, 30ns:S]; { specTrack: b }
c := [0ns:P, 20ns:N, 40ns:S]; { matchTrack: tds }
c := [0ns:P, 35ns:S]; { specTrack: tds }

End Example

end

2.8 Binary WGL
In place of ASCII pattern data, a binary format of the pattern vectors is supported within
WGL. This capability allows you to use WGL binary pattern data from a CAE simulation1
as input to TDS.

The binary pattern data in the Pattern section provides a compact data representation for
users who are not concerned about readability but who are concerned about file size and
TDS run time. WGL binary pattern data has the following advantages over WGL ASCII
data:

n A large number of vectors take up less disk space.

n The WGL In Converter reads binary data quicker than ASCII data.

n Scan state vector information is provided directly on a vector row. (In ASCII form,
scan state vector information cannot be provided directly on a vector row in the pattern

1. Various CAE simulators output the binary formatted pattern data as specified in this section.
Languages, Vol. II, R2007.1 2-103
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
section but must be de-referenced through a scan state name. This results in large
amounts of scan data in the upper portion of the WGL file, making it less readable.)

2.8.1 WGL Binary Interface
Binary pattern data may be specified in a separate file (preferred) or included in the WGL
file.1 Binary pattern files are included in the WGL program via a BinaryPattern file
command, not via an Include file statement. (You cannot mix ASCII pattern vectors with
binary pattern data.)

Figure 2-4. Using Binary Pattern Data

1. Do not edit a WGL file that has binary pattern data; null pattern bits may be deleted by the editor.

CAE
Simulator

Binary pattern
file (in WGL

format)

WGL Out
ConverterWDB

II

WGL file with
binary pattern

data

WDB
I

WGL file that
contains

binary data or
references a
binary pattern

file

WGL In
Converter

WaveBridge
(or other

TDS
process)

Test program

WDB
II
2-104 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
Binary WGL is a subset of ASCII WGL and there is not an exact one-to-one
correspondence between ASCII and binary WGL. Some WGL structures are not
supported in binary, including symbolic assignments, macros, vector labels, and
comments.

The binary pattern data can be viewed with WaveMaker and saved in WDB format. In
addition, using the WGL Out Converter, the binary pattern data can be saved in ASCII
format within a WGL Patterns block.

2.8.1.1 Including Binary Files
To signify that binary pattern data is supplied in place of the Patterns block within WGL,
use the BinaryPattern command, followed by the binary data.

BinaryPattern; <carriage return>

If the binary pattern data is supplied in a file separate from the WGL file, then the file
parameter must also be specified, followed by the file name where the binary pattern file
resides.

BinaryPattern file:=binary.data; <carriage return>

The following example WGL file shows the BinaryPattern command. WGL statements
(including the ScanState and Patterns block) that are not used with binary pattern data are
shown as comments. (That is, preceded with a #.)

Start Example

waveform scan_example

signal

SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output;
CLK : input;

end

scanCell

FF1 ;
B2 ;

C1 ;
D1 ;

LTCH[1..4] : radix hexadecimal;
Languages, Vol. II, R2007.1 2-105
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
end

scanchain

chain1 [SC_IN, LTCH[1], LTCH[4], LTCH[3], LTCH[2], SC_OUT];
chain2 [SC_IN2, FF1, B2, C1, D1, SC_OUT2];

end

#scanState
state1 := chain1(1101) chain2(1001);
state2 := chain1(1011) chain2(0001);
state3 := chain1(0X00) chain2(1X10);
state4 := chain1(0X00) chain2(1XXX);
state5 := chain1(0101) chain2(0000);
state6 := chain1(XXXX) chain2(XXXX);
#end

timeplate tp1 period 500nS

SC_IN, SC_IN2 := input[0pS:P, 100nS:S];
SC_OUT, SC_OUT2 := output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end

timeplate scanPlate period 500nS

SC_IN2, SC_IN := input[0pS:P, 100nS:S];
SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end

binarypattern file := testd.tmp;

#pattern group_ALL (CLK, SC_IN, SC_OUT, SC_IN2, SC_OUT2)
vector(tp1) := [- X X X X];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],
input[chain1:state1], output[chain1:state3],
input[chain2:state1], output[chain2:state3];
vector(tp1) := [- X X X X];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],
2-106 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
input[chain1:state2], output[chain1:state4],
input[chain2:state2], output[chain2:state4];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],
input[chain1:state5], output[chain1:state6],
input[chain2:state5], output[chain2:state6];
vector(tp1) := [- X X X X];
#end

End Example

end

2.8.2 Binary File Format
The following sections illustrate ASCII WGL formats and equivalent binary WGL
formats. If you are reading binary format files (including binary pattern data in a WGL
file), you do not need to know this information. However, if you will be writing binary
files, you must adhere to the following formats.

The following format conventions are used in this section:

n For readability, characters are shown with the entire string in quotes. In the binary file,
the characters are in binary format.

n Numbers are shown in hexadecimal, instead of binary; the 0x preceding a value
indicates hexadecimal notation.

n Spaces are added for clarity.

n Braces and brackets are used as described in WGL Syntax Notation Conventions on
page 2-4.

The binary format is processed using standard I/O routines; the binary file is not parsed. In
addition, the binary file is not context sensitive.
Languages, Vol. II, R2007.1 2-107
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
2.8.2.1 Definitions
To ensure that the binary format is machine independent, data bits must be written out
consistently across machines. The following definitions are required to ensure machine
independence.

2.8.2.2 Line Format
All lines in the WGL binary section conform to the following format.

byte_count line_type {rest-of-line}

The line length is specified by the byte_count at the beginning of each line. (No specific
line termination is provided.)

Table 2-11. Binary Definitions

Item Description

byte 8 bits (unsigned) MSB to LSB

short 16 bits (unsigned) MSB to LSB

long 32 bits (unsigned) MSB to LSB

char 8 bits (unsigned) MSB to LSB

chars Multiple characters

Table 2-12. Components of Line Format

Item Type Description

byte_count short The length of the line_type and rest-of-line in bytes
(excludes byte_count)

line_type short Byte which describes the line type (See Table 2-13.)

rest-of-line Varies depending on the line type (See Table 2-14
through Table 2-32.)
2-108 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
2.8.2.3 Line Type
The line_type field is an unsigned short which specifies the intent of the line. Table 2-13
shows the mapping.

2.8.2.4 Line Type Ordering
The binary pattern information must follow the same ordering restrictions required by
ASCII WGL (see Patterns on page 2-38.) That is, the pattern header is followed by the
vectors, which are followed by the subroutine definitions. In addition, the following
restriction must be followed:

Table 2-13. Hexadecimal Values for Each Line Type

Hexadecimal Line Type

0x0000 Vector Line

0x0001 Subroutine

0x0002 End Pattern

0x0003 Loop

0x0004 End Loop

0x0005 Subroutine Call

0x0006 Skip

0x0007 Scan Parallel

0x0008 Scan Chain

0x0009 Repeat

0x000a Pattern Header

0x000b Annotation

0x000d Map Key

0x000e End Subroutine

0x000f End Binary (ASCII WGL
statements follow)

0x00ff Version Control
Languages, Vol. II, R2007.1 2-109
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
n The version control line is required to be the first line in the file, if a separate binary
file is supplied. Otherwise, the version control line is expected to immediately follow
the BinaryPattern declaration in the WGL file.

n Binary WGL requires unique end statements for subroutines, loops, and patterns.

2.8.2.5 Line Type Description
The following discussion describes the syntax for each of the line types.

Version Control

The version control line denotes the binary file version. It is required to be the first line in
the WGL binary section. (Although not planned, it is possible that future versions of the
binary file may have a different format. All future readers, however, will be expected to
read earlier versions of binary files.) The format is:

byte_count line_type version_number version_extension

Start Example

End Example

0x0006 0x00ff 0x0001 0x0000

Pattern Header

The WGL Pattern block begins with a pattern header line. This line defines a pattern
name, and a list of signals and directions. The binary format would be an encoding of this.
The general syntax would be:

byte_count line_type name_len name signal_columns
{signal_dir signal_len signal_name bus_flag [begin_range
end_range]}

Table 2-14. Version Control Line Type

Item Type Description

line_type short 0x00ff

version_number short Version 1 is described in this document.

version_extension short Extension number; initially 0
2-110 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
Example WGL:

Start Example

End Example

pattern burst (sigA:I, sigA:O, BX)

Equivalent binary:

Start Example

0x0021 0x000a 0x0005 "burst" 0x0003 0x00 0x0004 "sigA" 0x00 0x01 0x0004 "sigA"

End Example

0x00 0x02 0x0002 "BX" 0x00

Table 2-15. Pattern Header Line Type

Item Type Description

line_type short 0x000a

name_len short Number of characters in pattern group name

name chars Pattern group name

signal_columns short Total number of signal columns for the vectors

signal_dir byte Column direction where:
 0x00 = input column for a bidir signal,
 0x01 = output column for a bidir signal,
 0x02 = column direction is not required
 because signal is input or output but not
 bidirectional

signal_len short Number characters in signal name

signal_name chars Signal name

bus_flag byte Indicates if a signal is a bus: 0x00 = no; 0x01
= yes

begin_range short First value in range; this field is read only
when bus_flag = 0x01

end_range short Second value in range; this field is read only
when bus_flag = 0x01
Languages, Vol. II, R2007.1 2-111
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
Example WGL, illustrating multiplexed signals: The Signal block contains a
multiplexed parent and four multiplexed children.

Start Example

signal
muxsig1 [sig1_1, sig1_2, sig1_3, sig1_4]: mux input;

end

End Example

pattern group_ALL (sig1)

Equivalent binary, illustrating multiplexed signals: signal_columns is set to four,
indicating the total number of columns of pattern bit information associated with any
vector in the pattern block.

Start Example

End Example

0x001a 0x000a 0x0009 “group_ALL” 0x0004 0x02 0x0007 “muxsig1” 0x00

Example WGL, illustrating a bus with no range specification: A data bus can be listed
in the pattern header without specifying the range and order of the bits. (The range and
order specified for a signal within the Signal block is used if none is given on the pattern
header.)

Start Example

signal
sig1 : input;
data[0..7] : input radix binary;

End Example

pattern group_ALL (sig1, data)

Equivalent binary, illustrating a bus with no range specification: As specified in the
Signal block, the range for this bus is from 0 to 7. The binary format does not require the
range to be specified on the pattern header if vector information for the bus adheres to this
ordering. signal_columns is set to 8 to indicate the total number of columns of pattern bit
information associated with all vectors in the Pattern blocks.

Also, notice that the bus flag is not set to 0x01 in this example. The bus flag is set to 0x01
only when a range is being specified for output on the pattern header.
2-112 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
Start Example

0x001f 0x000a 0x0009 “group_ALL” 0x0009 0x02 0x0004 “sig1” 0x00 0x02 0x0004

End Example

“data” 0x00

Example WGL, illustrating a bus with a range specification: The bus vector
information is found in a different order than as specified in the Signal block. Notice that
for the bus addr, the begin_range values are 4, 0, and 5 and the end_range values are 3, 2,
and 7.

Start Example

signal
sig1 [sig1_1, sig1_2, sig1_3, sig1_4]: mux input;
addr[0..7] : input radix binary;

end

End Example

pattern group_ALL (sig1, addr[4..3], addr[0..2], addr[5..7])

Equivalent binary, illustrating a bus with a range specification: signal_columns is set
to twelve to indicate the total number of columns of pattern bit information associated with
all vectors in the pattern block. In each case where the range is specified, the bus flag is set
to 0x01.

Start Example

0x003B 0x000a 0x0009 “group_ALL” 0x000c 0x02 0x0004 “sig1” 0x00 0x02 0x0004
“addr” 0x01 0x0004 0x0003 0x02 0x0004 “addr” 0x01 0x0000 0x0002 0x02 0x0004

End Example

“addr” 0x01 0x0005 0x0007

Individual bus elements may be specified by setting both the begin_range and the
end_range to the bus element number.

End Pattern

The WGL Pattern block terminates with an end statement.
Languages, Vol. II, R2007.1 2-113
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
byte_count line_type

Example WGL:

Start Example

End Example

end

Equivalent binary:

Start Example

End Example

0x0002 0x0002

Subroutine Header

A WGL Subroutine block begins with a subroutine header line that defines the name of
the subroutine. This name is referenced when the subroutine is called.

byte_count line_type name

Example WGL:

Start Example

End Example

subroutine subr0()

Table 2-16. End Pattern Line Type

Item Type Description

line_type short 0x0002

Table 2-17. Subroutine Header Line Type

Item Type Description

line_type short 0x0001

name chars Characters in subroutine name
2-114 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
Equivalent binary:

Start Example

End Example

0x0007 0x0001 "subr0"

End Subroutine

Subroutine blocks require an end statement.

byte_count line_type

Example WGL:

Start Example

End Example

end

Equivalent binary:

Start Example

End Example

0x0002 0x000e

NOTE
ASCII WGL has one end statement for both Subroutines and Patterns blocks, while the
binary form explicitly provides separate statements for each.

Vector

Vector statements define the parallel, pattern vectors.

Table 2-18. End Subroutine Line Type

Item Type Description

line_type short 0x000e
Languages, Vol. II, R2007.1 2-115
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
byte_count line_type tp_name_len tp_name map_key vectors

Map Key

A map key is referenced in all vector and scan lines, defining the mapping between WGL
pattern characters and their equivalent binary format. (See Table 2-20 through
Table 2-23.) Different map keys can be used for different pattern lines within the same
file. For example, use map key 3 (Table 2-23) for all vector and scan pattern row lines and
use map key 2 (Table 2-21) for all scan state vector information.

Map key 0 uses three binary bits for every WGL character. It supports all the state
characters: 0, 1, Z, and X.

Map key 1 provides for representation of scan data although it is not restricted to scan
data. Mapping a WGL character into one bit of information provides for more compact

Table 2-19. Vector Line Type

Item Type Description

line_type short 0x0000

tp_name_len short Number of characters in TimePlate name

tp_name chars TimePlate name

map_key byte Selects the map key

vectors a

a. Defined by map_key (Map Key below). 0s are used to pad the data until the last
byte is complete.

Vector pattern data

Table 2-20. Map Key 0: Default General Mapping
(map_key = 0x00)

Character Bit Map

0 000

1 001

Z 010

X 011

- 111
2-116 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
data files. This mapping is suggested for scan test cases that do not contain Z or X data,
only 0 and 1.

Map key 2 provides for representation of scan data that contains the pattern character X in
addition to 0 and 1. A WGL character is mapped into two bits of information.

Map key 3 provides general mapping for test cases that do not contain Z data. A WGL
character is mapped into two bits of information

.

Table 2-21. Map Key 1: Intended for Scan Use
(map_key = 0x01)

Character Bit Map

0 0

1 1

Z Not used

X Not used

- Not used

Table 2-22. Map Key 2: Intended for Scan Use
(map_key = 0x02)

Character Bit Map

0 00

1 01

Z Not used

X 11

- Not used

Table 2-23. Map Key 3: General Mapping
(map_key = 0x03)

Character Bit Map

0 00

1 01
Languages, Vol. II, R2007.1 2-117
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
Example WGL:

Start Example

for the pattern header
pattern group_ALL (sig1, sig2, sig3, sig4)
this vector row would be encoded:

End Example

vector(tp1) := [0 1 1 0];

Equivalent binary with a map key of 0:

Start Example

0x000a 0x0000 0x0003 "tp1" 0x00 000 001 001 000 0000

End Example

 ^^^^ pad bits

Alternate equivalent binary with a map key of 1: A more compact vector
representation could have been done using a different map key.

Start Example

0x0009 0x0000 0x0003 “tp1” 0x01 0 1 1 0 0000

End Example

 ^^^^ pad bits

Loop

In ASCII WGL, the loop statement supports an optional loop name. In the binary format,
the optional loop name is not supported. The binary equivalent of the loop count is
expressed as a 32-bit, unsigned long allowing for the maximum size of loop count.

Z Not used

X 10

- 11

Table 2-23. Map Key 3: General Mapping
(map_key = 0x03) (continued)

Character Bit Map
2-118 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
byte_count line_type loop_count

Example WGL:

Start Example

End Example

Loop 5

Equivalent binary:

Start Example

End Example

0x0006 0x0003 0x00000005

End Loop

In ASCII WGL, the loop end statement supports an optional loop name. In binary format,
the optional loop name is not supported.

byte_count line_type

Example WGL:

Start Example

End Example

end

Table 2-24. Loop Line Type

Item Type Description

line_type short 0x0003

loop_count long Integer loop count

Table 2-25. End Loop Line Type

Item Type Description

line_type short 0x0004
Languages, Vol. II, R2007.1 2-119
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
Equivalent binary:

Start Example

End Example

0x0002 0x0004

Subroutine Call

Subroutine calls are followed by the subroutine name.

byte_count line_type name

Example WGL:

Start Example

End Example

call subr0();

Equivalent binary:

Start Example

End Example

 0x0007 0x0005 "subr0"

Repeat

Repeat is used with vectors, loops, or call constructs. Its primary use is on vector lines.
This command always indicates that the next command is to be repeated the specified
number of times. This line type is always followed by a 32-bit, unsigned integer.

Table 2-26. Subroutine Call Line Type

Item Type Description

line_type short 0x0005

name chars Subroutine name
2-120 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
byte_count line_type repeat_count

Example WGL:

Start Example

End Example

repeat 5

Equivalent binary:

Start Example

End Example

 0x0006 0x0009 0x00000005

Scan Parallel

Two binary line types are required to support a single scan vector as defined in ASCII
WGL. In the binary format, the scan parallel line defines the parallel vector states of all the
pins in the same format as the vector line. This line does not contain any of the scan chain
or scan state vector information. (See Scan Chain on page 2-122 for state and chain
information.)

byte_count line_type tp_name_len tp_name map_key vector

Table 2-27. Repeat Line Type

Item Type Description

line_type short 0x0009

repeat_count long Number of times to repeat next statement.

Table 2-28. Scan Parallel Line Type

Item Type Description

line_type short 0x0007

tp_name_len short Number of characters in TimePlate

tp_name chars TimePlate group name
Languages, Vol. II, R2007.1 2-121
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
Example WGL:

Start Example

End Example

scan(read) := [0 0 - -]

Equivalent binary:

Start Example

0x000b 0x0007 0x0004 "read" 0x00 000 000 111 111 0000

End Example

 ^^^^ pad bits

Scan Chain

In ASCII WGL, a scan vector references a scan run which consists of a scan chain, the
direction of the chain, and a state vector. In ASCII WGL, all state vectors are defined
within the ScanState block prior to the pattern block. In addition, the scan state defines the
values of all scan cells in the device in ASCII WGL.

The binary format differs from the ASCII representation. In the binary format, the scan
chain and scan chain direction are still required. But instead of referencing a specific state
vector, the state vector data follow in-line. The in-line scan state information represents
only the data which is to be loaded or observed by the specified scan chain.

The scan chain line must follow either a scan parallel line or another scan chain line. The
last_chain field identifies the end of the scan chain information.

byte_count line_type last_chain chain_dir name_len

map_key byte Selects the map key

vector a Parallel vector data

a. Defined by map_key (Map Key on page 2-116). 0s are used to pad the data until
the last byte is complete.

Table 2-28. Scan Parallel Line Type (continued)

Item Type Description
2-122 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
chain_name state_bits map_key scan_states

Example WGL: In the ASCII WGL file, ssi_1 refers to a scan state vector containing
011100 as data bits for chain ch1 on input and sso_1 refers to a state vector containing
011011 as data bits for chain ch1 on output. These state vectors are previously defined
within the ScanState block in the ASCII WGL file.

Start Example

scan(read) := [0 0 - -] {this portion of the vector has already been specified
by the scan parallel binary equivalent }

input[ch1 : ssi_1],

End Example

output[ch1 : sso_1];

Equivalent binary: The output scan chain and its corresponding scan state are translated
into binary format using the map key 1 whereas the input chain uses map key 2.

Table 2-29. Scan Chain Line Type

Item Type Description

line_type short 0x0008

last_chain byte 0x00 if another chain follows, 0x01 if last in
series

chain_dir byte Scan chain direction where:
 0x00 = input chain,
 0x01 = output chain,
 0x0f = input/output (feedback) chain

name_len short Number of characters in chain name

chain_name chars Chain name

state_bits short Number of data bits in the scan state vector
for this chain. That is, the number of data bits
to be loaded or observed for this chain.

map_key byte Selects the map key

scan_states a

a. Defined by map_key (Map Key on page 2-116). 0s are used to pad the data until
the last byte is complete.

Scan run pattern data
Languages, Vol. II, R2007.1 2-123
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
Start Example

0x000e 0x0008 0x00 0x00 0x0003 "ch1" 0x0006 0x02 00 01 01 01 00 00 00 00
 ^^ ^^ pad

0x000d 0x0008 0x01 0x01 0x0003 "ch1" 0x0006 0x01 0 1 1 0 1 1 00

End Example

 ^^ pad bits

See Example 1 on page 2-126 for an example of scan chains of different lengths.

Skip

The reserved word skip provides for the declaration of a time period when the waveform
state is unspecified. In the binary format, the time value, including time units, is provided
as a string.

byte_count line_type time_string

Example WGL:

Start Example

End Example

skip 400ns;

Equivalent binary:

Start Example

End Example

0x0007 0x0006 “400ns”

Annotations

Annotations are attached to the previous line.

Table 2-30. Skip Line Type

Item Type Description

line_type short 0x0006

time_string chars Time value, including units, for skip duration
2-124 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
byte_count line_type annotation

Example WGL:

Start Example

End Example

{this is an annotation}

Equivalent binary:

Start Example

End Example

0x0017 0x000b "this is an annotation"

End Binary

To terminate the binary section of the WGL file, use this command. The parser then
expects ASCII WGL to follow. No WGL equivalent exists for this statement.

byte_count line_type

Binary format:

Start Example

End Example

0x0002 0x000f

Table 2-31. Annotation Line Type

Item Type Description

line_type short 0x000b

annotation chars Annotation string

Table 2-32. End Binary Line Type

Item Type Description

line_type short 0x000f
Languages, Vol. II, R2007.1 2-125
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
2.8.3 Examples of ASCII and the Equivalent
Binary

Two examples are provided to illustrate the use of binary pattern data. The first example
shows the handling of scan vectors, and the second example shows subroutine call, loop,
and skip statements. Within each example:

o The original WGL file is shown, followed by

o The WGL file without the pattern block but including a reference to the separate
binary file

o An ASCII version of what the binary portion of the file would look like

o Finally, the binary representation of the pattern block

2.8.3.1 Example 1
This example contains two scan chains of different lengths.

Example WGL file:

Start Example

waveform patternload
pmode[dont_care];
signal

sig1 :bidir;
sig2 :input;
sig3 :output;
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output;

end

scanCell

a; b; c; d; e; f; g; h; ii; j; k; l; m; n; oo; p; q; r; s; t; u; v; w; x;
a1; b1; c1; d1; e1; f1; g1; h1; i1; j1; k1; l1; m1; n1; o1;

end

scanChain

ch1 [SC_IN, a, b, c, d, e, f, g, h, ii, j, k, l, m, n, oo, p, q, r, s, t, u,
v, w, x, SC_OUT];
2-126 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
ch2 [SC_IN2, a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1, o1, SC_OUT2];
end

scanState

TDS_state0 := ch1(110011100001001000110100) ch2(110011100001001);
TDS_state1 := ch1(11X01X10000100X000110X00);
TDS_stateX := ;

end

timeplate tp1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];
SC_IN, SC_IN2:= input[0pS:D];
SC_OUT, SC_OUT2 := output[0pS:X];

end

timeplate scanPlate period 500nS

SC_IN2, SC_IN := input[0pS:P, 100nS:S];
SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
sig1 := input[0pS:S];
sig2 := input[0pS:D];
sig3 := output[0pS:X];

end

pattern pattern0 (sig1:I, sig1:O, sig2, sig3, SC_IN, SC_OUT, SC_IN2, SC_OUT2)

vector (0, 0pS, tp1) := [0 1 X Z - - - -];
scan(scanPlate) := [1 - - - - - - -],

input[ch1:TDS_state0], output[ch1:TDS_state1],
input[ch2:TDS_state0], output[ch2:TDS_stateX];

end

End Example

end

WGL file referencing binary pattern file: The above WGL file is changed slightly to
include a binarypattern file statement that references the binary pattern file named
wgl.bin. Notice that the ScanState and the Pattern blocks are no longer included in the
WGL file.
Languages, Vol. II, R2007.1 2-127
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
Start Example

waveform patternload
pmode[dont_care];
signal

sig1 :bidir;
sig2 :input;
sig3 :output;
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output;

end

scanCell

a; b; c; d; e; f; g; h; ii; j; k; l; m; n; oo; p; q; r; s; t; u; v; w; x;
a1; b1; c1; d1; e1; f1; g1; h1; i1; j1; k1; l1; m1; n1; o1;

end

scanChain

ch1 [SC_IN, a, b, c, d, e, f, g, h, ii, j, k, l, m, n, oo, p, q, r, s, t, u,
v, w, x, SC_OUT];

ch2 [SC_IN2, a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1, o1, SC_OUT2];
end

timeplate tp1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];
SC_IN, SC_IN2:= input[0pS:D];
SC_OUT, SC_OUT2 := output[0pS:X];

end

timeplate scanPlate period 500nS
2-128 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
SC_IN2, SC_IN := input[0pS:P, 100nS:S];
SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
sig1 := input[0pS:S];
sig2 := input[0pS:D];
sig3 := output[0pS:X];

end

binarypattern file := wgl.bin;

End Example

end

ASCII representation of the binary pattern file wgl.bin: This section is only an
illustration of what the binary WGL looks like. It shows the unique line types and their
ordering. Scan information follows the scan row and contains a direction, a chain name,
and the state information. End statements for the completion of the pattern section and the
binary file are required.

Start Example

{ Version "1.0" }
pattern pattern0 (sig1:I, sig1:O, sig2, sig3, SC_IN, SC_OUT, SC_IN2, SC_OUT2)
vector(tp1) := [0 1 X Z - - - -];
scan(scanplate) := [1 - - - - - - -]
input[“ch1”: 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0],
output[“ch1”: 1 1 X 0 1 X 1 0 0 0 0 1 0 0 X 0 0 0 1 1 0 X 0 0],
input[“ch2”: 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1],
output[“ch2”:X X X X X X X X X X X X X X X];
end { pattern }

End Example

end { binary }

Binary representation: The following is the binary equivalent for the pattern section
shown above. For simplicity, signal names, TimePlate names, and scan chain names are
shown here as strings instead of in binary, and the 0x notation, indicating hexadecimal, is
not included.

In this example, vector information for tp1 and scanPlate is specified using map key 0. The
input state vector information for ch1 and ch2 is specified using map key 1. The output
state vector information for ch1 and ch2 is specified using map key 2.
Languages, Vol. II, R2007.1 2-129
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
Start Example

0006 00ff 0001 0000
0056 000a 0008 "pattern0" 0008 00 0004 "sig1" 00 01 0004 "sig1" 00 02 0004 "sig2" 00 02 0004 "sig3" 00 02 0005
“SC_IN” 00 02 0006 “SC_OUT” 00 02 0006 “SC_IN2” 00 02 0007 “SC_OUT2 00 ”
000b 0000 0003 "tp1" 00 05 af ff
0011 0007 0009 "scanPlate" 03 7f ff
000f 0008 0000 0003 “ch1” 00 18 01 ce 12 34
0012 0008 0001 0003 “ch1” 00 18 02 5c 74 01 0c 05 30
000e 0008 0000 0003 “ch2” 00 0f 01 ce 12
0010 0008 0101 0003 “ch2” 00 0f 02 ff ff ff fc
0002 0002

End Example

0002 000f

2.8.3.2 Example 2
This example has subroutine, loop, and skip statements, and an annotation.

Example WGL file:

Start Example

waveform patternload
pmode[dont_care];
signal

sig1 :bidir;
sig2 :input;
sig3 :output;

end

timeplate tp1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

timeplate read1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:U];
sig3 := output[0ps:X];

end

timeplate write period 200ns
2-130 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Binary WGL
sig1 := bidir[0ps:X, 75ns:Q, 95ns:X, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

pattern pattern0 (sig1:I, sig1:O, sig2, sig3)

vector (0, tp1) := [0 1 X Z];
vector (+, read1) := [1 1 - -]; {this is commentA}
loop 5
vector (+, write) := [X X X X];
vector (+, read1) := [1 0 X -];
{DXY test}
end
call sub0();

end

subroutine sub0()

skip 400ns;
vector (+, write) := [0 0 0 0];

end

End Example

end

WGL file referencing binary pattern file:

Start Example

waveform patternload
pmode[dont_care];
signal

sig1 :bidir;
sig2 :input;
sig3 :output;

end

timeplate tp1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

timeplate read1 period 200ns

sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
Languages, Vol. II, R2007.1 2-131
Test Systems Strategies Inc

Binary WGL 2—Waveform Generation Language
sig2 := input[0ps:U];
sig3 := output[0ps:X];

end

timeplate write period 200ns

sig1 := bidir[0ps:X, 75ns:Q, 95ns:X, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

binarypattern file:=wgl.bin;

End Example

end

ASCII representation of the binary pattern file wgl.bin: This section is only an
illustration of what the binary WGL looks like. It shows the unique line types and their
ordering.

Start Example

{ Version "1.0" }
pattern pattern0 (sig1:I, sig1:O, sig2, sig3)
vector(tp1) := [0 1 X Z];
vector(read1) := [1 1 - -];
{ this is commentA }
loop 5
vector(write) := [X X X X];
vector(read1) := [- - - -];
{ DXY test }
end
call sub0();
end

subroutine sub0()
skip 400ns;
vector(write) := [0 0 0 0];
end

End Example

end

Binary representation: The following is the binary equivalent for the pattern section
shown above. For simplicity, signal names, TimePlate names, and subroutine names are
2-132 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Glossary of WGL Terminology
shown here as strings instead of in binary, and the 0x notation, indicating hexadecimal, is
not included. The vector information is specified using map key 0.

Start Example

0006 00ff 0001 0000
002e 000a 0008 "pattern0" 0004 00 0004 "sig1" 00 01 0004 "sig1" 00 02 0004
"sig2" 00 02 0004 "sig3" 00
000a 0000 0003 "tp1" 00 05 a0
000b 0000 0005 “read1” 03 5f
0012 000b “this is commentA”
0006 0003 0000 0005
000b 0000 0005 “write” 02 ff
000b 0000 0005 “read1” 03 4b
000a 000b “DXY test”
0002 0004
0006 0005 “sub0”
0002 0002
0006 0001 “sub0”
0007 0006 “400ns”
000c 0000 0005 “write” 00 00 00
0002 000e

End Example

0002 000f

2.9 Glossary of WGL Terminology
All user-defined identifiers, such as <TDSstate>, used in the WGL BNF representation are
found in this glossary. (A string is a sequence of characters surrounded by double
quotation marks. Embedded double quotation marks and back slashes must be preceded by
a back slash.)

any explanatory text

The text of a comment.

atepinName

An identifier or string previously declared as an ATE pin name in the Signals block.

bitNumber

A number specifying a single bit of a multi-bit bus.
Languages, Vol. II, R2007.1 2-133
Test Systems Strategies Inc

Glossary of WGL Terminology 2—Waveform Generation Language
If you specify a range (<bitNumber> .. <bitNumber>), the first bitNumber defines the
most significant bit (MSB); the second bitNumber defines the least significant bit (LSB).
There is no restriction on which number is larger. (The bits of the register may be labeled
in increasing or decreasing order.)

cellName

An identifier or string naming a scan cell. Must be unique among all signals, buses,
groups, scan chains, scan registers, and other cells.

chainName

An identifier or string naming a scan chain. Must be unique among all signals, buses,
groups, scan cells, scan registers, and other scan chains.

cycleNumber

The numeric cycle number of a pattern vector.

edgeCount

A number indicating the number of edges associated with a timing generator.

edgeNumber

The index of a particular edge of a timing generator.

end-of-line

The end of line indicator.

equationSheetName

An identifier or string naming an EquationSheet block.

exprSetName

An identifier or string naming an ExprSet sub-block.

fileName

The alphanumeric include file name. May be optionally enclosed in double quotation
marks (“ ”) or angle brackets (< >).
2-134 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Glossary of WGL Terminology
floatingPointValue

A number containing the digits 0 - 9 and one decimal point (.).

formatName

An identifier or string naming a tester-specific format. Must be unique among all format
names.

identifier

The alphanumeric name of a signal, bus, group, TimePlate, format, timegen, pattern,
subroutine, et cetera. Identifiers are made up of a sequence of characters that does not
include any of the following delimiters: # { } “ ” .. () + , : ; [] or white space. Identifiers
may not begin with a digit or exactly match any reserved keyword. Names that violate
these rules may generally be used provided they are enclosed in double quotation marks
and any embedded double quotation mark or back slash characters are preceded with a
back slash.

integerValue

A number containing the digits 0 - 9.

loopCount

A number specifying the iteration count of a pattern loop.

loopName

An identifier tagging a pattern loop begin and end statements. These are for
documentation purposes only.

macroBody

The text that makes up the body of a macro definition.

macroName

An identifier used in a macro definition or its invocation. (See the example on page 2-94.)

macroParameter

An identifier used as a parameter in a macro definition.
Languages, Vol. II, R2007.1 2-135
Test Systems Strategies Inc

Glossary of WGL Terminology 2—Waveform Generation Language
MuxPartName

An identifier associating a particular ATE resource as a source for pattern data to a
multiplexed signal or bus. Within a Signals block, reference a <MuxPartName> only
once.

patternIdentifier

An identifier assigned to a particular pattern expression in a symbolic block that may be
used in pattern and subroutine blocks as an alias for that pattern expression.

patternName

An identifier naming a pattern block that also may identify a tester-specific pattern load
(also called a burst). <patternName>s are saved in the database.

patternNameStr

An identifier naming a pattern block that also may identify a tester-specific pattern load
(also called a burst). String notation allows the use of characters not otherwise permitted.
<patternNameStr>s are saved in the database.

pinElemName

A string identifying an ATE pin.

pinGrpName

A unique identifier for a group.

pinName

An identifier, string, or number identifying the name of a DUT or ATE pin.

pinNumber

An identifier, string, or number identifying the number of a DUT or ATE pin.

registerName

An identifier or string naming a tester-specific format register. Must be unique among all
register names.
2-136 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

2—Waveform Generation Language Glossary of WGL Terminology
repeatCount

A number specifying the number of times a pattern vector is to be repeated.

signalName

An identifier or string specifying the name of a signal, group, or bus.

stateName

An identifier or string naming a particular set of logic state values stored in all scan cells.
Must be unique among all other state names.

stateString

A sequence of pattern state characters or numbers appearing in a pattern row interpreted
according to the width, direction, and radix of the corresponding pattern parameter.

subroutineName

An identifier naming a subroutine declaration or invocation.

timeGenName

An identifier or string naming a tester-specific timing generator.

timeplateName

An identifier naming a TDS timing template. It is defined in a TimePlate block that is
referenced in a vector address in a pattern block. Must be unique among all TimePlate
names.

timeValue

A number, optionally including a decimal point, specifying a particular time.

TDSstate

A single character that can be any of D, U, N, Z, S, C, P, L, H, X, T, Q, R, 0, 1, F, ?. Case
is significant.

tsNumber

A numeric value used to identify individual timing sets.
Languages, Vol. II, R2007.1 2-137
Test Systems Strategies Inc

Glossary of WGL Terminology 2—Waveform Generation Language
validityClause

A signal name and state value as used in a Signal Definition file. (For the syntax
requirements of the Signal Definition file, see Chapter 4 in the Getting Started Guide.)
Use this clause within the strobe clause to specify the direction of a signal based on
another signal’s state value.

variableName

An identifier or string naming an equation variable.

vectorLabel

An identifier or string ...

waveFormName

An identifier or string naming the waveform program. This name is for documentation
purposes only. It is not stored in the WDB database.
2-138 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Introduction
Chapter 3
Test Control Language

3.1 Introduction
The Test Control Language (TCL) provides control over WaveBridge module processing.
Also, TCL files can control the SequenceMatch and TimePlate Match Conditioners.

Three types of files are written in TCL:

n Tester files (required)

A Tester file describes tester-specific characteristics such as the range of legal pin
numbers, maximum number of pattern rows allowed, and minimum cycle length.
Default Tester files are provided with the TDS software, but you can specify a
customized Tester file if you want. For more information, see Section 4.10 of the
Getting Started Guide.

n User TCL files (optional)

A User TCL file, which is user-defined, specifies setup parameters for a WaveBridge
run. It also overrides corresponding TCL parameters that were defined in the Tester
file. You can also use a User TCL file to control SequenceMatch or TimePlate Match
Conditioner runs. For more information, see Section 4.9.1 of the Getting Started
Guide.

n Override TCL files (optional)

An Override TCL file, which is also user-defined, overrides corresponding TCL
parameters that were defined in the Tester file. For more information, see Section 4.9.2
of the Getting Started Guide.
Languages, Vol. II, R2007.1 3-1
Test Systems Strategies Inc

When to Use TCL 3—Test Control Language
3.2 When to Use TCL
In general, you can use TCL files to more precisely control the execution of WaveBridge
modules. Use TCL when you want to:

n Modify existing ATE parameter settings in the Tester file by copying and editing the
existing Tester file

n Override existing ATE parameter settings in the Tester file by addressing the same
parameters in an optional input TCL file

n Control the name and number of input Standard Events Format (SEF) databases or
Waveform DataBases (WDB) to be matched with cycle boundary data or analyzed for
tester compatibility

n Control the name and number of the timing templates (TimePlates) carrying the cycle
boundary data to be matched against input SEF or WDB databases

NOTE
A TimePlate is a data storage construct contained within a WDB. The TimePlate
carries data that determines the shape and timing of each signal within the cycle.

n Control the name and number of the output WDBs

n Control the name and number of the test program pattern loads

n Control the various formatting options for the test programs generated

n Control the tester resources that WaveBridge allocates (formats and timing generators)
3-2 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Language Conventions
3.3 TCL Language Conventions
The TCL language is free-form and case-insignificant except where a user-defined
identifier is required. In such cases, the identifier may contain special characters and
spaces if the entire identifier is enclosed in double quotation marks (“ ”). Also, any
user-defined identifier that is the same as a TCL reserved word must be enclosed in double
quotation marks. Multiple white space characters are treated as a single space, and line
returns are ignored (except for comments).

3.3.1 TCL Syntax Notation Conventions
In this chapter, TCL syntax is described either in a text paragraph (for example, when
discussing how and when to use various TCL constructs) or in a syntactical formalism (as
when showing all potential syntactic combinations). Each type of description uses certain
notation conventions to make it easier to properly identify the TCL constructs under
discussion.

3.3.1.1 Text Descriptions
When describing the elements of TCL syntax in a textual description (rather than in a
syntactical formalism), the following notation conventions are used:

n The use of Emphasis typeface in text description of a TCL syntactical element
indicates higher-level Backus-Naur Formalism (BNF) constructs. Such constructs are
expanded to their full definition in the BNF accompanying the reference.

In the example below, references to PinList and Pin would appear in the appropriate
BNF production as follows:

PinList ::= “pins” Pin { “,” Pin }

Pin ::= <pinNumber> [“..” <pinNumber>]

Both PinList and Pin are high-level BNF constructs. These higher-level constructs
would be fully defined in the complete BNF production for this TCL block or
sub-block.

n The use of Bold typeface denotes a TCL parameter or a TCL reserved word or symbol.

In the example below, taken from a text description, the TCL parameter
VernierRange is shown in bold typeface.
Languages, Vol. II, R2007.1 3-3
Test Systems Strategies Inc

TCL Language Conventions 3—Test Control Language
The VernierRange parameter accepts a time value.

As in other TDS user documentation, courier typeface denotes an actual value assigned
to a parameter, reserved word, or excerpt of a display.

3.3.1.2 Backus-Naur Formalism
In describing the full range of possible TCL syntax, the following variation of the
Backus-Naur Formalism (BNF) is used:

n Two colons followed by an equivalence sign (::=) denote a high-level syntactic
category-to-syntactic rules relationship.

In the example below, StartTime is a high-level syntactic category composed of the
low-level TCL reserved word start; a TCL reserved typographical symbol (:=);
another high-level syntactic category, TimeSpec; and a terminal TCL reserved
typographical symbol (;).

StartTime ::= “start” “:=” TimeSpec “;”

An actual TCL fragment using this syntax follows:

start := 50ns;

n Angle brackets (< >) denote a user-defined identifier. The identifier can be an
alphanumeric name, an integer, or a floating number.

In the example below, <repetitionCount> is a user-defined identifier. User-defined
identifiers, such as <repetitionCount>, are defined in the TCL programming block in
which they occur.

Repetition ::= “repetition” “:=” <repetitionCount>

An actual TCL fragment using this syntax follows:

repetition := 512

In the example, <repetitionCount> is 512.

n Braces ({ }) denote an unspecified repetition of the enclosed syntax.

In the example below, the high-level syntactic category MatchSpec (itself composed
of low-level TCL reserved words not shown here) may be repeated as often as
required.
3-4 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Language Conventions
MatchBody ::= { MatchSpec }

An actual TCL fragment using this syntax follows:

match

events
directory := “sef1”;
start := begin;
stop := end;

end events

timing
directory := “timing_source”;

persistence := 1;
end timing

destination
directory := “dest”;

start := begin;
stop := end;

end destination

end match

In the example, the three sub-blocks (delimited by events and end events, timing and
end timing, and destination and end destination, respectively) are three separate
occurrences of MatchSpec.

n Double quotation marks (“ ”) denote the literal use of a TCL reserved word,
typographical symbol, or parameter. If double quotation marks are themselves to be
used literally, they are enclosed within single quotation marks (‘ ’).

In the example below, the plus sign (+), to be used literally (in this case, as a line
continuation character), is enclosed in double quotation marks (“ ”). The user-defined
identifier, <string>, is to be enclosed literally in double quotation marks, so the double
quotation marks are themselves shown enclosed in single quotation marks.

MessageString ::= ‘“’ <string> ‘”’ { “+” ‘“’ <string> ‘”’
}

An actual TCL fragment using this syntax follows:
Languages, Vol. II, R2007.1 3-5
Test Systems Strategies Inc

TCL Language Conventions 3—Test Control Language
“A force edge at time @edge does not”
+“reside at the required resolution of”

n Brackets ([]) denote optional syntax.

In the example below, the TCL fragment composed of a TCL substitution sign (<=)
and the high level syntactic category TimeplateName (itself composed of low-level
TCL reserved words not shown here) can be included in the TCL TimePlate definition
statement, as required.

Timeplate ::= TimeplateName [“<=” TimeplateName]

An actual TCL fragment using this syntax follows:

tp1 <= read

In the example, the first occurrence of TimeplateName is tp1; the optional second
occurrence is read.

n A vertical bar (|) denotes separate choices of syntax.

In the example below, either of the two valid values for the TCL reserved word ignore
(informative or warning) may be used to suppress the logging of non-fatal TRC
errors.

IgnoreWhen ::= “ignore” “:=” (“informative” | “warning”)

An actual TCL fragment using this syntax follows:

ignore := warning

In the example, warning has been selected from the list of valid values.

3.3.2 Comments
As in other programming languages, you can add explanatory comments to a TCL file to
aid functional clarity. These comments are preceded by the pound sign (#).

Comments can be inserted into any part of a TCL file. To insert a comment into a TCL
file, enter #, followed by a text string. All characters on the line, starting with the pound
sign and terminating with the carriage return marking the end of the line, are included in
the comment.

The syntax of the Comment feature is:
3-6 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Language Conventions
. . . (end-of-line character)

A complete BNF syntactical representation of the Comment feature follows:

Comment ::= “#” text characters “end-of-line character”

3.3.3 Reserved Words
TCL reserves certain words as its linguistic set. The following case-insensitive list
includes all TCL reserved words and symbols. Excluded are TCL ATE constraint
parameters, which are listed separately in ATE Constraints on page 3-12.
Languages, Vol. II, R2007.1 3-7
Test Systems Strategies Inc

TCL Language Conventions 3—Test Control Language
%
“
”
(
)
*
+
-
..
/
:
:=
,
;
<
<=
<>
=
>
>=
[
]
acspec
acyclic
after
all
analysis
and
ate
begin
both
burst
burstbegin
burstend
call
cause
channelmap
check
columnformat

comment
compress
compression
control
cyclenumber
Cycles
cycles
cyclic
dcspec
design
destination
directory
disableunusedchannels
edge
end
event
events
every
extension
false
fatal
format
formats
formatusage
formwidth
generic
if
ignore
include
incremental
informative
integer
keySymbolStart
labelprefix
laststate
linear
list
loadaddress
location

loopbegin
loopend
match
max
memoryaddress
message
min
ms
netlist
none
notgsharing
ns
Offset
or
pattern
per
Periods
PeriodSetMax
persistence
pingroup
pinmap
pins
prefix
prevstop
program
programcontrol
ps
quiton
relevance
remedy
repeatedcall
repeatedvector
repetition
replace
s
scanrun
select
setup
severity

signal
signals
simcomment
simtime
socket
source
start
State
state
stop
string
strobeusage
structure
subroutinebegin
subroutineend
tabular
terse
test
testcontrol
testtime
tgusage
then
time
timeplate
timeplates
timeset
timing
timinganalysis
timingdestination
trc
true
us
used
vector
warning
wavesource
window
3-8 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language General TCL Syntax
3.4 General TCL Syntax
TCL is a block-structured language. The body of the TCL program comprises one large
structure, bracketed by opening and closing statements. Within the overall structure are
smaller, more specialized structures, or blocks, each bracketed by opening and closing
statements.

In its simplest form, a TCL file uses the following syntax:

testcontrol <tclName>
{ TclBody }

end testcontrol

Valid syntax for the TclBody is a list of seven program sections. These sections are
referred to as TCL programming blocks. The block names and the WaveBridge processes
they control are shown in Table 3-1. The table also lists the page where the block is
described in detail.

The names identify the beginning of each block. Within each block is data that controls
certain aspects of WaveBridge processing. The blocks are optional and can occur in any
order, although the order presented in the following example is commonly used. The Pin
Groups, Message Directives, Match Directives, and Pattern Load Directives blocks can
occur multiple times in a TCL file.

A complete BNF syntactical representation of the TCL file follows:

TclProgram ::= “testcontrol” [<tclName>]
{ TclBody }

Table 3-1. TCL Blocks

TCL Block Name Purpose

ATE Constraints on page 3-12 Tester resource limits and control

Pin Groups on page 3-74 Pin cards

Message Overrides on page 3-77 WaveBridge messages

TRC Directives on page 3-80 Tester Rules Checker

Match Directives on page 3-82 TimePlate and Sequence matching

Program Control Directives on page 3-91 Test program format

Pattern Load Directives on page 3-103 Test program pattern bursts
Languages, Vol. II, R2007.1 3-9
Test Systems Strategies Inc

General TCL Syntax 3—Test Control Language
“end” “testcontrol”

TclBody ::= (AteConstraints | PinGroups |
MessageOverrides

| TrcDirectives | MatchDirectives |
ProgControlDirectives

| PatternLoadDirectives)

AteConstraints ::= [“ate”
{ AteConstraint “;” }

“end” “ate”]

PinGroups ::= { “pingroup” <PinGroupName>
{ PinGroupBody “;” }

“end” “pingroup” <PinGroupName>}

MessageOverrides ::={ “message” <messageName>
MessageParams

MessageBody
“end” “message” [<messageName>] }

TrcDirectives ::=[“trc”
{ TrcSpec “;” }

“end” “trc”]

MatchDirectives ::= { “match”
MatchBody

“end” “match” }

ProgControlDirectives ::= [“programcontrol”
Control

“end” “programcontrol”]

ProgControlDirectives ::= { “programcontrol”
 { ControlSpecs }
“end” “programcontrol” }

PatternLoadDirectives ::={ “burst” [<burstName>]
BurstBody

“end” “burst” [<burstName>] }

The following is a complete TCL file that uses only the Match Directives, Program
Control Directives, and Pattern Load Directives blocks.
3-10 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language General TCL Syntax
Start Example

testcontrol Advantest

match
events

directory := wave_source;
start := begin;
stop := end;

end events
timing

directory := timing_source;
timeplates := ts1, ts2, ts3;
persistence := 1;

end timing
destination

directory := wave_dest;
end destination

end match

programcontrol

formwidth := 72;
columnformat := every 10;
comment := every 10 simTime,testTime,cycleNumber,
 memoryAddress,simComment;

end programcontrol

burst
source

directory := wave_dest;
start := begin;
stop := end;
compress := True;

end source
destination
 prefix := adv.prog,
 socket := adv.sock,
 pattern := adv.lpat;
end destination

end burst

End Example

end testcontrol

Beginning TCL
program delimiter
Beginning
Match Directives
block delimiter

Beginning and
ending
Program Control
Directives block
delimiters

Beginning
Pattern Load
Directives block
delimiter

Ending Match
Directives block
delimiter

Ending
Pattern Load
Directives block
delimiter
Languages, Vol. II, R2007.1 3-11
Test Systems Strategies Inc

General Program Block Syntax 3—Test Control Language
3.5 General Program Block Syntax
All TCL program blocks begin with a TCL reserved word that names one of the seven
TCL programming blocks. Each TCL program block terminates with the reserved word
end, followed in some cases by the reserved word block name, such as pattern. Between
the delimiting reserved words is a definition structure composed of one or more
declaration statements. The declaration statements themselves are subdivided into smaller
structures that address more specific operations.

The specific syntax description for each program block, presented in the likely order of
occurrence in a typical TCL file, follows.

3.6 ATE Constraints
The ATE Constraints block addresses the following tester-specific control categories,
listed in alphabetical order. These categories are addressed in detail as either ATE
Constraints parameters or sub-blocks, later in this chapter.

n Compression Spacing Constraints on page 3-17

n Configuration Controls on page 3-18

n Cycle Constraints on page 3-19

n Signal Pin DC Controls on page 3-21

n Power Supply DC Controls on page 3-25

n Signal Sequence Control on page 3-23

n Fixture Controls on page 3-28

n Force/Compare/Drive Constraints on page 3-30

n Format Controls on page 3-39

n Loop Constraints on page 3-40

n Microcode Constraints on page 3-43

n Multiple Clocking Constraints on page 3-45

n Pattern ATE Controls on page 3-48
3-12 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
n Pin ATE Controls on page 3-51

n Probe Constraints on page 3-52

n Repeat Constraints on page 3-57

n Scan Controls on page 3-59

n Subroutine Constraints on page 3-63

n TimePlate Matching Preference Control on page 3-67

n Timeset Controls on page 3-68

n Timing Expressions on page 3-68

n Transform on page 3-71

When WaveBridge processes a WDB for a tester, it calls upon the Tester file named in the
TDS interface. For details, see Chapter 3 in the Tester Bridges Overview Guide.

The parameters contained in the Tester file are written in TCL. When running
WaveBridge, the required Tester file is read before the optional TCL file. If the optional
TCL file is used, and if the optional ATE Constraints block of the TCL file is used, the
values specified therein override the corresponding values in the Tester file.

The syntax of the TCL ATE Constraints block is:

ate
{AteConstraint}

end ate

AteConstraint is composed of an ATE parameter with a modifier and an expressed
constraint. The constraint is a tester-specific value, derived from your ATE’s specification
manual.

The following example shows a TCL ATE Constraints block.
Languages, Vol. II, R2007.1 3-13
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Start Example

ate
PinInOutMax := 256; # legal pin numbers are between 1 and 256.
TimeSetMax := 16; # Max # of timing sets
CycleMin := 50ns; # Min cycle length
CycleMax := 1.048ms; # Max cycle length
CycleResolution := 1ns; # Cycle length resolution
PatternRowMax := 65535; # Max # of pattern rows
PatternCompression := yes; # Compression search on
CompareWindowRange := 1..2; # WSTRBs - # of window strobes
CompareEdgeRange := 1..8; # Optional on T3320
CompareWindowRange := 1..4; # Optional on T3320
CompareType := Window; # Strobe type: Window, Edge, or Both
CompareResolution := 125ps; # Compare edges must be modulo resolution
CompareWindowMin := 10ns; # Min window width between T1 and T2
DelayChannelRange := 1..4; # ACLKs - # of force TGs for “edge delay”
ForceChannelRange := 1..12; # BCLK + CCLKs - # of forcing TGs
ForceChannelRange := 1..16; # Optional BCLK + CCLKs count
ForcePulseMin := 10ns; # Min pulse width between T1 and T2
ForceResolution := 125ps; # Force edges must be modulo resolution
ForceConstraint[1] := T1..T1(1) >= 50ns; # Min time between T1 and T1(1)
ForceConstraint[2] := T2..T2(1) >= 50ns; # Min time between T1 and T1(1)
CompareEdgeRange := 1..4; # STRBs - # of edge strobes
CompareConstraint[1] := T1..T1(1) >= 50ns; # Min time between T1 and T1(1)
CompareConstraint[2] := T2..T2(1) >= 50ns; # Min time between T1 and T1(1)
DriveChannelRange := 1..4; # Max # of drivers for I/O switching
DrivePulseMin := 10ns; # Driver Specs: 2pf, 1Mohm load
DriveResolution := 125ps; # Drive times must be modulo resolution
DriveOnMin := 10ns; # Min ON time during I/O
DriveOffMin := 20ns; # Min OFF time during I/O
DriveConstraint[1] := T1..T1(1) >= 32ns; # Min time between T1 and # T1(1)
MultiClockCountMax := 128; # Max # of periods in cycle
MultiClockRateMin := 32ns; # Min multiclock rate (t3 duty cycle)
MultiClockRateMax := 1.048ms; # Max multiclock rate (t3 duty cycle)
MultiClockRateResolution := 1ns; # periods (t3) must be modulo this

resolution
MultiClockLeadingMin := 0ns; # Min time between T0 and T1
MultiClockLeadingMax := 16ns; # Max time between T0 and T1
MultiClockTrailingMin := 0ns; # Min time between T0 and T2
MultiClockTrailingMax := 1.048ms; # Max time between T0 and T2
if MultiClockRate < 64ns TrailMax := 32ns
else TrailingMax := MultiClockRate;
MultiClockEdgeResolution := 125ps; # edges T1 and T2 must be modulo

resolution
3-14 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
 MuxConversion :=; # converts mux style automatically
SubroutineCompression := true; # can do subroutine compression
SubroutineNestMax := 0; # Max subr definition nesting
SubroutineRowMax := 65535; # Max pattern rows in a subr definition
SubroutineRowMin := 4; # Min pattern rows in a subr definition
SubroutineAtStartLegal := false; # Is call legal at start of test

program?
SubroutineAtEndLegal := false; # Is call legal at end of test program?
SubroutineAfterRepeatLegal:= false;# Is call legal on single-row repeat?
SubroutineRepeatCountMax := 0; # Max count for repeat on subr call
SubroutineSpacingMin := 0; # Min # rows required between subr calls
LoopCompression := true; # Can do multi-row loop compression
LoopCountMin := 2; # Min times the multi-row loop can iterate
LoopCountMax := 65535; # Max times the multi-row loop can iterate
LoopNestMax := 0; # Max levels of multi-row loop nesting
LoopRowMax := 65535; # Max pattern rows in multi-row loop
LoopRowMin := 4; # Min pattern rows in multi-row loop
LoopAtStartLegal := true; # Is multi-row loop legal at program start?
LoopRepeatCountMin := 2; # Min count for repeat in multi-row loop
LoopRepeatCountMax := 65535; # Max count for repeat in multi-row loop
RepeatCompression := true; # Can do single-row repeat compression
RepeatAtStartLegal := true; # Is single-row repeat legal at program start?
RepeatAtEndLegal := true; # Is single-row repeat legal at program end?
RepeatInSubrLegal := true; # Is single-row repeat legal in subr ?
RepeatAtSubrStartLegal := true; # Is single_row repeat legal at subr

start?
RepeatAtSubrEndLegal := false; # Is single_row repeat legal at subr end?
RepeatInLoopLegal := true; # Is single-row repeat legal in multi-row

loop?
RepeatCountMin := 2; # Min repeat count for a single-row repeat
RepeatCountMax := 65535; # Max repeat count for a single-row repeat

End Example

end ate

The following is a complete list of all ATE parameter names that can be used in the ATE
Constraints block. These parameters correspond to categories of ATE characteristics that
you can modify to suit the needs of your specific test requirements. Explanations of the
function and type can be found in the tables accompanying the detailed description of each
of the ATE Constraints parameters. Since these parameters address specific capabilities
available on test equipment, not all of the parameters are available for all testers.
Languages, Vol. II, R2007.1 3-15
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
AteVersion
BurstRowMax
CompareConstraint
CompareEdgeRange
CompareMatchResolution
CompareMultiplexRange
CompareResolution
CompareType
CompareWindowMin
CompareWindowRange
CompressionMemRowMax
CompressionSpacing
CompressionThreshold
CycleMatchResolution
CycleMax
CycleMin
CycleResolution
CycleResolutionTolerance
CycleSteal
DelayChannelRange
DriveChannelRange
DriveConstraint
DriveMatchResolution
DrivePulseMin
DriveResolution
FixtureOffset
ForceChannelRange
ForceConstraint
ForceMatchResolution
ForcePulseMin
ForceResolution
FormatCharMap
FormatSetMax
HizRowMax
IORowMax
LocalTimeSetMax
LoopAtEndLegal
LoopCompression
LoopCountMax
LoopCountMin
LoopNestMax
LoopOutOfSubrLegal
LoopRepeatCountMax
LoopRepeatCountMin
LoopRowMax

LoopRowMin
LoopSpacingMin
MaskRowMax
MemoryModel
MicroCodeCallCost
MicroCodeLoopCost
MicroCodeRepeatCost
MicroCodeRowMax
MicroCodeSubrCost
MonitorModeDeadMin
MultiClockChannelRange
MultiClockConstraint
MultiClockCountMax
MultiClockEdgeResolution
MultiClockLeadingMax
MultiClockLeadingMin
MultiClockPulseMin
MultiClockRateMax
MultiClockRateMin
MultiClockRateResolution
MultiClockTrailingMax
MultiClockTrailingMin
MultiClockType
MultiClockUniqueCountMax
MuxConversion
PatternBoundary
PatternCompression
PatternRowMax
PinInMax
PinInOutMax
PinInOutMin
PinInVoltage
PinOutCurrent
PinOutMax
PinOutVoltage
PostTestCycle
ProbeCloseHold
ProbeCloseSetup
ProbeConstraint
ProbeOpenHold
ProbeOpenMax
ProbeOpenMin
ProbeOpenSetup
ProbeWindowMin
PulseProbeCloseDefault

PulseProbeOpenDefault
RepeatAtEndLegal
RepeatAtStartLegal
RepeatAtSubrEndLegal
RepeatAtSubrStartLegal
RepeatCompression
RepeatCountMax
RepeatCountMin
RepeatInLoopLegal
RepeatInSubrLegal
ScanChannelMax
ScanConstraint
ScanCycleMax
ScanCycleMin
ScanCycleResolution
ScanInSubrLegal
ScanMode
ScanPatternMax
ScanPatternMin
ScanPatternResolution
ScanRegistersOnly
ScanType
SettledProbeCloseDefault
SettledProbeOpenDefault
SingleTimeSets
SpikePulseMin
SocketType
SubroutineAfterRepeatLegal
SubroutineAtEndLegal
SubroutineAtStartLegal
SubroutineCompression
SubroutineDefnMax
SubroutineInLoopLegal
SubroutineNestMax
SubroutineRepeatCountMax
SubroutineRowMax
SubroutineRowMin
SubroutineSpacingMin
TilerTimePlateOrderCost
TimeSetMax
TimeSetMerging
VernierRange
3-16 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
A high-level BNF syntactical representation of the ATE Constraints block follows:

AteConstraints ::= [“ate”
 { AteConstraint “;” }
 “end” “ate”]

TCL produces the following messages identifying syntactic errors associated with this
block:

Duplicate ATE constraint.

Illegal value for this ATE constraint.

For details of the complete BNF ATE Constraints syntax, see the appropriate ATE
Constraints parameter section that follows.

3.6.1 Compression Spacing Constraints
The Compression Spacing Constraints parameter is used to specify the minimum
separation (in pattern rows) of the various type of compression constructs and linear
pattern rows.

Table 3-2 lists Compression Spacing Constraints.

A complete BNF syntactical representation of the Compression Spacing Constraints
parameter follows:

CompressionAdjacency ::= CompressionSpacing

CompressionSpacing ::= “compressionspacing” CompressionItem “..”
 CompressionItem “:=” <spacing>

CompressionItem ::= (“burstbegin” | “burstend” | “vector”
| “repeatedvector” | “loopbegin” | “loopend”
| MoreCompressionItems)

Table 3-2. Compression Spacing Constraints

TCL Parameter Data
Type Description

CompressionSpacing integer Pairwise compression spacing requirements
Languages, Vol. II, R2007.1 3-17
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
MoreCompressionItems ::= (“call” | “repeatedcall” | “subroutinebegin”
| “subroutineend” | “scanrun”)

CompressionSpacing gives the minimum separation (in rows) of the various types of
compression constructs and normal vectors.

<spacing> is an integer greater than or equal to one.

 All CompressionItems TCL parameters can be paired in any combination. For example,

compressionspacing vector..loopend := 10

specifies that between any single vector and the end of a loop, there must be a minimum of
ten pattern rows.

3.6.2 Configuration Controls
The Configuration Controls parameters let you tailor WaveBridge output to take
advantage of certain features available on specific testers. See the chapter for your
WaveBridge in the appropriate TDS tester guide to see if these features are supported for
your tester.

Table 3-3 lists Configuration Controls.

A complete BNF syntactical representation of the Configuration Controls parameters
follows:

ATEVersion ::= “AteVersion” “:=” ‘ “ ’ <versionString> ‘ ” ’ “;”

MemoryModel ::= “MemoryModel” “:=” <memoryModel> “;”

MuxConversion ::= “MuxConversion” “:=” (“OLDtoNEW” | ““NEWtoOLD” |
“NONE”) “;”

Table 3-3. Configuration Controls

TCL Parameter Data
Type Description

ATEVersion string Tester compiler version

MemoryModel string Pattern memory segments

MuxConversion string Multiplexing style conversion
3-18 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
The ATEVersion parameter lets you specify which test program syntax to use if you have
several versions of compilers for your tester and these different versions require different
test program syntax.

<versionString> is a string identifying which version of the compiler you want to use.
Supported strings are defined in tester-specific WaveBridge chapters; if this parameter is
not mentioned in the chapter for your WaveBridge module, your WaveBridge module
does not need to support multiple versions of your tester’s compiler.

The MemoryModel parameter lets you specify different pattern memory segments if
supported by your tester. Valid character strings for <memoryModel> are tester-specific.

The MuxConversion parameter allows WaveBridge to recognize both styles of specifying
multiplexed signals. Of the two styles for specifying multiplexing, one is old and one is
new. In old-style multiplexing, signals that have names that are identical except for trailing
apostrophes (‘) indicate a set of multiplexed signals. For example, in1, in1’, and
in1’’ specify a set of multiplexed signals. The new style of multiplexing uses the
facilities provided in WGL and WaveMaker’s Signal Definition Editor.

In the test file for each tester, the MuxConversion parameter is set to convert whichever
style of multiplexing is found in the database to the style required by the WaveBridge. If
the MuxConversion parameter is not used (or is set to NONE), older WaveBridges
recognize only the old style, and newer WaveBridges recognize only the new style. The
style of multiplexing that results is saved in the destination database.

3.6.3 Cycle Constraints
The Cycle Constraints parameters are used for constraints on TimePlate periods. The
parameters CycleMin, CycleMax, and CycleResolution create cycle constraints.
Languages, Vol. II, R2007.1 3-19
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Table 3-4 lists Cycle Constraint statements.

A complete BNF syntactical representation of the Cycle Constraints Controls parameter
follows:

Cycle := (CycleMinimum | CycleMaximum | CycleResolution
|CycleResolutionTolerance |CycleMatchResolution
| ScanCycleMax | ScanCycleMinScanCycleResolution)

CycleMinimum ::= “cyclemin” “:=” Time

CycleMaximum ::= “cyclemax” “:=” Time

CycleResolution ::= “cycleresolution” “:=” Time

CycleResolutionTolerance ::= “cycleresolutiontolerance” “:=” Time

CycleMatchResolution ::= “cyclematchresolution” “:=” Time

ScanCycleMax ::= “scancyclemax” “:=” Time

ScanCycleMin ::= “scancyclemin” “:=” Time

ScanCycleRes ::= “scancycleresolution” “:=” Time

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

Table 3-4. Cycle Constraint statements

TCL Parameter Data Type Description

CycleMin time Minimum cycle length

CycleMax time Maximum cycle length

CycleResolution time Cycle length resolution

CycleResolutionTolerance time Cycle length resolution tolerance

CycleMatchResolution time TimePlate matching resolution

ScanCycleMax time Maximum scan cycle length

ScanCycleMin time Minimum scan cycle length

ScanCycleResolution time Scan cycle length resolution
3-20 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
The CycleResolutionTolerance parameter defaults to 0s. Use this parameter when
frequency and period do not exactly match due to rounding.

The CycleMatchResolution parameter describes the tolerance around the cycle boundary
in which TimePlate matching can occur. For more information about cycle resolution and
TimePlate matching, see page 5-14 in the WDB Conditioners Guide. Note that this
parameter is not recognized by the SequenceMatch Conditioner.

The ScanCycleMax, ScanCycleMin, and ScanCycleResolution parameters can be used
in the Cycle Constraints parameter syntax. The ScanCycleMax, ScanCycleMin, and
ScanCycleResolution parameters are discussed in Scan Controls on page 3-59.

The other cycle parameters can be graphically portrayed as in Figure 3-1.

3.6.4 Signal Pin DC Controls
You can set group logic threshold levels in your TCL file using the PinInVoltage,
PinOutVoltage, and PinOutCurrent parameters. See the chapter for your WaveBridge in
the appropriate TDS tester guide to see if these features are supported for your tester.

You can use these parameters to set up voltage levels for input, output, and bidirectional
signals.

PinInVoltage specifies an acceptable range of voltage for all input signals.

PinOutVoltage specifies an acceptable range of voltage for all output signals.

Figure 3-1. Cycle boundary time resolution

T0 T0(i) T0(j)
<------- CycleMin ---------->	<---- . . . CycleMax . . . ---->
The smallest cycle	The largest cycle
allowed on the tester	allowed on the tester
^ ^ ^	
 ----------------------- CycleResolution ----------------------
Languages, Vol. II, R2007.1 3-21
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
PinOutCurrent specifies an acceptable range for output current. This value is expressed
in milliamperes, microamperes, and amperes.

A complete BNF syntactical representation of the DC Controls parameter follows:

DC ::= (“pininvoltage” | “pinoutvoltage” | “pinoutcurrent”) “:=” DCvalues

DCvalues ::= [DClabel] “[” DCvalue { “,” DCvalue } “]”

DClabel ::= (<dcName> | <dcString>)

DCvalue ::= [DCsign] <voltsOrAmps> DCunit

DCsign ::= (“+” | “-”)

DCunit ::= (“ma” | “ua” | “a” | “v”)

The following shows an example of the use of the DC Controls parameters.

Start Example

ate
PinInVoltage := Vi [0.5v, 4.5v];
PinOutVoltage := Vo [0.45v, 4.75v];
PinOutCurrent := [6.0ma,-10.0ma];

End Example

end ate

<dcName> and <dcString> are user-defined alphanumeric strings that let you attach a
name to help identify a defined voltage or current range. <voltsOrAmps> is a numeric
value associated with voltage level.

DCunit specifies whether the unit of electrical measurement is to be milliampere,
microampere, ampere, or volt.

DCsign indicates whether the value represented by <voltsOrAmps> is a positive or
negative value.

The defaults for these parameters are tester-specific. To find the default DC Controls
values for your tester, use your system’s text editor to view the Tester file for your
WaveBridge. The Tester file is located in the directory that you set as the TDSDIR
environment variable when you installed your TDS software.
3-22 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
3.6.5 Signal Sequence Control
The Signal Sequence Controls are used to customize the signal sequencing capabilities of
test systems. Signal sequencing is the capability to control signal channels and their
associated resources as they are presented to a DUT prior to any testing.

You use a global TCL parameter, SeqSignalTzero, to define a window of time in which
all signal sequencing must occur. You can then define up to eight sequence times and
associated tester resources for the WDB signals. Figure 3-2 represents an example of
signal sequencing where a global sequence time window and four sequence time/window
combinations are defined.

The TCL parameters SeqSignal1 through SeqSignal8 define the sequence times and
SeqResource1 through SeqResource8 define the tester resources. The tester resource is
mapped to the sequence time according to the number suffixes on each parameter
(SeqSignal1 maps to SeqResource1, and so on).

The mechanism for associating the WDB signals with sequence times and tester resources
is specific to each WaveBridge. One such mechanism uses eight reserved pin groups (one
for each time-resource pair), with the pin groups being associated with the time-resource
pairs according to a number suffix in the reserved pin group name.

Figure 3-2. Signal Sequencing

Global Sequence
Time Window

SeqSignal1
SeqResource1

SeqSignal2
SeqResource2

SeqSignal3
SeqResource3

SeqSignal8
SeqResource8

1

2

3

8

1

2

3

8

SeqSignalTzero SeqSignalTzero
Languages, Vol. II, R2007.1 3-23
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
The BNF syntactical representation for the Signal Sequence Control parameters is as
follows.

Start Example

SeqSignalTzero := TimeValue;

SeqSignal1 := TimeValue;
SeqSignal2 := TimeValue;
SeqSignal3 := TimeValue;
SeqSignal4 := TimeValue;
SeqSignal5 := TimeValue;
SeqSignal6 := TimeValue;
SeqSignal7 := TimeValue;
SeqSignal8 := TimeValue;

TimeValue := (<intTime> | <floatTime>) [TimeUnit]
TimeUnit := (“ps” | “ns” | “us” | “ms” | “s”)

SeqResource1 := <ResourceName>;
SeqResource2 := <ResourceName>;
SeqResource3 := <ResourceName>;
SeqResource4 := <ResourceName>;
SeqResource5 := <ResourceName>;
SeqResource6 := <ResourceName>;
SeqResource7 := <ResourceName>;

End Example

SeqResource8 := <ResourceName>;

<ResourceName> is a string that specifies the resource being set. The actual strings are
specific to each Tester WaveBridge that supports signal sequencing. Refer to the
WaveBridge documentation for the specific string values.
3-24 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
3.6.6 Power Supply DC Controls
The Power Supply DC Controls parameters allow you to establish the default power
supply settings for up to eight power supplies (if your tester and WaveBridge support this
capability).

The complete TCL BNF syntactical representation for Power Supply DC Controls
parameters is as follows:

PsSequenceWindow := [TimeValue]

PsVoltage := [“Supply”] SupplyNumber, VoltageValue

PsVoltageMin := [“Supply”] SupplyNumber, VoltageValue

Table 3-5. Power Supply DC Controls

TCL Parameter Data Type Description

PsVoltage voltage Power supply default output voltage value.

PsVoltageMax voltage Power supply maximum output voltage value.

PsVoltageMin voltage Power supply minimum output voltage value.

PsVoltageRange string Power supply default voltage range.

PsMeasurementRange string Power supply default current measurement range.

PsNegCurrentClamp current Power supply default negative current clamp value.

PsNegCurrentClampMax current Power supply maximum negative current clamp value.

PsNegCurrentClampMin current Power supply minimum negative current clamp value.

PsPosCurrentClamp current Power supply default positive current clamp value.

PsPosCurrentClampMax current Power supply maximum positive current clamp value.

PsPosCurrentClampMin current Power supply minimum positive current clamp value.

PsSlewRate time Power supply default voltage slew rate.

PsSlewRateMax time Power supply maximum voltage slew rate.

PsSlewRateMin time Power supply minimum voltage slew rate.

PsSequenceTime time Power supply default sequence time.

PsSequenceWindow time Power supply global window for sequence time.

PsFilter Boolean Power supply filter control.
Languages, Vol. II, R2007.1 3-25
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
PsVoltageMax := [“Supply”] SupplyNumber, VoltageValue

PsMeasurementRange := [“Supply”] SupplyNumber, Value

PsVoltageRange := [“Supply”] SupplyNumber, Value

PsNegCurrentClamp := [“Supply”] SupplyNumber, CurrentValue

PsNegCurrentClampMin := [“Supply”] SupplyNumber, CurrentValue

PsNegCurrentClampMax := [“Supply”] SupplyNumber, CurrentValue

PsPosCurrentClamp := [“Supply”] SupplyNumber, CurrentValue

PsPosCurrentClampMin := [“Supply”] SupplyNumber, CurrentValue

PsPosCurrentClampMax := [“Supply”] SupplyNumber, CurrentValue

PsSlewRate := [“Supply”] SupplyNumber, TimeValue

PsSlewRateMin := [“Supply”] SupplyNumber, TimeValue

PsSlewRateMax := [“Supply”] SupplyNumber, TimeValue

PsSequenceTime := [“Supply”] SupplyNumber, TimeValue

PsFilter := [“Supply”] SupplyNumber, BooleanValue

SupplyNumber := integer

BooleanValue := (“TRUE” | “FALSE”)

TimeValue := (<intTime> | <floatTime>) [TimeUnit]

CurrentValue := [Sign] <float> CurrentUnit

VoltageValue := [Sign] <float> VoltUnit

Sign := (“+” | “-”)

VoltUnit := (“v”)

TimeUnit := (“S” | “mS” | “uS”)

CurrentUnit := (“ua” | “ma” | “a”)

Value := String
3-26 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
The following TCL excerpt defines the power supply DC parameters for one power
supply.

Start Example

ate

PsSequenceWindow := 10mS;

PsVoltageRange := Supply 1, “R8V”;
PsMeasurementRange := Supply 1, “M80MA”;
PsVoltage := Supply 1, 5.0V;
PsVoltageMin := Supply 1, 10.0V;
PsVoltageMax := Supply 1, -10.0V;
PsPosCurrentClamp := Supply 1, 500.0mA;
PsPosCurrentClampMin := Supply 1, 0.0A;
PsPosCurrentClampMax := Supply 1, 550.4mA;
PsNegCurrentClamp := Supply 1, -500.0mA;
PsNegCurrentClampMin := Supply 1, -550.4mA;
PsNegCurrentClampMax := Supply 1, 0.0A;
PsSlewRate := Supply 1, 1mS;
PsFilter := Supply 1, TRUE;
PsSequenceTime := Supply 1, 0ms;

End Example

end ate

Note the relationship between PsSequenceWindow and PsSequenceTime.
PsSequenceWindow defines a window of time in which all power supply sequencing
must occur, so the PsSequenceTime value must be within that window of time. This
approach to controlling power supply sequencing is similar to the approach for controlling
signal sequencing, which is described in Signal Sequence Control on page 3-23.
Languages, Vol. II, R2007.1 3-27
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
3.6.7 Fixture Controls
The Fixture Controls parameters let you control custom test fixtures if they are available
on your tester.

A complete BNF syntactical representation of the Fixture Controls parameters follows:

Fixture ::= (SocketType | VernierRange | FixtureOffset)

VernierRange ::= “vernierrange” “:=” Time

SocketType ::= “sockettype” “:=” <socketTypeName>

FixtureOffset ::= “fixtureoffset” “:=” [“-”] Time

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

The FixtureOffset parameter accepts a time value, and the value can be negative as well
as positive. Use this value to specify an offset caused by a custom test fixture. The default
is 0ns.

The SocketType parameter specifies the type of socket used by the tester. Legal values
are tester-specific and are documented in the chapter for your specific WaveBridge.

The VernierRange parameter accepts a time value. The default is 0ns.

NOTE
Since all of the Fixture Controls parameters are tester-specific in nature, the following
descriptions and examples are for general discussion only. See the WaveBridge
chapter for your specific tester to see if Fixture Controls parameters are supported.

Table 3-6. Fixture Controls

TCL Parameter Data Type Description

FixtureOffset time Delay introduced by cables to fixture

SocketType string Name of supported fixture

VernierRange time Edge adjustment range (per pin)
3-28 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
Each tester pin has a set of timing verniers that allow you to adjust the edges of the timing
generator driving that pin. The value of the VernierRange TCL parameter expresses the
range within which you can adjust base timing generator values on tester pins. The default
value may vary depending upon the tester.

Each edge on each pin has an adjustment range of plus or minus half the value for
VernierRange. Each SocketType, as defined for the specific socket available with
supported testers, has an implied time value (based upon factory specifications) that is
associated with it. You cannot change this implied value. The implied value is divided by
two and subtracted from all force edges and added to all compare edges to yield the
available range of adjustment for the pin.

A similar adjustment is also done with the FixtureOffset parameter; the value for
FixtureOffset value is subtracted from all force edges and added to all compare edges, but
the FixtureOffset value is not divided by two before this operation.

To calibrate for the path delay of the fixture and socket, the pathdelay TDS Standard
Relational Format (SRF) keyword in the TDS Pin Assignment file supplies the delay
value. This value is subtracted from all force edges and added to all compare edges. The
value you provide for pathdelay specifies the total delay for a signal.

An example using the signal enable follows.

A TCL file fragment with Fixture Control parameters:

Start Example

ate
SocketType := ”OPEN_IO”;
VernierRange := 20ns;
FixtureOffset := 2ns;

End Example

end ate

Corresponding Pin Assignment file entry showing the relation for the signal enable:

Start Example

#% signal pathdelay edge1_delay edge2_delay

End Example

enable -1.5ns -100ps 50ps
Languages, Vol. II, R2007.1 3-29
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
NOTE
The relations expressed by the edge<n>_delay values in the Pin Assignment file do not
affect the VernierRange adjustment.

Table 3-7 shows the final vernier adjustment range available at various stages of the
definition process.

3.6.8 Force/Compare/Drive Constraints
The Force/Compare/Drive Constraints parameters are used for constraints on the
corresponding type of tester waveform.

The term “drive” describes when a switch from forcing to comparing occurs within one
cycle. The minimum pulse or window width is expressed with the Pulse and Window
modifiers. The resolution of the three parameter types is described using the Resolution
modifier. Additionally, strobe types being Forced, Compared, or Driven can be
distinguished using the IsBiDir, IsEdge, IsInput, IsOutput, or IsWindow qualifiers used
to differentiate the type of strobe type being evaluated.

Table 3-8 lists the Force/Compare/Drive Constraint statements.

Table 3-7. Example Vernier adjustment ranges

Stage of Definition Process Range Range

Initial VernierRange value (20ns) -10ns, +10ns -10ns, +10ns

After SocketType value (implied value of
1.20ns) is applied

-9.4ns, +10.6ns -10.6ns, +9.4ns

After FixtureOffset value (2ns) is applied -7.4ns, +12.6ns +7.4ns, -12.6ns

After pathdelay value (-1.5ns) is applied -4.4ns, +15.6ns +4.4ns, -15.6ns

Table 3-8. Force/Compare/Drive Constraint statements

TCL Parameter Data Type Description

ForcePulseMin time Minimum pulse width between T1 and T2

ForceResolution time Forcing edges must be modulo this resolution

DelayChannelRange Range Number of forcing resources used for “edge delay”

ForceChannelRange Range Number of forcing tester resources
3-30 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
Figure 3-3 is a conceptual model of the application of Force/Compare/Drive Constraints.

ForceMatchResolution time TimePlate matching force edge resolution

CompareWindowMin time Minimum window width between T1 and T2

CompareResolution time Compare edges must be modulo this resolution

CompareEdgeRange Range Maximum number of edge strobes

CompareMatchResolution time TimePlate matching compare edge resolution

CompareType Edge | Window |
Both

Edge or window strobes only or both

CompareWindowRange Range Range of compare window tgs

IOswitchDeadZone time No events can exist in the specified time around I/O

Drive2CompareConstraints time Specifies a time distance to maintain between compare
time and drive time.

DriveOnMin time Minimum time between T1 and T2 (driver enabled)

DriveOffMin time Minimum time between T2 and T0(2) (driver disabled)

DriveResolution time Drive enable/disable times must be modulo this
resolution

DriveMatchResolution time TimePlate matching drive edge resolution

DriveChannelRange Range Number of I/O switching tester resources

IsBiDir None Qualifies strobe type is BiDirectional

IsEdge None Qualifies strobe type is an Edge

IsInput None Qualifies strobe type is Input

IsOutput None Qualifies strobe type is Output

IsWindow None Qualifies strobe type is a Window

SpikePulseMin time Minimum pulse width between T1 and T2 (TDS
ProbeBridge only)

MonitorModeDeadMin time Minimum time between force T1 and compare T1

Table 3-8. Force/Compare/Drive Constraint statements (continued)

TCL Parameter Data Type Description
Languages, Vol. II, R2007.1 3-31
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
A complete BNF syntactical representation of the Force Constraints parameter follows:

Force ::= (ForceChannelRange | ForcePulseMinimum | ForceConstraints
| ForceResolution | ForceMatchResolution |DelayChannelRange)

ForceChannelRange ::= “forcechannelrange” Subscript “:=” Range

DelayChannelRange ::= “delaychannelrange” Subscript “:=” Range

Subscript ::= [“[” <constIndex> “]”]

Range ::= IntRange [“pins” PinRange] [“per” <perValue>]

IntRange ::= <lowerBound> “..” <upperBound>

PinRange ::= <lowerBound> “..” <upperBound>

Figure 3-3. Example Force/Compare/Drive Constraints

T0 T0(1)
| : --:------------------ |
|<-- T0..T1 >= min ---->: |<-- ForcePulseMin -->| |
|-------------------------- : ----------------|
| : ^ : ForceResolution ^ |
| :.....: |
|<-- T0..T1 <= max -----------> |
| |
| |
| : : |
|<-- T0..T1 >= min ------>: ------------------------ |
|- - - - - - - - - - - - -:- |<-- CompareWindowMin -->|-- - - - - |
| : ------------------------ |
| : ^ : CompareResolution ^ |
| :.....: |
|<-- T0..T1 <= max -------------> |
| |
| ------- -------- |
|<-- T0..T1 >= min ---->: : | | - - - |////////|- - |
| - - - - - - - - - - - :- ---- ------ -------- |
| : ******************* |
| : <-- DriveOnMin -->|<-- DriveOffMin --->|
3-32 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
ForcePulseMinimum ::= “forcepulsemin” “:=” Time

ForceConstraints ::= “forceconstraint” Subscript “:=” TimeExpr

ForceResolution ::= “forceresolution” “:=” Time

ForceMatchResolution ::= “forcematchresolution” “:=” Time

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

A complete BNF syntactical representation of the Compare Constraints parameter follows:

Compare ::= (CmpControl | CmpConstraints | CmpMatchResolution |CmpResolution |
CmpWindowMinimum)

CmpControl ::= (CmpEdgeRange | CmpWindowRange | CmpStrobeType)

CmpEdgeRange ::= “compareedgerange” Subscript “:=” Range

CmpWindowRange ::= “comparewindowrange” Subscript “:=” Range

Range ::= IntRange [“pins” PinRange] [“per” <perValue>]

CmpStrobeType ::= “comparetype” “:=” (“edge” | “window” | “both”)

CmpConstraints ::= “compareconstraint” Subscript “:=” TimeExpr

CmpMatchResolution ::= “comparematchresolution” “:=” Time

CmpResolution ::= “compareresolution” “:=” Time

CmpWindowMinimum ::= “comparewindowmin” “:=” Time

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

A complete BNF syntactical representation of the Drive Constraints parameter follows:

Drive := (DriveControl | DrivePulseMinimum | DriveResolution)

DriveControl ::= (DriveChannelRange | DriveMatchResolution
| DriveConstraints | DriveOnMinimum | DriveOffMinimum)

DriveChannelRange ::= “drivechannelrange” Subscript “:=” Range
Languages, Vol. II, R2007.1 3-33
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Range ::= IntRange [“pins” PinRange] [“per” <perValue>]

DrivePulseMinimum ::= “drivepulsemin” “:=” Time

DriveResolution ::= “driveresolution” “:=” Time

DriveMatchResolution ::= “drivematchresolution” “:=” Time

DriveConstraints ::= “driveconstraint” Subscript “:=” TimeExpr

Drive2CompareConstraints := drive2compareconstraints” “:=” Time

DriveOnMinimum ::= “driveonmin” “:=” Time

DriveOffMinimum ::= “driveoffmin” “:=” Time

IOswitchDeadZone ::= “ioswitchdeadzone” “:=” <time>

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

The <constIndex> is a numeric value enclosed in brackets ([]) that is used to
differentiate among constraints when there are multiple instances of the constraint
allowed, as in ForceConstraint[1]. See page 3-36 for an example of the use of
<constIndex>.

The ForceMatchResolution, CompareMatchResolution, and DriveMatchResolution
parameters are used by the TimePlate matching step in WaveBridge, TimePlate Match
Conditioner, and SequenceMatch Conditioner. The values represented by these
parameters default to 0ns if they are not specified in the TCL file. The settings describe the
tolerance around force, compare, and I/O switching edges that is used to give the
TimePlate matching process in WaveBridge more leeway in matching. The Channel
modifier is used to describe the number of timing resources that are available for the
various types of channels.

The ForceChannelRange parameter describes the number of available forcing timing
generators.

The CompareChannelRange parameter describes the number of available comparing
timing generators.

The Drive2CompareConstraints parameter (sometimes referred to as a “round-trip”
delay) performs a DriveOff to Compare strobe timing measurement where a signal
originates in the Pin driver, goes to the DUT, and then returns back to the Comparator. No
3-34 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
other time measurement allows the interaction between the fundamental types, Drive and
Compare.

This parameter is used on testers that require that the Compare time be kept a certain
distance from the Drive timing due to DUT and Pin driver cable delays.

The DriveChannelRange parameter describes the number of available driver timing
resources.

The DelayChannelRange parameter describes the number of forcing timing generators
used for programming a delay edge on those testers that support delay edges.

The first part of the range describes the inclusive set of timing generators that are
available. The optional pin clause describes how a range of timing generators are restricted
to a range of pins.

The Channel parameters allow arrays to be specified so that several timing
generator-to-pin constraints can be described.

The per reserved word begins a TCL clause that modifies CompareChannelRange,
DriveChannelRange, and ForceChannelRange TCL parameters.

The per reserved word permits you to assign available timing generators (channels) to
groups of pins within the range of available pins using the <perValue> to specify the
group size. For example:

CompareChannelRange[2] := 3..6 pins 1..256 per 32;

means that you are assigning timing generators 3 through 6 to be available for pins 1
through 256, with unique assignment of timing generators within sub-ranges of 32-pin
groups.

The IOswitchDeadZone parameter specifies the amount of time on either side of an I/O
switch in which no events can exist. An example follows:

Start Example

End Example

IOswitchDeadZone := 5ns;

The MonitorModeDeadMin parameter specifies the time from the leading edge of the
input data region to the leading edge of the compare window, and also from the trailing
edge of the compare window to the trailing edge of the input data region.
Languages, Vol. II, R2007.1 3-35
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
The example below, shows that timing generators 1 through 8 inclusive can be used for
either Force or Compare channels with no pin restrictions. Timing generators 9 through
16 are restricted to pins 1 to 64, 19 through 26 are restricted to pins 65 to 128, and 27
through 34 are restricted to pins 129 to 192.

Example of channel modifier usage:

Start Example

ForceChannelRange[1] := 1..8;
ForceChannelRange[2] := 9..16 pins 1..64;
ForceChannelRange[3] := 19..26 pins 65..128;
ForceChannelRange[4] := 27..34 pins 129..192;
CompareChannelRange[1] := 1..8;
CompareChannelRange[2] := 9..16 pins 1..64;
CompareChannelRange[3] := 19..26 pins 65..128;
CompareChannelRange[4] := 27..34 pins 129..192;
DriveChannelRange[1] := 13..18;

End Example

DriveChannelRange[2] := 35..36;

You can impose your own restrictions on how timing generators are assigned to pins using
the channel parameters (available on testers that require more than one timing generator
per pin). A simpler alternative is to use the tgusage statement in the Pattern Load
Directives block.

Table 3-9 lists the Timing Constraints supported.

The ForceConstraint, CompareConstraint, and DriveConstraint parameters let you
describe multiple timing constraints by specifying an array. The example below shows
some of these parameters combined with timing expressions.

Example of Force, Compare, and Drive parameters combined with timing expressions:

Table 3-9. Timing Constraints supported

TCL Parameter Data Type Description

ForceConstraint TimeExpr Timing constraint expression

CompareConstraint TimeExpr Timing constraint expression

DriveConstraint TimeExp Timing constraint expression
3-36 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
Start Example

ForceConstraint[1] := T1..T1(1) > 50ns;
ForceConstraint[2] := T2..T1(1) > 30ns;
ForceConstraint[3] := T2..T2(1) > 70ns;
ForceConstraint[4] := T2..T0(2) > 300ns;
ForceConstraint[5] := T2..T0(1) > 20ns;
CompareConstraint[1] := T1..T1(1) > 50ns;
CompareConstraint[2] := T2..T1(1) > 30ns;
CompareConstraint[3] := T2..T2(1) > 20ns;
CompareConstraint[4] := T2..T0(2) > 300ns;
CompareConstraint[5] := T3..T1(1) > 50ns
DriveConstraint[1] := T1..T1(1) > 60ns;
DriveConstraint[2] := T2..T2(1) > 60ns;

End Example

DriveConstraint[3] := T2..T0(2) > 60ns;
Languages, Vol. II, R2007.1 3-37
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Figure 3-4 lists a conceptual model of timing constraints.

TCL produces the following messages identifying syntactic errors associated with the
Format/Compare/Drive Constraints block:

Figure 3-4. A conceptual model of Force, Compare, and Drive parameters combined with timing
expressions

T0 T0(1) T0(2)
| -------- | ---------- |
| | | | | | |
|------ ---------------|-------------- --------|
| |<---------- T1..T1(1)----------------->| | |
| |<- T2..T1(1) ---------------->| | |
| |<- T2..T2(1) --------------------------->| |
| |<- T2..T0(2) ------------------------------------>|
| |<- T2..T0(1)-->| |
- - - -	/////////////	--------	-----------	///////////////	- - -				
-------------	---------------								
	<---------------------- T1..T1(1)->								
	<-------- T2..T1(1)->								
	<-------- T2..T2(1) ---------------->								
	<-------- T2..T0(2) ----------------------->								
----	-----------								
		- - - - - - - -	- - - - - - - - -	///////////	- -				
----- -----	-----------								
<- T3..T1(1) ------------------->									
-----------	--------								
---	///////////	- - - - - - - -	- - - - - - - - - -						
-----------	------								
	<- T2..T1(1) --------------------->								
---- ---	---- ----								
		- -	///	-	- - -		- - -	////	- -
- - - ----- --- ---	---- -- ----								
**************	************								
3-38 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
Range lower bound greater than upper bound.

Range lower bound less than 1.

Range overlaps previous range.

Pin lower bound greater than upper bound.

Pin lower bound less than 1.

Pin upper bound greater than PinInOutMax value.

3.6.9 Format Controls
The Format Controls parameters let you control the number of unique sets of formats that
a format-on-the-fly test supports.

Table 3-10 lists Format Controls.

A complete BNF syntactical representation of the Format Controls parameter follows:

CycleSteal ::= “cyclesteal” “:=” Boolean

FormatSet ::= “formatsetmax” “:=” <formatsetMaximum>

FormatCharMap ::= “formatcharmap” “:=” <formatCharMap>

The CycleSteal TCL parameter is used to allow WaveBridge to produce test programs that
require “dead cycles” on testers that support cycle steal.

When changing format/mask/invert data, micro-instruction execution time on the tester
may be longer than one tester cycle (in the case of small cycle lengths). Under this
circumstance, the tester holds all inputs at the level they ended the previous cycle, and
masks all outputs, for one or more cycles (whatever is required to finish the
micro-instructions). Dynamic devices may not work correctly due to this (because of
critical timing relationships across cycles). Use the TCL statement:

Table 3-10. TCL Format Controls

TCL Parameter Data Type Description

CycleSteal Boolean Suppress/enable cycle steals by tester

FormatChartMap string Redefine set of format characters

FormatSetMax integer Maximum number of format sets available
Languages, Vol. II, R2007.1 3-39
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
CycleSteal := false;

to instruct WaveBridge not to perform microcode operations that require cycle steals on
the tester.

On certain testers, the FormatCharMap TCL parameter lets you override the set of
character definitions, if this is allowed on your tester. The <formatCharMap> expresses
the mapping relationship between two character strings. The first string of characters is
mapped to the second string of characters. The two strings are separated by colons, before,
after, and between, as in the example:

FormatCharMap := “:A:r:”

See the chapter for your specific WaveBridge in the appropriate TDS tester guide to see if
this feature is supported for your tester.

If a tester’s architecture allows format switching on the fly, the FormatSetMax parameter
describes how many unique format sets are available. The FormatSetMax parameter is
required on testers that can switch formats on-the-fly and is ignored on testers that assign a
single format to a pin.

3.6.10 Loop Constraints
The Loop Constraints parameter controls the utilization of loops in your test program,
depending on your tester’s capabilities. A loop is a labeled collection of pattern rows,
subroutine calls, repeats, or loops, that can be repeated a specified number of times.

Example WGL loops:

Start Example

waveform loop1
 signal a : input; end
 pattern load (a)
 loop 101
 vector (+) := [1];
 end
 loop 5
 vector (+) := [1];
 vector (+) := [-];
 vector (+) := [1];
 vector (+) := [-];
 repeat 2 vector (+) := [1];
 repeat 10 vector (+) := [X];
3-40 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
 end
 loop 5
 vector (+) := [Z];
 vector (+) := [Z];
 vector (+) := [-];
 vector (+) := [Z];
 loop 4
 vector (+) := [-];
 vector (+) := [Z];
 vector (+) := [-];
 vector (+) := [1];
 loop 3
 vector (+) := [X];
 vector (+) := [Z];
 vector (+) := [1];
 vector (+) := [0];
 end
 end
 end
 end

End Example

end
Languages, Vol. II, R2007.1 3-41
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Table 3-11 lists Loop Constraints.

A complete BNF syntactical representation of the Loop Constraints parameter follows:

Loop ::= (LoopCompression | LoopCountMaximum | LoopCountMinimum |
LoopNest | LoopRowMinimum |LoopRowMaximum
| LoopConstraint)

LoopConstraint ::= (LoopSpacingMin | LoopAtStartLegal
| LoopAtEndLegal| LoopRepeatCountMinimum
| LoopRepeatCountMaximum)

LoopCompression ::= “loopcompression” “:=” Boolean

LoopCountMaximum ::= “loopcountmax” “:=” <loopCountMaximum>

LoopCountMinimum ::= “loopcountmin” “:=” <loopCountMinimum>

LoopNest ::= “loopnestmax” “:=” <loopNestMaximum>

Table 3-11. Loop Constraints

TCL Parameter Data Type Description

LoopCompression Boolean Multi-row loop compression legal

LoopCountMin integer Minimum times the multi-row loop must iterate

LoopCountMax integer Maximum times the multi-row loop can iterate

LoopNestMax integer Maximum levels of multi-row loop nesting

LoopRowMax integer Maximum pattern rows in multi-row loop definition

LoopRowMin integer Minimum pattern rows in multi-row loop definition

LoopAtEndLegal Boolean TRUE if multi-row loop legal at end of test program

LoopAtStartLegal Boolean TRUE if multi-row loop legal at start of test program

LoopRepeatCountMin integer Minimum count for single-row repeat inside multi-row
loop

LoopRepeatCountMax integer Maximum count for single-row repeat inside multi-row
loop

LoopSpacingMin integer Minimum count for pattern rows necessary between
adjacent subroutine calls, single-row repeats, or
multi-row loops
3-42 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
LoopRowMinimum ::= “looprowmin” “:=” <loopRowMinimum>

LoopRowMaximum ::= “looprowmax” “:=” <loopRowMaximum>

LoopSpacingMin ::= “loopspacingmin” “:=” <loopSpaceMin>

LoopAtStartLegal ::= “loopatstartlegal” “:=” Boolean

LoopAtEndLegal ::= “loopatendlegal” “:=” Boolean

LoopRepeatCountMinimum ::= “looprepeatcountmin” “:=” <loopRepeatMinimum>

LoopRepeatCountMaximum ::= “looprepeatcountmax” “:=” <loopRepeatMaximum>

If multi-row loop compression is not legal on the tester (or not desired), the
LoopCompression parameter is set to false.

The minimum and maximum restrictions on the number of pattern rows contained in the
body of a loop are described by the LoopRowMin and LoopRowMax parameters. The
maximum iteration count of the loop is described by the LoopCountMax parameter.

The LoopNestMax parameter describes to what level internal loops may be contained
within an outermost loop. The default for this parameter is zero (0), no nesting allowed.

The LoopAtEndLegal parameter describes whether it is legal to have a loop at the very
end of the test program’s pattern rows.

The LoopAtStartLegal parameter describes whether it is legal to have a loop at the very
start of the test program’s pattern rows.

The LoopRepeatMin and LoopRepeatMax parameters describe limitations on the
iteration count of single-row repeats inside of multiple-row loops. Note that
LoopRepeatMin and LoopRepeatMax are essentially the same values described by the
RepeatCountMin and RepeatCountMax parameters but are used to limit repeats
occurring within defined loops.

3.6.11 Microcode Constraints
The Microcode Constraints parameter controls your tester’s limitations on the amount of
microcode memory used to store test program control information.
Languages, Vol. II, R2007.1 3-43
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Table 3-12 lists Microcode Constraints.

A complete BNF syntactical representation of the Microcode Constraints parameter
follows:

MicroCode ::= (McodeRowMaximum | McodeRepeatCost
| McodeSubrCost | McodeCallCost | McodeLoopCost)

McodeRowMaximum ::= “microcoderowmax” “:=” <microcodeRowMaximum>

McodeRepeatCost ::= “microcoderepeatcost” “:=” <microcodeRepeatCost>

McodeSubrCost ::= “microcodesubrcost” “:=” <microcodeSubrCost>

McodeCallCost ::= “microcodecallcost” “:=” <microcodeCallCost>

McodeLoopCost ::= “microcodeloopcost” “:=” <microcodeLoopCost>

Each of the four microcode control mechanisms has an associated cost in terms of the
number of microcode rows they consume, and this is denoted by the Cost modifier.

Single row loops are denoted by the Repeat modifier and describe a test program row that
is repeated some number of times. Multiple row loops are denoted by the Loop modifier
and describe a sequence of test program rows that are repeated some number of times.

Subroutine definitions are denoted by the Subr modifier and describe a block of test
program rows that are invoked or called from other locations in a test program. When the
subroutine block is finished, control returns to the row after the invocation.

Table 3-12. Microcode Constraints

TCL Parameter Data Type Description

MicroCodeRowMax integer Maximum microcode rows in the tester

MicroCodeRepeatCost integer Maximum microcode rows used by a
single-row repeat

MicroCodeSubrCost integer Maximum microcode rows used by a
subroutine definition

MicroCodeCallCost integer Maximum microcode rows used by a
subroutine call

MicroCodeLoopCost integer Maximum microcode rows used by a
multi-row loop
3-44 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
Subroutine invocations are denoted by the Call modifier and describe where the flow of
control changes to a subroutine block.

The total size of microcode memory is described by the MicroCodeRowMax parameter.
The integer represents the number of rows (not bytes or words).

3.6.12 Multiple Clocking Constraints
The Multiple Clocking Constraints parameter describes your tester’s capability to generate
a multiple-pulse forcing waveform.

Figure 3-5 is an example of a multiclock cycle.

The T1 and T2 edges locate the rising and falling edges of the clock and the R rate locates
the clock period of the multiclock waveform. This clock period is the duty cycle with
which the multiclock waveform may repeat itself. The count field describes how many
clock periods to fit between T0 and T0(1).

A complete BNF syntactical representation of the Multiple Clocking Constraints
parameter follows:

Mclk ::= (MclkType | MclkRate | MclkLeading | MclkTrailing
| MclkRecovery | MclkEdgeResolution | MclkCountMaximum)

MclkType ::= “multiclocktype” “:=” (“none” | “cyclic” | “acyclic”)

MclkRate ::= (MclkRateResolution | MclkRateMinimum
| MclkRateMaximum)

MclkLeading ::= (MclkLeadingMinimum | MclkLeadingMaximum)

Figure 3-5. Example multiclock cycle

T0 count = 3 T0(1)
| ---------- ---------- ---------- |
| | | | | | | |
|----- ---------- ---------- -----|
| T1 T2 R T3 T4 T5 T6 |
| |
| |<-------->| MultiClockPulseMin |
Languages, Vol. II, R2007.1 3-45
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
MclkTrailing ::= (MclkTrailingMinimum | MclkTrailingMaximum)

MclkRecovery ::= (MclkPulseMin | MclkConstraints)

MclkEdgeResolution ::= “multiclockedgeresolution” “:=” Time

MclkCountMaximum ::= “multiclockcountmax” “:=” <countMaximum>

MclkRateResolution ::= “multiclockrateresolution” “:=” Time

MclkRateMinimum ::= “multiclockratemin” “:=” Time

MclkRateMaximum ::= “multiclockratemax” “:=” Time

MclkLeadingMinimum ::= “multiclockleadingmin” “:=” Time

MclkLeadingMaximum ::= “multiclockleadingmax” “:=” Time

MclkTrailingMinimum ::= “multiclocktrailingmin” “:=” Time

MclkTrailingMaximum ::= “multiclocktrailingmax” “:=” Time

MclkPulseMin ::= “multiclockpulsemin” “:=” Time

MclkConstraints ::= “multiclockconstraint” Subscript “:=” TimeExpr

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)
3-46 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
Table 3-13 lists Multiple Clocking Constraints.

Figure 3-6 shows that the T1 and T2 edges must reside on a boundary defined by the
MultiClockEdgeResolution parameter. The R rate must reside on a boundary defined by
the MulticCockRateResolution parameter. The pulse specified by T1, T2, and R, is
repeated any number of times that is less than the value of the MultiClockCountMax
parameter.

Table 3-13. Multiple Clocking Constraints

TCL Parameter Data Type Description

MultiClockType None, Cyclic, Acyclic Tester multiclock type

MultiClockConstraint TimeExpr Timing constraint for multiclock

MultiClockCountMax integer Maximum number of periods in cycle

MultiClockRateMin time Multiclock rate (duty cycle) minimum

MultiClockRateMax time Multiclock rate (duty cycle) maximum

MultiClockRateResolution time Multiclock period (duty cycle) resolution

MultiClockLeadingMin time Minimum time between T0 and T1 (to leading
clock edge)

MultiClockLeadingMax time Maximum time between T0 and T1

MultiClockTrailingMin time Minimum time between T0 and T2 (to trailing
clock edge)

MultiClockTrailingMax time Maximum time between T0 and T2

MultiClockEdgeResolution time T1 and T2 edges must be modulo this
resolution

MultiClockPulseMin time Minimum time for high pulses
Languages, Vol. II, R2007.1 3-47
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language

3.6.13 Pattern ATE Controls
The Pattern ATE Controls parameters let you describe your tester’s pattern row
limitations. Table 3-14 lists Pattern ATE Controls.

Figure 3-6. Example of Multiclock Constraints

Table 3-14. Pattern ATE Controls

TCL Parameter Data Type Description

PatternBoundary integer Compression boundary limitation

PatternCompression YES | NO |
THRESHOLD

Compression search starts if pattern rows
larger than this

PatternRowMax integer Maximum number of pattern rows allowed on
tester

BurstRowMax integer Maximum number of pattern rows allowed per
burst (pattern load)

CompressionMemRowMax integer Maximum number of pattern rows allowed in
special memory

IORowMax integer Maximum number of pattern rows allowed in
special memory

T0
|<- MultiClockLeadingMax ----------->
|
| : ------------ :
|<- MultiClockLeadingMin ->: | : : | : : :
|------------------------------ : : ------------- ...(n count)
| : T1 : : T2 : : R :
| :........: : : : :
|<- MultiClockTrailingMin ------------->:........: : :
|<- MultiClockTrailingMax -----------------------> : :
|<--------------------------- MultiClockRateMin ----->:......:
|<--------------------------- MultiClockRateMax ------------->
3-48 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
A complete BNF syntactical representation of the Pattern ATE Controls parameter
follows:

Pattern ::= (PatCompression | PatBoundary | PatRowMaximum
| PatBurstMaximum | CompressionMemRowMax
| IORowMax | MaskRowMax | HizRowMask)

PatCompression ::= “patterncompression” “:=” (“yes” | “no”
| “threshold”)

PatBoundary ::= “patternboundary” “:=” <compressionValue>

PatRowMax ::= “patternrowmax” “:=” <patternRowMaximum>

PatBurstMax ::= “burstrowmax” “:=” <burstRowMaximum>

CompressionMemRowMax ::= “compressionmemrowmax” “:=” RowMax

IORowMaximum ::= “iorowmax” “:=” RowMax

MaskRowMaximum ::= “maskrowmax” “:=” RowMax

HizRowMaximum ::= “hizrowmax” “:=” RowMax

RowMax ::= (“patternrowmax” | <rowMaximum>)

The PatternBoundary parameter describes the legal limits for compression constructs.
Multi-row loops and subroutine bodies may not cross rows that are numeric multiples of
this setting. For example:

PatternBoundary := 50

places boundary limits at pattern row 50, 100, 150, and so on.

The PatternCompression parameter specifies whether to allow compression as described
by the TCL compression constraints (YES), disable compression (NO), or compress only

MaskRowMax integer Maximum number of pattern rows allowed in
special memory

HizRowMax integer Maximum number of pattern rows allowed in
special memory

Table 3-14. Pattern ATE Controls (continued)

TCL Parameter Data Type Description
Languages, Vol. II, R2007.1 3-49
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
if you require the test program to have a smaller number of pattern rows as is specified in
the PatternRowMax parameter (THRESHOLD).

The PatternRowMax parameter describes the upper limit on tester memory for storing
rows of pattern bits. A test program may be partitioned into smaller groups by means of
the TCL burst specification described in Pattern Load Directives on page 3-103. If there
is a tester limit on the size of a burst, the BurstRowMax parameter is set to it.

The PatternCompression and PatternRowMax parameters are required in the tester
TCL file. The BurstRowMax parameter is only required on those testers that have
limitations on a burst’s partition size.

The CompressionMemRowMax parameter specifies how large (in rows) the special
tester memory is that contains compression constructs such as loops and subroutines that
may not be legal in the primary tester memory. The user-defined value <rowMaximum> is
tester-specific, depending on the size of the memory available on your tester. See the
chapter for your WaveBridge for this value.

The IORowMax, HizRowMax, and MaskRowMax parameters let you specify the
maximum number of rows for I/O memory, high impedance memory, and mask memory,
if these features are supported on your tester. See the chapter for your WaveBridge in the
appropriate TDS tester guide to see if your tester supports these features.

The ScanPatternMin and ScanPatternMax parameters are used in the Pattern Controls
parameter syntax. These parameters are discussed in Scan Controls on page 3-59.

3.6.14 Timeout Control
The Timeout Control parameters specify the pattern generator timeout value and limits.

The complete TCL BNF syntactical representation for TimeOut, TimeOutMax, and
TimeOutMin are as follows.

Start Example

TimeOut := TimeValue;
TimeOutMax := TimeValue;
TimeOutMin := TimeValue;
TimeValue := (<intTime> | <floatTime>) [TimeUnit]

End Example

TimeUnit := (“us” | “ms” | “s”)
3-50 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
The following example shows how to override the default pattern generator timeout value
using the TCL Timeout entry.

Start Example

Ate
Timeout := 10S;

End Example

End Ate

3.6.15 Pin ATE Controls
The Pin ATE Controls parameters let you define the number of input, output, or
bidirectional pins your tester supports.

Table 3-15 lists Pin ATE Controls.

A complete BNF syntactical representation of the Pin ATE Controls parameter follows:

Pin ::= (PinInOutMaximum | PinInOutMinimum | PinInMaximum
| PinOutMaximum)

PinInMax ::= “pininmax” “:=” <pinInMaximum>

PinInOutMax ::= “pininoutmax” “:=” <pinInOutMaximum>

PinInOutMin ::= “pininoutmin” “:=” <pinInOutMin>

PinOutMax ::= “pinoutmax” “:=” <pinOutMaximum>

If a tester architecture does not differentiate between input pins and output pins, the
PinInOutMax parameter is used. PinInOutMin can be used to set the minimum number
to zero (0), if your tester requires this value.

Table 3-15. Pin ATE Controls

TCL Parameter Data Type Description

PinInMax integer Forcing pin number range between 1 and integer

PinInOutMax integer Pin number range between 1 and integer

PinInOutMin integer Pin number range between 0 and integer

PinOutMax integer Compare pin number range between 1 and integer
Languages, Vol. II, R2007.1 3-51
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
3.6.16 Probe Constraints
The Probe Constraints parameters are used to control probe windows of board testers.

Probe windows are specialized strobes that are used in conjunction with hand-held probe
hardware on board testers. Typically, the probe window requires the use of a dedicated
ATE pin. TCL permits control over parts of the cycle containing such a probe window.
The following sections of a cycle that contains a probe window can be controlled by the
Probe Constraints parameters:

n the minimum time between the leading edge of the probe and the trailing edge of the
probe

n the minimum time between the beginning of the cycle and the leading edge of the
probe

n the maximum amount of time between the beginning of the cycle and the trailing edge
of the probe

n the valid probe ON condition

n the transition time from the valid probe OFF condition to the valid probe ON condition

n the transition time between valid probe ON to valid probe OFF

n the valid probe OFF condition
3-52 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
Table 3-16 lists Probe Constraints.

A complete BNF syntactical representation of the Probe Constraints parameter follows:

Probe ::= (Probers | Settlers | Pulsers | Monitors | Spikes)

Probers ::= (Probers1 | Probers2)

Probers1 ::= (ProbeConstraints | ProbeOpenMinimum
| ProbeOpenMaximum | ProbeWindowMinimum)

Probers2 ::= (ProbeOpenSetupTime | ProbeOpenHoldTime
| ProbeCloseSetupTime | ProbeCloseHoldTime
| ProbeDefault | ProbeSetup | ProbeHold)

ProbeConstraints ::= “probeconstraint” Subscript “:=” TimeExpr

ProbeDefault ::= “probedefault” “:=” TimeExpr

ProbeSetup ::= “probesetup” “:=” Time

ProbeHold ::= “probehold” “:=” Time

Table 3-16. Probe Constraints

TCL Parameter Data Type Description

ProbeConstraint time Timing constraint expression

ProbeOpenMin time Minimum time between T0 and T1

ProbeCloseMax time Maximum time between T0 and T2

ProbeWindowMin time Minimum time between T1 and T2

ProbeOpenSetup time Tolerance prior to T1

ProbeOpenHold time Tolerance after T1

ProbeCloseSetup time Tolerance prior to T2

ProbeCloseHold time Tolerance after T2

SettledProbeOpenDefault time Default T1 for settled probe windows

SettledProbeCloseDefault time Default T2 for settled probe windows

PulseProbeOpenDefault time Default T1 for pulse probe windows

PulseProbeCloseDefault time Default T2 for pulse probe windows
Languages, Vol. II, R2007.1 3-53
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
ProbeOpenMinimum ::= “probeopenmin” “:=” Time

ProbeOpenMaximum ::= “probeopenmax” “:=” Time

ProbeWindowMinimum ::= “probewindowmin” “:=” Time

ProbeOpenSetupTime ::= “probeopensetup” “:=” Time

ProbeOpenHoldTime ::= “probeopenhold” “:=” Time

ProbeCloseSetupTime ::= “probeclosesetup” “:=” Time

ProbeCloseHoldTime ::= “probeclosehold” “:=” Time

Settlers ::= (SettledProbeOpenDefTime | SettledProbeCloseDefTime)

SettledProbeOpenDefTime ::= “settledprobeopendefault” “:=” TimeExpr

SettledProbeCloseDefTime ::= “settledprobeclosedefault” “:=” TimeExpr

Pulsers ::= (PulseProbeOpenDefTime | PulseProbeCloseDefTime)

PulseProbeOpenDefTime ::= “pulseprobeopendefault” “:=” TimeExpr

PulseProbeCloseDefTime ::= “pulseprobeclosedefault” “:=” TimeExpr

Spikes ::= (SpikePulseMinimum)

SpikePulseMinimum ::= “spikepulsemin” “:=” Time

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

TCL supports two basic types of probes: edge probes, and window probes. Window
probes can be further differentiated as settled probes and pulse probes. A settled probe
samples a section of a cycle (“probe window”) that has no transitions within the probe
window; a pulse probe samples a section of a cycle in which transitions occur within the
probe window. The Probe, SettledProbe, and PulseProbe parameter types are used to
control open and close times for the probe edge(s), and to specify guardbands that further
limit the section of the probe window from which data is sampled.

The Probe parameter type supports edge (as opposed to window) probes. Edge probes
sample a signal’s value at only a single specified time, rather than sampling an entire
range and evaluating if the signal’s value is stable, as for a window probe.
3-54 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
Figure 3-7 is an example of a cycle with edge probe constraints.

The SettledProbe parameter type specifies start and stop probe values for testers that
support the ability to probe a stable (or “settled”) signal. Settled probes are window
probes.

Figure 3-7. Edge probe

T0 T0(1)

ProbeDefault

ProbeOpenSetup ProbeCloseHold

Simulation data must be stable within shaded region.
Languages, Vol. II, R2007.1 3-55
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Figure 3-8 is an example of a cycle with settled probe window constraints.

The PulseProbe parameter type specifies start and stop probe values and guardband
values to limit the region inside the probe window for testers that support the ability to

Figure 3-8. Settled probe window parameters

T0 T0(1)
tester sample range

SettledProbeOpenDefault

ProbeOpenSetup

SettledProbeCloseDefault

ProbeCloseHold

Simulation data must be stable within shaded region.
3-56 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
evaluate signal transitions within the probe window. Pulse probes are window probes.
Figure 3-9 is an example of a cycle with pulse probe window constraints.

Open and Close modifiers for each of the Probe constraints (as in the ProbeOpenHold
and ProbeCloseHold parameters) denote the opening and closing edges of a probe
window. The Setup modifier denotes a minimum time prior to an edge. The Hold
modifier denotes a minimum time after an edge.

The SpikePulseMinimum parameter lets you filter out short-duration pulses (spikes) in
the simulation data that are too short to have value as a settled probe. The time value
specifies the threshold below which a pulse is considered a spike. Cycles that contain
spikes can then be masked.

3.6.17 Repeat Constraints
The Repeat Constraints parameter controls the utilization of repeats in your test program,
depending on your tester’s capabilities. A repeat is a single-row of pattern data or a
subroutine call that can have an iteration count.

Below is an example of repeats in a WGL program file.

Figure 3-9. Pulse probe window

T0 T0(1)

PulseProbeOpenDefault PulseProbeCloseDefault

ProbeOpenSetup

ProbeOpenHold ProbeCloseSetup

ProbeCloseHold

tester sample range

Simulation data must be stable within shaded region.
Languages, Vol. II, R2007.1 3-57
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Start Example

waveform repeat1
 signal a : input; end

 pattern load (a)
 repeat 10 vector (+) := [1];
 vector (+) := [0];
 vector (+) := [-];
 repeat 2 vector (+) := [0];
 repeat 101 vector (+) := [-];
 vector (+) := [Z];
 vector (+) := [X];
 repeat 15 vector (+) := [-];
 end

End Example

end

Table 3-17 lists Repeat Constraints.

A complete BNF syntactical representation of the Repeat Constraints parameter follows:

Repeats ::= (RepeatCompression | RepeatConstraint
| RepeatCountMinimum | RepeatCountMaximum)

Table 3-17. Repeat Constraints

TCL Parameter Data Type Description

RepeatCompression Boolean Single-row loop compression legal

RepeatAtStartLegal Boolean TRUE if single-row loop legal at start of test program

RepeatAtEndLegal Boolean TRUE if single-row loop legal at end of test program

RepeatInSubrLegal Boolean TRUE if single-row loop legal in subroutine definition

RepeatAtSubrStartLegal Boolean TRUE if single-row loop legal at subr def start

RepeatAtSubrEndLegal Boolean TRUE if single-row loop is legal in multi-row loop

RepeatInLoopLegal Boolean TRUE if single-row loop is legal in multi-row loop

RepeatCountMin integer Minimum repeat count for a single-row loop

RepeatCountMax integer Maximum repeat count for a single-row loop
3-58 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
RepeatCompression ::= “repeatcompression” “:=” Boolean

RepeatConstraint ::= (RepeatAtStartLegal | RepeatAtEndLegal
| RepeatInSubrLegal | RepeatInLoopLegal
| RepeatAtSubrStartLegal | RepeatAtSubrEndLegal)

RepeatAtStartLegal ::= “repeatatstartlegal” “:=” Boolean

RepeatAtEndLegal ::= “repeatatendlegal” “:=” Boolean

RepeatAtSubrStartLegal ::= “repeatatsubrstartlegal” “:=” Boolean

RepeatAtSubrEndLegal ::= “repeatatsubrendlegal” “:=” Boolean

RepeatInSubrLegal ::= “repeatinsubrlegal” “:=” Boolean

RepeatInLoopLegal ::= “repeatinlooplegal” “:=” Boolean

RepeatCountMinimum ::= “repeatcountmin” “:=” <repeatCountMinimum>

RepeatCountMaximum ::= “repeatcountmax” “:=” <repeatCountMaximum>

If single-row loop compression is not legal on the tester (or not desired), the
RepeatCompression parameter is set to false.

The RepeatCountMin and RepeatCountMax parameters describe limitations on the
iteration count.

The RepeatInSubrLegal and RepeatInLoopLegal parameters describe the availability of
the single-row repeat capability within subroutines and multiple-row loops.

The RepeatAtStartLegal and RepeatAtEndLegal parameters describe whether it is legal
to have a single-row repeat on the first or last row of a test program. The
RepeatAtSubrStartLegal and RepeatAtSubrEndLegal parameters describe the same
constraint for the first and last rows of a subroutine definition.

3.6.18 Scan Controls
The Scan Controls parameters let you define the scan cycle length, the resolution of the
scan cycle boundaries, the number of scan states, the resolution of the serial pattern
memory block, and the scan mode type.
Languages, Vol. II, R2007.1 3-59
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Table 3-18 lists Scan Controls.

A complete BNF syntactical representation of the Scan Controls parameters follows:

Scan ::= (ScanTimes | ScanPatterns | ScanType | ScanMode)

ScanTimes ::= (ScanCycleMax | ScanCycleMin | ScanCycleRes)

ScanCycleMax ::= “scancyclemax” “:=” Time

ScanCycleMin ::= “scancyclemin” “:=” Time

ScanCycleRes ::= “scancycleresolution” “:=” Time

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

ScanPatterns ::= (ScanPatternMin | ScanPatternMax | ScanPatternRes
| ScanChannelMax)

ScanPatternMin ::= “scanpatternmin” “:=” <scanPatternMin>

ScanPatternMax ::= “scanpatternmax” “:=” <scanPatternMax>

Table 3-18. Scan Controls

TCL Parameter Data Type Description

ScanCycleMax integer Maximum scan cycle length for a scan row

ScanCycleMin time Minimum scan cycle length for a scan row

ScanCycleResolution time Scan cycle length timing resolution

ScanPatternMin integer Minimum number of scan states per scan run (vector length)

ScanPatternMax integer Maximum number of scan states per scan run (vector length)

ScanPinDirection <type> Specifies theI/O direction on a scan pin

ScanChannelMax integer Maximum number of parallel scan chains available on the
tester

ScanPatternResolution integer Block size of serial pattern memory for scan data

ScanType <type> Scan hardware modes

ScanMode <type> Scan vector modes, serial or parallel
3-60 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
ScanPatternRes ::= “scanpatternresolution” “:=” <scanResolution>

ScanPinDirection ::= “scanpindirection” “:=” “[“ <dir_list> “];”

<dir list> ::= <direction> { “,” <direction> }

<direction> ::= (“input” | “output” | “bidir”)

ScanChannelMax ::= “scanchannelmax” “:=” <scanChannelMax>

ScanRegistersOnly ::=”scanregistersonly” (“true” | “false”) “;”

ScanType ::= “scantype” “:=” “[” ScanTypeName { “,” ScanTypeName } “]”

ScanTypeName ::= (“in” | “out” | “inout” | “mask” | “inmask”
| “feedback”)

ScanMode ::= “scanmode” “:=” (“serial” | “parallel”)

The ScanPatternMin parameter specifies the minimum number of states the tester can
have on any scan chain.

The ScanPatternMax parameter specifies the maximum number of states the tester can
have on any scan chain.

The ScanChannelMax parameter describes the number of parallel scan chains that are
available on the tester-specific scan hardware.

The ScanPinDirection parameter specifies the valid I/O direction for a pin on the
tester-specific scan hardware. More than one direction can be specified; for example:

ScanPinDirection := [input];

ScanPinDirection := [input, bidir];

The ScanPatternResolution parameter specifies the block size of the tester’s serial
pattern memory. The ScanPatternResolution parameter determines how scan states in a
scan chain are partitioned in the tester’s memory.

The ScanCycleMax, ScanCycleMin, and ScanCycleResolution parameters apply to the
period of the Scan TimePlate that is used with a ScanRow, which is a WDB pattern row
that references a scan TimePlate and one or more scan runs.

The ScanType parameter specifies the type(s) of scan operations that the tester hardware
is capable of performing. Options are: in, out, inout, mask, inmask, and
Languages, Vol. II, R2007.1 3-61
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
feedback. The ScanType parameter is a global setting for all the scan channels. The
ScanType options are described as follows:

inout means that the scan run is simultaneously shifting serial pattern data into and
out of the specified scan channels. The data shifted out is compared against expect
data in accordance with the masking data.

inmask is the same as inout except that the output data is not compared it is all
masked, no matter how the masking data is set). This is useful for initializing the scan
run (it is equivalent to inout with the mask data all on).

feedback is the same as inout except that the output data is re-shifted into the
input channel.

in shifts data in, while shifting no data out.

out shifts data out and compares it against expect, while shifting no data in.

For example, the ScanType statement:

ScanType := [inout, inmask, feedback];

specifies that a scan channel can perform three types of operations: inout, imask, and
feedback.

The ScanMode parameter can be SERIAL, or PARALLEL. The parameter indicates
whether the WaveBridge uses the special-purpose scan hardware on the tester (for
SERIAL mode), or converts the scan runs into normal parallel vectors (for PARALLEL
mode).

The ScanRegistersOnly parameter (Teradyne Catalyst and A580 only) controls the use of
original scan cell names in the output test program as opposed to having the WaveBridge
synthesize scan registers. The use of this parameter saves both time and decreases the size
of the output test program. ScanRegistersOnly directs the WaveBridge to replace scan
cell names in the input WDB with synthesized scan registers. Valid values for the
ScanRegistersOnly parameter are TRUE (default) or FALSE.

If set to FALSE the output test program will use all the original scan cell names found in
the input WDB. If set to TRUE (or not specified at all) all scan chains will be represented
by one (or more) maximum width scan registers and no original scan cell names will be
used. Enabling this parameter can typically result in twenty times faster WaveBridge
execution and fifty times smaller test programs.
3-62 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
If this feature is not desired as the default behavior the string “ScanRegistersOnly
:= FALSE;” should be added to the stock tester TCL files (or TRUE changed to FALSE
if this value already exists). The following is an example of an entry to an TCL override
file that would disable this feature:

Start Example

testcontrol scan_registers
ate
 ScanRegistersOnly := FALSE;
end

End Example

end

3.6.19 Subroutine Constraints
The Subroutine Constraints parameter controls the utilization of subroutines in your test
program, depending on your tester’s capabilities. A subroutine is a named collection of
pattern rows that can be called from other locations in the test program. There are
restrictions on the number of pattern rows contained in a subroutine as well as its
placement in the test program.

Below is an example of a subroutine in a WDB, as viewed as a Waveform Generation
Language (WGL) program file. For more information on WGL, see Chapter 2: Waveform
Generation Language in this guide.

Example WGL subroutine:

Start Example

waveform subr1
 signal a [0..31]: input hex; end

 pattern load (a)
 call s1();
 call s2();
 call s3();
 end

 subroutine s1 ()
 vector (+) := [01AF00ZZ];
 end

Languages, Vol. II, R2007.1 3-63
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
 subroutine s2 ()
 vector (+) := [01010101];
 vector (+) := [0100Z0Z1];
 vector (+) := [01110101];
 vector (+) := [0111Z0Z0];
 end

 subroutine s3 ()
 vector (+) := [0101Z101];
 vector (+) := [1101Z10Z];
 vector (+) := [0011Z01Z];
 vector (+) := [0111Z1Z0];
 vector (+) := [0101ZZZ0];
 end

End Example

end

Table 3-19 lists Subroutine Constraints.

Table 3-19. Subroutine Constraints

TCL Parameter Data Type Description

SubroutineCompression Boolean Subroutine compression legal

SubrDefnMaximum Integer Maximum number of subroutine
definitions allowed

SubroutineNestMax integer Maximum subroutine call nesting

SubroutineRowMax integer Maximum pattern rows in a subroutine
definition

SubroutineRowMin integer Minimum pattern rows in a subroutine
definition

SubroutineAtStartLegal Boolean TRUE if call is legal at start of test
program

SubroutineAtEndLegal Boolean TRUE if call is legal at end of test
program

SubroutineAfterRepeatLegal Boolean TRUE if call is legal on single-row
repeat

SubrMemoryMax Integer Maximum memory allocated for
subroutine
3-64 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
A complete BNF syntactical representation of the Subroutine Constraints parameter
follows:

Subroutine ::= (SubrCompression | SubrDefnMaximum |
SubrNestMaximum | SubrRowMaximum | SubrRowMinimum |
SubrRepeatMaximum | SubrMemoryMax | SubrCallConstraint)

SubrCompression ::= “subroutinecompression” “:=” Boolean

SubrDefnMaximum ::=”subroutinedefnmax” “:=” <suberDeferMaxer>

<suberDeferMaxer> :=numeric

SubrNestMaximum ::= “subroutinenestmax” “:=” <subrNestMaximum>

SubrRowMaximum ::= “subroutinerowmax” “:=” <subrRowMaximum>

SubrRowMinimum ::= “subroutinerowmin” “:=” <subrRowMinimum>

SubrRepeatMaximum ::= “subroutinerepeatcountmax” “:=” <subrRepeatMaximum>

SubrCallConstraint ::= (SubrAtStartLegal | SubrAtEndLegal
| SubrAfterRepeatLegal | SubrSpacingMinimum)

SubrAtStartLegal ::= “subroutineatstartlegal” “:=” Boolean

SubrAtEndLegal ::= “subroutineatendlegal” “:=” Boolean

SubrAfterRepeatLegal ::= “subroutineafterrepeatlegal” “:=” Boolean

SubrMemoryMax ::= “.subrmemorymax” “:=” numneric

SubrSpacingMinimum ::= “subroutinespacingmin” “:=” <subrSpaceMin>

SubroutineRepeatCountMax integer Maximum iteration of single-row
repeat with call

SubroutineSpacingMin integer Minimum number of rows between call

ScanInSubrLegal Boolean TRUE if scan rows in subroutines are
allowed

SubroutineInLoopLegal Boolean TRUE if it is legal to have subroutine
calls inside of loops

Table 3-19. Subroutine Constraints (continued)

TCL Parameter Data Type Description
Languages, Vol. II, R2007.1 3-65
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
If subroutine compression is not legal on the tester (or not desired), the
SubroutineCompression parameter is set to false.

The maximum number of subroutines allowed can be defined using the
SubroutineDefnMaximum parameter.

The minimum and maximum restrictions on the number of pattern rows in a subroutine
are described by the SubroutineRowMin and SubroutineRowMax parameters.

The SubroutineNestMax parameter describes to what level internal subroutine calls may
be nested during execution of the test program. The default for this parameter is zero (0),
no nesting allowed.

The SubroutineAtEndLegal and SubroutineAtStartLegal parameters describe the
constraints on a subroutine call being located at the beginning or at the end of the test
program’s pattern rows.

The SubroutineAfterRepeatLegal parameter describes whether it is legal to have a
subroutine call immediately following a pattern row that is also a single-row repeat.

The SubroutineMemoryMax parameter specifies the maximum amount of memory
allocated for a subroutine. This parameter is used in cases where a specific ATE has
sunroutine memory restrictions.

The SubroutineRepeatCountMax parameter describes the maximum count allowed on a
single-row repeat that is also a subroutine invocation.

The SubroutineSpacingMin parameter describes the minimum number of rows that are
necessary between adjacent subroutine calls. If the value for this parameter is zero (0),
adjacent subroutine calls are allowed.

The ScanInSubrLegal parameter indicates whether it is legal to have scan rows in
subroutines.

The SubroutineInLoopLegal parameter indicates whether if it is legal to have subroutine
calls inside of loops.
3-66 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
3.6.20 TimePlate Matching Preference Control
NOTE
This TCL parameter applies only to the TimePlate Match Conditioner and to
WaveBridges that provide TimePlate Match capabilities. It does not apply to the
SequenceMatch Conditioner.

A single TCL parameter allows you to establish an order of preference when more than
one TimePlate matches a given segment of events. This TCL parameter is named:

TilerTimePlateOrderCost

The default TimePlate matching strategy uses a goodness-of-fit approach. In this appoach,
the TimePlates are evaluated against the current segment of the event stream. Based on the
evaluation, a weight is assigned to each matching TimePlate that reflects how closely it
matches the events. Then, the assigned weights are reviewed and the TimePlate with the
highest weighting is matched with the events. For more information about the TimePlate
Match Conditioner’s internal process, see Section 5.5.1 of the WDB Conditioners Guide.

In the case where two or more TimePlates have the same weight, the default is to match
the TimePlate that occurs first in the WDB. (The TimePlate order in the WDB is
determined by the source; either a WGL file or the WaveMaker Timing Editor.) You can
use the TilerTimePlateOrderCost parameter to establish a different order.

When using this parameter, TimePlates are assigned an integer that is determined by the
TimePlate order in the WDB. The first entry is assigned 0, the next is 1, then 2, and so on.
The TilerTimePlateOrderCost parameter is used as a multiplier to create a weighting.
The new weighting for each TimePlate is created by subtracting the TimePlate order value
from the total number of TimePlates and then multiplying the difference by the
TilerTimePlateOrderCost parameter value.

The default value of 0 for this parameter results in the default goodness-of-fit matching
strategy.

Because the goodness-of-fit rankings are not user-visible, a thorough understanding of the
TimePlates is necessary to make decisions about the TimePlate entry order when using the
TilerTimePlateOrderCost parameter.

The following example shows the TilerTimePlateOrderCost value set to ten:
Languages, Vol. II, R2007.1 3-67
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Start Example

testcontrol example7
ate

ForceMatchResolution := 0ns;
CompareMatchResolution := 0ns;
DriveMatchResolution := 0ns;
CycleMatchResolution := 0ns;
TilerTimePlateOrderCost := 10;

End Example

end ate

3.6.21 Timeset Controls
The Timeset Controls parameters let you control the timesets created in the output test
program.

A complete BNF syntactical representation of the Timeset Controls parameter follows:

TimeSet ::= “timesetmax” “:=” <timesetMaximum>

TimeSetType ::= “timesettype” “:=” (“allow_both” | “force_single” | “force_dual”)

LocalTimeSet ::= “localtimesetmax” “:=” <localtimesetMaximum>

The time values for the timing generators are organized into timing sets for each WDB
TimePlate. The number of timing sets available is controlled by the TimeSetMax TCL
parameter. See the WaveBridge chapter for your tester for the value for this parameter.

The TimeSetType parameter allows you to override tester-specific defaults that specify
that more than one timeset is used to create certain types of strobes. See the chapter for
your WaveBridge in the appropriate TDS tester guide to see if this feature is supported for
your tester.

If your tester supports the definition of local timesets, the LocalTimeSetMax parameter
lets you control the number of these timesets locally, in the same manner that the
TimeSetMax parameter controls the number of timesets globally.

3.6.22 Timing Expressions
Whenever a time value or range is used on the right-hand side of a tester parameter
assignment, a TCL Timing Expression can be written. In most cases, the tester parameters
3-68 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
are assigned very simple expressions with time values (like 200nS). When it is necessary
to derive a tester parameter setting from some other tester parameter, the tester parameter
can be used in the timing expression. Table 3-20 shows Timing Expression operator
precedence.

Sub-expressions can be enclosed in parentheses to override the natural precedence of a
time expression.

The relation operators compare time values and return a Boolean result. Table 3-21 shows
timing relation operators and their results.

A complete BNF representation of the Timing Expressions parameter follows:

TimeExpr ::= SimpleExpr [Relop SimpleExpr]

Relop ::= (“=” | “<>” | “>=” | “<=” | “>” | “<”)

Table 3-20. Timing Expression Operator precedence

Precedence Operator

1 (highest) = max min select

2 * / % .. and

3 binary + - or

4 unary -

5 (lowest) = < > > = < = > <

Table 3-21. Timing relation operators and results

Operation Result Operand1 Operand2

RelOp Boolean time time

AddOp time time time

MulOp time time time

time integer time

time time integer

integer integer integer

Max time time time

Min time time time
Languages, Vol. II, R2007.1 3-69
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
SimpleExpr ::= [“-”] Term { AddOp Term }

AddOp ::= (“+” | “-” | “or”)

Term ::= Factor { MulOp Factor }

MulOp ::= (“*” | “/” | “%” | “..” | “and”)

Factor ::= (“(” TimeExpr “)” | SubExprList | BuiltIn | Time
| SimpleOperand)

SubExprList ::= “[” TimeExpr { “,” TimeExpr } “]”

BuiltIn ::= (“max” | “min” | “select”) “(” [TimeExpr { “,” TimeExpr }] “)”

SimpleOperand := <ATEparamOrTedge> [“(” <cycleNumber> “)”]
[“’” “format”]

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

The multiplication operators take as operands any combination of integer or time values
and return an integer value only if both operands are of integer type. In all other cases, a
time value is returned.

The % operator performs a modulus operation on time values.

The .. operator performs a range operation on time values that is defined by the absolute
difference between the two operands that you use. Thus, the order in which you enter the
operands is not important, since the resulting time value is the same in either case. Both
operands must contain a time value for the range operation.

A time value is formed from an integer or floating point number followed by a unit of time
measurement. An <ATEparamOrTedge> is the name of any tester parameter that is a time
value, or an integer, or a timing edge.

A timing edge is denoted as T0, T1, and so on, with an optional subscript containing a
cycle number. T0 refers to the start of a cycle. Any edges that are relative to T0 are
numbered sequentially T1, T2, etc. If subsequent cycles are referred to, a cycle subscript
is added. T0(1) refers to the end of cycle T0 (and is the start of the next cycle). T1(1)
refers to the next cycle’s T1 edge.

An optional attribute can be specified following a timing edge. The format attribute of the
timing edge is the tester format associated with the edge in the TimePlate. (A TimePlate is
3-70 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
a data storage construct contained within a WDB. The TimePlate carries data that
determines the shape and timing of each signal within the cycle.) Thus, T0’ format and
T1’ format mean the same thing. Attributes are used to “guard” timing constraint
expressions.

The following example shows guarded timing expressions, as they would appear in a
Tester file or the ATE Constraints block of a TCL file.

ForceConstraint[1] := T1..T1(1) >= 32ns;
ForceConstraint[2] := T1..T2 >= 20ns;
ForceConstraint[3] := (T1’format = NR) and (T1..T2 >=
24ns);

The first two constraints are always in effect. The third constraint is in effect only when
the edges belong to a non-return format (NR being the tester-specific name of the format,
in this case).

Timing expressions that cannot be evaluated because of having false guards or having
undefined edges are ignored. TDS WaveBridge modules do not allocate tester resources
for them, nor does the WaveBridge’s Tester Rules Checker check them.

3.6.23 Transform
If the WaveBridge for your tester does not support timing waveforms that contain tri-state
logic (represented by the Z TDS state character) in the program source WDB, or if the
WaveBridge does not support tri-state pattern data on input pins, the Transform parameter
lets you specify automatic timing and pattern transformation.

A complete BNF syntactical representation of the Transform parameter follows:

Transform ::= (TransformPattern | TransformTiming)

TransformPattern ::= “transformpattern” “:=” Boolean

TransformTiming ::= “transformtiming” “:=” Boolean

Example of the Transform parameters in TCL file:
Languages, Vol. II, R2007.1 3-71
Test Systems Strategies Inc

ATE Constraints 3—Test Control Language
Start Example

ate
. . .
TransformTiming := TRUE;
TransformPattern := TRUE;
. . .

End Example

end ate

3.6.23.1 Timing Transformations
If the TransformTiming TCL parameter is set to TRUE and the format of an input timing
waveform is not supported by WaveBridge, automatic timing transformation is applied.
The WaveBridge performs one of several state transformations to find a supported shape,
and it retains the resulting transformation only if the shape is supported. All
transformations are noted in the TRC Report file and the WDB is annotated to show that
the timing waveform has been modified using the TransformTiming parameter.

If the TransformTiming TCL parameter is set to FALSE, no automatic timing
transformation is done, but the timing waveforms are analyzed and if the formats are not
supported, the unsupported waveforms are noted in the TRC Report file. If the TCL file
does not include the TransformTiming TCL parameter, the waveform analysis is
suppressed.

The WaveBridge performs the transformations in the following order. When the
WaveBridge finds a match, the transformation is noted in the TRC report and the process
is stopped.

1. Z to X: The WaveBridge replaces forcing Z states with expect X states. This might
change the signal direction from input to bidirectional.

2. X to Z: If a signal is not bidirectional, the WaveBridge transforms expect X states to
drive Z.

3. X to XQX: If a signal has bidirectional tracks, the WaveBridge replaces X states with
XQX.

4. C to S: The WaveBridge replaces C states with S states (causing a pattern complement).
The WaveBridge never transforms the surround-by-complement shapes CSC, CS, SC,
and SCS.
3-72 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language ATE Constraints
5. S to C: The WaveBridge replaces S states with C states (causing a pattern complement).
The WaveBridge never transforms the surround-by-complement shapes CSC, CS, SC,
and SCS.

3.6.23.2 Pattern Transformations
If the TransformPattern TCL parameter is set to TRUE, automatic pattern transformation
is applied. This is accomplished by turning off the driver for the entire cycle in which a
tri-state pattern (Z pattern character) is present. All transformations are noted in the TRC
Report file.

If the TransformPattern TCL parameter is set to FALSE, Z pattern bits are retained. This
assumes that the tester is capable of using a Z pattern bit on an input pin to inhibit the
driver for the cycle in which the Z pattern bit occurs.

If the TCL file does not contain the TransformPattern TCL parameter, no automatic
pattern transformation or analysis is done. The Tester Rules Checker (TRC) and code
generation phases of the WaveBridge run detect the unsupported pattern bit, and the
occurrence is noted in the TRC Report file.

No transformation is performed on any patterns associated with a signal defined as
REFERENCE in the TDS Pin Assignment file. For details about REFERENCE signals,
see Chapter 4: User-Defined Files in this guide.

If the signal is an input signal and has a Z or X pattern bit, the signal is changed to a
bidirectional signal, with the output track in the TimePlate containing only an X state
character. The pattern bits associated with this output track in the TimePlate are changed
to X pattern bits.

If the signal is a bidirectional signal and the input part of the bidirectional track has a Z or
X pattern bit associated with it, a new output track in the TimePlate is created that is
associated with the pattern bits for the bidirectional signal. If possible, the output part of
the bidirectional track is copied to the newly created output track.

NOTE
If the timing waveform created by the transform operation would also be unsupported,
no transform operation is performed for that waveform.

A message noting each transformation is retained in the TRC Report file. Below is an
example of these messages.
Languages, Vol. II, R2007.1 3-73
Test Systems Strategies Inc

Pin Groups 3—Test Control Language
Example Fragment of TRC Report file containing Transform messages:

Start Example

=================== Waveform Transformations ==================
Database: dest.wdb
Inform: Signal sig1 was transformed as follows:
 Transforming Z to X in pattern for sig1 (1 times).
 Changing signal sig1 to bidirectional.
 Adding X pattern for signal sig1 (5 times).
 Transforming Z to X in timing on sig1.
 Created sig1 := output[X] in timeplate tp1

Inform: Signal sig2 was transformed as follows:
 Transforming Z to X in timing on sig2.
 Changed to bidir sig2 := bidir[Z => X] in timeplate tp1

Inform: Transforming Z to X on signal sig1 (1 time).
 Created sig1 := output[X] in timeplate tp1

Inform: Transforming Z to X on signal sig2 (10 times).
 Created sig2 := output[X] in timeplate tp1
 Copied bidir sig2 := output[X Q X] in timeplate tp3

End Example

 Copied bidir sig2 := output[X Q X] in timeplate tp4

3.7 Pin Groups
The Pin Groups block allows the configuration of test programs based upon special tester
hardware configurations. If a tester is configured such that groups of pins have different
capabilities, sets of functionally equivalent pins can be combined into a “pin group.”

The syntax of the Pin Groups block is:

pingroup <PinGroupName>
PinGroupBody
end pingroup [<PinGroupName>]

Example of a Pin Groups block, in the context of a partial TCL file:
3-74 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Pin Groups
Start Example

testcontrol pingroup_example

ate
CycleMin := 50ns;
CycleMax := 5us;
ForceConstraint[1] := T1..T2 >= 50ns;
ForceConstraint[2] := T2..T3 >= 50ns;

end ate

pingroup a
pins := [1,2,4..10,12];
CycleMin := 100ns;
CycleMax := 1us;
ForceConstraint[1] := T1..T1(1) >= 100ns; # these replace

those above
ForceConstraint[2] := T2..T2(1) >= 100ns;

end pingroup a

pingroup b
cardtype := D1;
cardslots:= [1,4..10];

end pingroup b

pingroup c
pins := [1..10];
CycleMax := 2us;

end pingroup c

pingroup d
cardtype := D1;
cardslots:= [2];
pins := [100,101];
CycleMax := 3us;

end pingroup d
. . .
. . .
. . .

End Example

end testcontrol

A complete BNF syntactical representation of the Pin Groups block follows:
Languages, Vol. II, R2007.1 3-75
Test Systems Strategies Inc

Pin Groups 3—Test Control Language
PinGroups ::= { “pingroup” <PingroupName>
 PinGroupBody
 “end” “pingroup” [<PingroupName>] }

PinGroupName ::= (<name> | <nameString>)

PinGroupBody ::= CardInfo Pins { AteConstraint “;” }

CardInfo ::= [CardType] [CardSlots]

CardType ::= “cardtype” “:=” <cardTypeName> “;”

CardSlots ::= “cardslots” “:=” “[” Slot { ”,” Slot } “]” “;”

Slot ::= <slotNumber> [“..” <slotNumber>]

Pins ::= { “pins” “:=” PinList }

PinList ::= “[” PinNum { “,” PinNum } “]” “;”

PinNum ::= <pinNumber> [“..” <pinNumber>]

Some testers allow you to have several different pin cards installed in different slots in the
tester. These different cards can each have different ATE constraints. The Pin Groups
block allows you to specify different ATE constraints on a per-card basis.

The <PinGroupName> is assigned to the channel card hardware on the tester. Each pin
group specifies zero or more <pinNumber>s that are assigned to the pin group tester
resource. Tester capabilities that differ from those already in effect by default for all pins
are specified in AteConstraint syntax.

<name> and <nameString> are user-defined identifiers or strings used to identify an
individual Pin Groups block.

The cardType parameter lets you specify the type of pin card using the <cardTypeName>
identifier.

The cardSlots parameter lets you use the <slotNumber> identifier to specify which slots
on the test equipment contain the pin cards that you specify with the cardType parameter.
WaveBridge uses this information during the tester rules check and resource allocation
phases of the WaveBridge run.

The pin group inherits the tester constraints in the default Tester file
(<your_tester_name>.tcl) for the tester, which can be found in the directory set by the
TDSDIR environment variable. Any tester constraints specified in your TCL file in the
3-76 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Message Overrides
ATE Constraints block override these defaults, and in turn become inherited by the pin
groups. Any tester constraints specified in your Pin Groups block override those inherited
by the same name.

3.8 Message Overrides
The Message Overrides block lets you customize the TRC messages that WaveBridge
generates during a TRC run. Each message override has a name, a parameter list, and a
message body.

The syntax of the TCL Message Overrides block is:

message <messageName> MessageParams
MessageBody
end message [<messageName>]

Example of a TCL Message Overrides block:

Start Example

message ForceRes
 (tp, chan, sig:integer; edge, res, lowGood, highGood:time;

tester : string)

severity fatal;
terse “Bad force edge resolution”;
cause “A force edge at time @edge does not”

+“reside at the required resolution of”
+“@res for the @tester tester.”;

location “Problem occurred in timeplate @tp,”
+“channel @chan, signal @sig, at time”
+“@edge.”;

remedy “Snap the edge at @edge to a time that”
+“resides on the tester’s force resolution”
+“of @res. The surrounding legal edge times”
+“are @lowGood < @edge < @highGood.”;

End Example

end message

A complete BNF syntactical representation of the Message Overrides block follows:
Languages, Vol. II, R2007.1 3-77
Test Systems Strategies Inc

Message Overrides 3—Test Control Language
MessageOverrides ::= { “message” <messageName> MessageParams
 MessageBody
 “end” “message” [<messageName>] }

MessageParams ::= [“(” <parameterName> { “,” <parameterName> } “:”
 ParamType “)”]

ParamType ::= (“signal” | “TimePlate” | “list” | “time” | “integer”
| “string”)

MessageBody ::= { (Severity | Repetition | MessageText) “;” }

Severity ::= “severity” (“informative” | “warning” | “fatal”)

Repetition ::= “repetition” “:=” <repetitionCount>

MessageText ::= (“terse” | “cause” | “location” | “remedy” | “generic”) “:=”
 MessageString

MessageString ::= ‘ “ ’ <string> ‘ ” ’ { “+” ‘ “ ’ <string> ‘ ” ’ }

A <messageName> must refer to a TRC function. The TRC messages are described in the
TRC Directives block of the TCL file.

The <parameterName> describes information that is passed to the message when TRC is
generating its report. The actual name serving as a parameter name can be anything;
however, the actual information provided is associated with the parameter’s position in the
parameter list.

A message string may contain <parameterName> references from its parameter list. The
actual values of these parameters are substituted into the message when the message is
formatted. The MessageParams parameter may be absent if only the repetition or
severity reserved words are contained in the message block.

Each message has an associated level of severity, represented by the severity reserved
word.

Each message has an associated <repetitionCount> that describes the number of times the
message is issued during a TRC run. If it is absent, the default is infinite. Messages can be
inhibited by setting the repetition count to zero (0).

The terse reserved word specifies the message text used in summary reports. It must not
contain any parameter references. It must be 25 characters or less in length.
3-78 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Message Overrides
The cause reserved word specifies the message text used to describe the reason behind the
tester incompatibility that TRC discovered.

The location reserved word specifies the message text used to describe the location of the
tester incompatibility. There are many kinds of information stored in WDB. TRC may find
tester incompatibilities in a number of places, and the location message pinpoints the
problem.

The remedy reserved word specifies message text that is a helpful suggestion on how to
repair the tester incompatibility that TRC discovered. Since the process of creating a test
program from design or simulation data is complex, many avenues exist for repair. The
remedy message attempts to enumerate the possible actions and TDS tools that are useful
to effect repair.

The generic reserved word specifies message text used to summarize any of the above
message components without referring to any of the formal parameters. It is used to
explain in one place each type of TRC problem reported, but it is issued only once.

NOTE
The default WaveBridge TRC messages are described in Chapter 9 of the Tester
Bridges Overview Guide.

TCL produces the following messages identifying syntactic errors associated with this
block:

Severity already set in this message override.

Repetition already set in this message override.

Repetition count must be >= 0.

Terse string already defined for this message override.

Cause string already defined for this message override.

Location string already defined for this message override.

Remedy string already defined for this message override.

Generic string already defined for this message override.

Terse string must be 25 characters or less.
Languages, Vol. II, R2007.1 3-79
Test Systems Strategies Inc

TRC Directives 3—Test Control Language
NOTE
Not all TRC messages can be edited; you can edit only those TRC messages listed in
Chapter 9 of the Tester Bridges Overview Guide.

3.9 TRC Directives
The TRC Directives block controls how the WaveBridge performs tester rule checking.
This block also controls the format of the TRC reports.

The syntax of the TCL TRC Directives block is:

trc
{TrcSpec}
end trc

Example of a TRC Directives block:

Start Example

trc
format := linear;
formwidth := 80;
repetition := 5;
ignore := informative;
quiton := TimeSetLimit;

End Example

end trc

The TRC setting produces a linear description of tester incompatibilities without the
informative messages. If a force recovery timing set limit violation is found, the checking
is aborted. Checking occurs for only the WDB pattern violations.

A complete BNF syntactical representation of the TRC Directives block follows:

TrcDirectives ::= [“trc”
 { TrcSpec “;” }
 “end” “trc”]

TrcSpec ::= (ReportFormat | ReportWidth | GlobalRepetition
| IgnoreWhen | QuitOn)
3-80 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TRC Directives
ReportFormat ::= “format” “:=” (“tabular” | “linear” | “both”)

ReportWidth ::= “formwidth” “:=” (“80” | “132”)

GlobalRepetition ::= “repetition” “:=” <integer>

IgnoreWhen ::= “ignore” “:=” (“informative” | “warning”)

QuitOn ::= “quiton” “:=” <messageName> [“after” <integer>]

The format reserved word allows the selection of two kinds of report styles: tabular and
linear.

The tabular reserved word specifies a format that is a concise table that summarizes all of
the TRC messages. Following the table is a generic description of each kind of error
referenced in the report.

The linear reserved word specifies a format that contains a description of each TRC
message as it occurs during the checking. Embedded in the description is WDB
information that is specific to the check (signal names, cycle numbers, edge times, and so
on). Since this style of report may be quite long, each message can have its repetition
controlled. The repetition of messages is described in Message Overrides on page 3-77.

The repetition reserved word allows setting a global repetition count for all TRC
functions. The message override settings for a check take precedence over this global
setting. The default setting is 5.

The ignore reserved word allows suppression of informative messages or both informative
messages and warnings.

The quiton reserved word specifies a setting that allows the setting of triggers that abort
the checking. A <messageName> must be the name of a TRC function and, if the check
fails, TRC terminates. For a list of the function names that you can specify, refer to
Section 7.4.2.4 in the Utilities and Tools Guide.

The optional after reserved word allows termination control after the specified number of
occurrences of the check reporting a failure. Multiple occurrences of quiton can be set.

A database can be thought of as having two parts for design waveforms and tester resource
allocation. The optional design or test reserved words allow selection of what part of the
database to check. If omitted, both sections are checked. The remaining reserved words
describe the individual sections in the database that are checked. By default, TRC checks
both sections.
Languages, Vol. II, R2007.1 3-81
Test Systems Strategies Inc

Match Directives 3—Test Control Language
3.10 Match Directives
The Match Directives block controls TimePlate and sequence matching operations, which
are available through the SequenceMatch and TimePlate Match Conditioners, as well as
some WaveBridge modules.

Note that, to achieve optimal results, it is recommended that you perform TimePlate
match operations outside of your WaveBridge runs, using either the SequenceMatch or
TimePlate Match Conditioners.

NOTE
The SequenceMatch and TimePlate Match Conditioners respond to a slightly different
set of TCL parameters. The SequenceMatch Conditioner responds to all Match
Directives block parameters, but the TimePlate Match Conditioner does not. The
differences are pointed out where they occur. For general information about these
conditioners, refer to Chapter 2 and Chapter 5 in the WDB Conditioners Guide.

The process of TimePlate matching consists of matching segments of a stream of
waveform data (events) with the timing structure provided by TimePlates. As matches
occur, the segment of the event stream and the matching TimePlate are combined to form
structured waveform data in WDB format. In the SequenceMatch Conditioner, you can
also specify that the event stream match a sequence of TimePlates.

The source of the input events (called the wave source) can be an SEF or WDB. The
source of the TimePlates (called the timing source) is a WDB.

You can use the Match Directives block (or Match block) to name the wave source, timing
source, and destination WDB. You can also limit the matching to a specific region in the
wave source or a specific set of TimePlates in the timing source. In the SequenceMatch
Conditioner, you can specify match weights for TimePlates and sequences to effect which
one gets ultimately chosen if more than one matches. You can use as many Match
Directives blocks as needed, thus allowing a multitude of source data matches and output
destinations.

If the structured waveform data already exists (if it was created from the WaveMaker
package or WGL), the process of TimePlate matching is not required, and the Match
Directives block should not be used in your TCL file.

For general information about the SequenceMatch Conditioner’s matching process, see
Section 2.5 of the WDB Conditioners Guide.
3-82 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Match Directives
For general information about the TimePlate Match Conditioner’s matching process, see
Section 5.5.1 of the WDB Conditioners Guide.

The syntax of the TCL Match Directives block is:

match
MatchBody
end match

Example of a TCL Match Directives block:

Start Example

match
events

directory := wave_source;
start := begin;
stop := end;

end events
timing

directory := timing_source;
timeplates := ts1, ts2, ts3;
persistence := 1;

end timing
destination

directory := wave_dest;
start := prevstop;

end destination

End Example

end match

A complete BNF syntactical representation of the Match Directives block follows. Note
that underlined items apply only to the SequenceMatch Conditioner:

MatchDirectives ::= { “match”
 MatchBody
 “end” “match” }

MatchBody ::= { MatchSpecs “;” }

MatchSpecs ::= (EventBlock | TimingBlock | DestinationBlock |
SequencesBlock)
Languages, Vol. II, R2007.1 3-83
Test Systems Strategies Inc

Match Directives 3—Test Control Language
EventBlock := “events”
 { EventSpec }
 “end” “events”

EventSpec ::= (WaveSource | StartTime | StopTime)

WaveSource ::= “directory” “:=” <directoryname> “;”

StartTime ::= “start” “:=” TimeSpec “;”

StopTime ::= “stop” “:=” TimeSpec “;”

TimingBlock ::= “timing”
 { TimingSpec }
 “end” “timing”

TimingSpec ::= (TimingSource | Timeplates | Persistence | MatchType)

TimingSource ::= “directory” “:=” <WDBname> “;”

Timeplates ::= “timeplates” “:=” Timeplate { “,” Timeplate } “;”

Timeplate ::= TimeplateName [“ $” <weight>] [“<=” TimeplateName]

TimeplateName ::= (<timeplateName> | <timeplateString>)

Persistence ::= “persistence” “:=” <persistenceValue> “;”

MatchType ::= “matchtype” “:=” MatchTypeValue “;”

MatchTypeValue ::= “match_normal” | “match_exact” | “match _qnox”
 “match_stableq” | “match_nomiss”

DestinationBlock ::= “destination”
 { DestSpec }
 “end” “destination”

DestSpec ::= (WaveDestination | DestTime)

WaveDestination ::= “directory” “:=” <WDBname> “;”

DestTime ::= (“start” | “stop”) “:=” TimeSpec “;”

TimeSpec ::= (“begin” | “end” | “prevstop” | Time)

Time ::= (<intTime> | <floatTime>) [TimeUnit]
3-84 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Match Directives
TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

SequencesBlock ::= “sequences”
 { SequenceDef }
 “end” “sequences”

SequenceDef ::= SeqType <SequenceName> “:=” SeqBody “;”

SeqType ::= “seq” | “subseq”

SeqBody ::= SeqItem | “(“ SeqBody “)” |
 SeqBody “+” SeqBody | SeqBody “|” SeqBody

SeqItem ::= SequenceName [SeqMinMax] [SeqCost] [SeqSubstitution]

SeqMinMax ::= “(“ <min> [“...” <max>] “)”

SeqCost ::= “ $” <weight>

SeqSubstitution ::= “<=” TimeplateName

SequenceName ::= (<sequenceName> | <sequenceString>)

Remember that the underlined elements in this BNF description apply only to the
SequenceMatch Conditioner and not to the TimePlate Match Conditioner or WaveBridges
that allow TimePlate matching.

NOTE
A TimeplateName or SequenceName that is the same as a TCL reserved word can be
specified by enclosing the TimeplateName in double quotation marks (“ ”). It is good
practice to enclse all TimePlate and sequence names in quotes.

Each Match block is specified by the match and end match reserved words. Your TCL
file can contain multiple Match blocks. Each Match block contains one Events block,
which defines the wave source, one Timing block, which defines the timing source, and
one Destination block, which defines the destination WDB. A SequencesBlock can be
specified for SequenceMatch Conditioner operations, but it is optional.

An Events block is specified by the events and end events reserved words. The Events
block must contain one directory statement, which identifies the SEF database or WDB
that is to provide the input events:

directory := <wave source directory>;
Languages, Vol. II, R2007.1 3-85
Test Systems Strategies Inc

Match Directives 3—Test Control Language
Optionally, you can include start and stop statements to specify the times where the wave
source matching process is to occur. If start and stop are absent, they default to begin
and end, respectively. If you are using multiple Match blocks, you can set start to
prevstop to continue the matching process with the next sequential segment of the
wave source. It is legal for the start/stop times to overlap, but be aware that the last Match
block determines the match behavior of the overlapping area.

A TimingBlock is specified by the timing and end timing reserved words. The
TimingBlock must contain one directory statement, which identifies the WDB that is to
provide the input TimePlates:

directory := <timing source WDB>;

Optionally, you can include a timeplates statement in the TimingBlock; however, a
timeplates statement cannot be included if you are using a SequencesBlock. The
timeplates statement has two forms. One form establishes the set and order of TimePlates
to use for matching, as shown in the following example:

Start Example

timing
directory := timing_source;
timeplates := ts1, ts2, ts3;
persistence := 1;

End Example

end timing

This example specifies that only the TimePlates named ts1, ts2, and ts3 will be used
for matching. When more than one TimePlate matches the input wave source with equal
weight, the TimePlate that appears first in the list is chosen. In this example, the
preference is to choose ts1 over ts2 and ts3, and to choose ts2 over ts3.

When using the SequenceMatch Conditioner, you can optionally specify TimePlate
weights. The specified weight is added to the weight that is computed by the
SequenceMatch Conditioner. (For information about how SequenceMatch computes
weights, refer to Section 2.5.2 in the WDB Conditioners Guide.) In the following example,
TimePlate ts2 has a value of 10 added to its computed weight, while ts3 has a value of
20 added to its computed weight.
3-86 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Match Directives
Start Example

timing
directory := timing_source;
timeplates := ts1, ts2 ‘$10, ts3 ‘$20;
persistence := 1;

End Example

end timing

This technique impacts the SequenceMatch Conditioner to choose ts3 over ts2 and ts2
over ts1, unless the other TimePlate matches significantly better, as decided by the
computed weight.

The other form of the timeplates statement associates MatchPlates with SpecPlates, which
allows you to use one TimePlate (the MatchPlate) for the matching process, and when a
match occurs, to substitute a different TimePlate (the SpecPlate) to be written to the
destination WDB. The following example shows the use of this syntax to associate tp1
with devcycle1 and tp2 with devcycle2.

Start Example

timing
directory := “unit.wdb”;
persistence := 1;
timeplates := tp1 <= devcycle1, tp2 <= devcycle2;

End Example

end timing

In this example, tp1 and tp2 are MatchPlates and devcycle1 and devcycle2 are
SpecPlates. When tp1 or tp2 matches a segment of the event stream, devcycle1 or
devcycle2 are written to the destination WDB. The SpecPlate does not need to be the
same length as the MatchPlate. The SpecPlate substitution does not occur until after a
TimePlate has been chosen for output. Note that a time comment is added at the end of
each vector to reflect the traversal of the wave source. To see the time comment, you must
convert the WDB to a WGL file.

The MatchPlate/SpecPlate capability allows you to use a general TimePlate for matching
and then substitute a more exact TimePlate when a match occurs, which is useful if the
original SEF database does not contain accurate timing (from a zero or unit delay
simulation) and real device timing is known. It is also useful for matching events
according to one cycle period and then switching to a different cycle period.
Languages, Vol. II, R2007.1 3-87
Test Systems Strategies Inc

Match Directives 3—Test Control Language
Optionally, you can include a persistence statement to specify how many match failures
are allowed before the matching operation halts. The default value is one (1), which
causes the matching to halt after one match failure. If you set it to a higher value and a
match failure occurs, the behavior is to skip ahead until a match is found. The maximum
amount of time skipped is (persistence - 1) times the maximum TimePlate period. If a
match is subsequently found, an empty cycle is written to the destination WDB. Empty
cycles must be replaced by valid data before the destination WDB can be used as input to
a WaveBridge.

For the SequenceMatch Conditioner, you can optionally include a matchtype statement to
specify the matching algorithm. The algorithms are described on page 2-17 of the WDB
Conditioners Guide.

A Destination block is specified by the destination and end destination reserved words.
The Destination block must contain one directory statement that identifies the destination
WDB:

directory := <destination WDB>;

The destination WDB can be the same as the timing source WDB. When this is the case,
the structured waveform data is stored in a temporary location until the full match process
completes error-free, and then it is written to the specified destination WDB. The timing
source WDB is overwritten only when the match process is successful.

Optionally, you can include a start statement to position where in the destination WDB
the matched data is written. You can specify two kinds of start values: either the time in
the destination WDB at which you want to begin writing, or the string prevstop, which
means that you want to append data to the destination WDB. If you specify a time value, it
must be less than or equal to the end of the destination WDB.

If you want to create a single WDB from multiple wave sources, you can set the start
value to prevstop. In this case, the Match blocks in the TCL file are processed
sequentially, and each match is appended to the end of destination.

The user-defined identifiers <directoryname>, <WDBname>, and
<timeplateName> must be enclosed in double quotation marks if they contain TCL
reserved symbols, embedded blanks, or collide with TCL reserved words.

For the SequenceMatch Conditioner, the optional Sequences block can define sequences
of TimePlates that are to be matched. This block is specified by the sequences and
end sequences reserved words. Sequences defined with the seq keyword are used for
matching. Subsequences, which are sequences defined with the subseq keyword, can only
be used in other sequence definitions; they are not directly matched. You can use any
3-88 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Match Directives
SequenceNames you wish for your sequences, although if the name is a reserved word, it
must appear in quotes. The sequence names allow you to use sequences inside other
sequences. The sequence names are also used to identify the sequences in the report file.

The items in the sequences can be TimePlates, other sequences, or subsequences. Each
item can also include an optional minimum and maximum repetition count. The minimum
repetition count is allowed to be 0, which means the item is optional. Each item can also
include a weight, similar to the weights in the timeplates statement, that causes the
Conditioner to choose sequences with higher weights. TimePlates appearing in sequences
can also include a SpecPlate, which is a substitution TimePlate that will be output in the
destination WDB when that TimePlate is matched, in a fashion similar to the SpecPlates in
the timeplates statement.

The items may be separated by “+” to indicate that they must appear sequentially, or by “|”
(a vertical bar symbol) to indicate that either of the items may appear at this point. If both
of the symbols “+” and “|” are used in the same sequence definition, parentheses should be
used to clarify the intended grouping of the items.

The following example defines two subsequences and one sequence:
sequences
subseq “read” := tp1 ‘$10 + tpidle(1..3);
subseq “write” := tp2 + tpidle(1..3) <= tpout;
seq “memcycle” := “read” | “write”;
end sequences

In this example, the Conditioner will match either the “read” or “write” subsequences. The
“read” subsequence consists of TimePlate tp1 followed by 1 to 3 occurences of
TimePlate tpidle, and the “write” subsequence consists of TimePlate tp2 followed by
1 to 3 occurrences of TimePlate tpidle. Additionally, TimePlate tp1 has a user
specified weight of 10 added to its computed weight, so if tp1 and tp2 match the input
events with an equal computed weight (or a weight that differs by less than 10) then tp1
will be chosen. Additionally, the tpidle timeplates are replaced in the output WDB with
the timeplate tpout, but only when appearing after timeplate tp2 in the “write”
sequence.

If you use a SequencesBlock, you cannot also include a timeplates statement in the
Timing block. To specify a TimePlate that you wish to match by itself, you must specify it
in a sequence definition. For example, suppose you wish to match tp1, tp2 and tp3
individually. You could achieve this with the OR syntax, as shown in the following
Sequences block:
Languages, Vol. II, R2007.1 3-89
Test Systems Strategies Inc

Match Directives 3—Test Control Language
Start Example

sequences
seq “single_timeplates” := tp1 | tp2 | tp3;

End Example

end sequences

The above example specifies that the sequence “single_timeplates” consists of TimePlate
tp1, or TimePlate tp2 or TimePlate tp3. In other words, it is a sequence that is only one
TimePlate long, and consists of any one occurrence of the specified TimePlates.

TCL produces the following messages identifying syntactic errors associated with this
block:

Missing wavesource <directoryname>.

Missing timingsource <WDBname>.

Wave source <directoryname> cannot be opened.

Timing source <WDBname> cannot be opened.

Duplicate timeplate name.

Invalid timeplate name.

Timeplate name does not exist in timingsource.

Start time cannot be set to end.

Start time must be less than or equal to stop time.

Start cycle must be less than or equal to stop cycle.

Cannot use prevstop on first match specification.

Stop time cannot be set to begin.

Stop time cannot be set to prevstop.

Persistence must be an integer >= 1.
3-90 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Program Control Directives
3.11 Program Control Directives
The Program Control Directives block controls the formatting of the test programs that
WaveBridge produces. The control settings are applied globally to all test program files
created by the WaveBridge run.

The syntax of the TCL Program Control Directives block is:

programcontrol
{ControlSpec}
end programcontrol

The following is an example of a TCL Program Control Directives block.

Start Example

programcontrol
formwidth := 72;
columnformat := every 10;
comment := every 10 simtime,testtime,cyclenumber,
 memoryaddress,simcomment;
structure
 main := “file1”;
 loadz;
 loads := “file1” replace;
 calprocedure := “file2” include;
end structure
mergecommonsignals := TRUE;

End Example

end programcontrol

A complete BNF syntactical representation of the Program Control Directives block
follows:

ProgControlDirectives ::= { “programcontrol”
 { Control Specs }
 “end” “programcontrol” }

ControlSpecs ::= (FormWidth | Columns | Comments
| ControlAndTiming | ProgramStructure | DisableUnused
| TimeClockFormat | ShowFormatBlock | TimePeriodFormat
| TimeEdgeFormat | TimeSetMerging | MergeCommonSignals | MapInitialXtoZ)
Languages, Vol. II, R2007.1 3-91
Test Systems Strategies Inc

Program Control Directives 3—Test Control Language
FormWidth ::= “formwidth” “:=” <colNum> “;”

Columns ::= “columnformat” “:=” (SignalGroups | EveryColumn
| ColumnList) “;”

SignalGroups ::= “signals” SignalName { “,” <signalName> }

SignalName ::= [‘ “ ’] <signalName> [‘ ” ’]

EveryColumn ::= “every” <colNum>

ColumnList ::= <colNum> { “,” <colNum> }

Comments ::= “comment” “:=” [“every” <rowNum>] CommentType { “,”
CommentType } “;”

CommentType ::= (“simtime” | “testtime” | “cyclenumber”
| “memoryaddress” | “simcomment” | “timeplatename”)

ControlAndTiming ::= { ControlPairs }

ControlPairs ::= (ControlSheetSets | TimingSheetSets
| ControlSecondarySheetSets | TimingSecondarySheetSets)

ControlSheetSets ::= “ControlSheetSets” “:=” EquationSheetSetName { “,”
EquationSheetSetName } “;”

ControlSecondarySheetSets ::= “ControlSecondarySheetSets” “:=”
EquationSheetSetName { “,” EquationSheetSetName } “;”

TimingSheetSets ::= “TimingSheetSets” “:=” EquationSheetSetName { “,”
EquationSheetSetName } “;”

TimingSecondarySheetSets ::= “TimingSecondarySheetSets” “:=”
EquationSheetSetName { “,” EquationSheetSetName } “;”

EquationSheetSetName ::= <EquationSheetName> “:” <ExpressionSetName>

EquationFlags := (ControlSheetSets | TimingSheetSets |TimingSecondarySheetSets |
LevelSheetSets | LevelSecondarySheetSets

LevelSheetSets := "levelsheetsets" ":=" LevelSheetSetName { ","
LevelSheetSetName } ";"
3-92 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Program Control Directives
LevelSecondarySheetSets := "levelsecondarysheetsets" ":="
LevelSecondarySheetSetName { "," LevelSecondarySheetSetName } ";"

ProgramStructure ::= “structure”
 { StructureBody }
 “end” “structure”

StructureBody ::= Partition [“:=” ‘ “ ’ <fileName> ‘ ” ’
[PartitionReplace]] “;”

Partition ::= <partitionName> [“radix” MemoryRadix]

PartitionReplace ::= (“include” | “replace”)

MemoryRadix ::= (“binary” | “octal” | “hexadecimal”
| “bin” | “oct” | “hex”)

DisableUnused ::= “DisableUnusedChannels” “:=” Boolean “;”

TimeClockFormat ::= (“freq” | “time”)

ShowFormatBlock ::= “showformatblock” “:=” Boolean “;”

TimePeriodFormat ::= (“freq” | “time”)

TimeEdgeFormat ::= (“freq” | “time”)

TimeSetMerging ::= (“true” | “false”)

MergeCommonSignals ::= (“true” | “false” | “new” | “new_flat”)

MapInitialXtoZ ::= “MapInitialXtoZ” “:=” Boolean “;”

TimeClockFormat, TimePeriodFormat, TimeEdgeFormat parameters control the
master clock, period, or edge setting formats. The choices are either time (default) or
freq to indicate that the values must be expressed in units of time or units of frequency.

The ShowFormatBlock parameter lets you disable or enable program generation that
includes format and pattern characters in a single output file. See the chapter for your
WaveBridge in the appropriate TDS tester guide to see if this feature is supported for your
tester.

The formwidth parameter controls the number of the pattern characters output per line.
The default maximum number of pattern characters is 80.
Languages, Vol. II, R2007.1 3-93
Test Systems Strategies Inc

Program Control Directives 3—Test Control Language
NOTE
It is possible to set values with the FormWidth parameter that may not be valid for the
target tester. This is to allow for simplified test program display during debugging.

The columnformat parameter provides three different options for controlling the column
format. These options allow you to: define absolute column numbers after which spaces
are inserted in the output file; define the order in which signals are output; and define
where spaces are to be inserted in this ordered list.

columnformat := every <integer>;

<integer> is a positive integer that overrides the default of 10, and it generates spaces
repeatedly, based on the integer value specified. If 0 is specified, there are no column
spaces.

columnformat := <list of columns>;

<list of columns> is one or more positive integers (separated by commas), which
insert a space after each specified column. No spaces are added to the end of the
column list.

columnformat := signals <list of signals & groups &
dashes>;

<list of signals & groups & dashes> is one or more valid signal or group names or
dashes (separated by commas). The signals parameter controls two elements of
formatting: 1) where spaces are inserted (one space after each signal or group name),
and 2) the signal to column mapping. If a dash (-) appears in the list, a space is
inserted at the current position in the output listing. You can use multiple dashes to
insert multiple spaces, as shown in Example 4 on page 3-96. Signals and groups that
are not included in the columnformat list appear after the specified signals and
groups, and are listed in the order they occur in the database.

The default for signal/group-to-column-order is controlled by the Pin Assignment file. If a
TCL file is used for a WaveBridge run, and if the TCL file contains a columnformat
statement that specifies signal groups, the order specified in the TCL file is used in the
output test program. For general information on the Pin Assignment file, see Chapter 4 in
the Getting Started Guide. For detailed information, see the WaveBridge chapter specific
to your tester.
3-94 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Program Control Directives
NOTE
For some testers, the column order must match the tester pin order. For those testers,
features that change the tester pin/column relationship are not applicable.

If the TCL file does not set the ordering, the order of the groups in the Pin Assignment file
is the order in which the output columns are listed.

If no integer value is specified by the columnformat reserved word, a space is
automatically placed between groups every ten columns.

The following examples assume that the tester has one large default group. Otherwise,
spaces are automatically inserted between groups.

Example 1

columnformat := every 4;

results in pattern output:

1101 1111 0AF9 B26
0011 0000 02F9 223
1110 1110 0143 223

Example 2

columnformat := 2,5;

results in pattern output:

11 011 1110AF9B26
00 110 00002F9223
11 101 1100143223

Example 3

columnformat := every 0;

gives a pattern format:

110111110AF9B26
0011000002F9223
111011100143223
Languages, Vol. II, R2007.1 3-95
Test Systems Strategies Inc

Program Control Directives 3—Test Control Language
Example 4

columnformat := signals x, y, -, -, z;

gives a pattern format (a, b, and c are valid signals/groups in the WDB, but appear last
because they are not specified in the statement):

x y z a b c
11 1 a 1 1 1
01 0 9 1 0 0
10 1 4 0 1 1

Radix is associated with each signal, group, or bus defined in the database. Since the radix
information is in the database, it must be entered by editing the WGL version of the WDB
and converting the WGL back to a WDB, using the WGL In Converter module. You can
also use WaveMaker’s Signal Definition Editor. The database radix (group radix) controls
the radix relation in an output pattern.

You can select the type and placement of pattern row comments that appear in the test
program using the Comment statement. Pattern row comment fields appear in the order
given in the list specified by the Comment statement. If this statement is absent, there are
no comments on the pattern rows. By default (if you do not provide a TCL file), all pattern
row comments are used.

NOTE
The comments from the simulation file are always inserted into the test program.

The Comments directive allows you to specify which comments will appear in the output
pattern. The rows in which the comments appear are determined by the rowNum
parameter. If you specify simcomment as one of the CommentType parameters, then all
simulation comments are inserted into the output pattern.

Data that you use repeatedly, for many different test programs, can be stored in separate
TCL files and brought into the test program. This lets you create a library of such data
files, with each file containing specific types of data in proper syntax. The TCL structure
sub-block provides a method of inserting user-defined files containing this repetitive data
(called include files) into the final test program.

Each structure sub-block has a <partitionName> that defines (in a tester-specific way)
where the include file is to go. It is optionally followed by the radix reserved word. Using
radix permits selection of binary (or bin), octal (oct), or hexadecimal (hex)
3-96 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Program Control Directives
radices. Optionally, you may specify a source <fileName> to use for the inclusion (or
replacement). If the file name is not present, no action is taken. The file name must be
enclosed in double quotation marks (“ ”). The file name can be followed by a reserved
word, either include or replace. If neither reserved word is specified, an inclusion is
performed by default at the appropriate location.

If the replace reserved word is used, your include file replaces the section of the test
program that it goes before.

Example of a structure sub-block:

Start Example

structure
 start “file1”; # put file1 section start of test program
 start “file2”; # put file2 section start of test program after file1
 main; # no action
 loads := “file3” replace; # replace section “loads” with file3.

End Example

end structure

TCL produces the following messages identifying syntactic errors associated with this
block:

Form width must be > 0 and <= 4096.

Only one of the 3 column format options may be chosen.

Column must be >= 0.

Column numbers must be unique in column list.

Column numbers must increase in column list.

Comment type has already been defined in comment list.

Comment row spacing must be > 0.

The ControlSheetSets, TimingSheetSets, LevelSheetSets, LevelSecondarySheetSets,
ControlSecondarySheetSets, and TimingSecondarySheetSets parameters are used only
if your tester supports test programs that use equations and you have purchased and
installed a TDS WaveBridge with the optional equation support module. These parameters
control certain aspects of equation usage in the output test program:
Languages, Vol. II, R2007.1 3-97
Test Systems Strategies Inc

Program Control Directives 3—Test Control Language
n Overriding the default expression sets used for each equation sheet in the source WDB

n Specifying more than one expression set for an equation sheet from the source WDB
to be output in the test program

n Specifying the location of program segments containing equations in the output test
program

In the WDB, there can be many expression sets for each equation sheet, but only one of
these expression sets can be active for the equation sheet at any given time. There are
various mechanisms in WGL for specifying which expression set is active in the source
WDB. Some of these settings in the source WDB can be overridden using the
ControlSheetSets, TimingSheetSets, LevelSheetSets, LevelSecondarySheetSets,
ControlSecondarySheetSets, and TimingSecondarySheetSets parameters in the TCL
file. For information on the WGL mechanisms for controlling active (or default)
expression sets, see EquationSheet on page 2-54 and EquationDefaults on page 2-66 of
this guide.

You can use the ControlSheetSets, LevelSheetSets, and TimingSheetSets parameters to
override the active expression set for an equation sheet in the source WDB. For example,
the WGL file for your source WDB specifies the following settings:

Start Example

equationsheet Sheet_1
exprset worst

Vcc1:= 4.5V;
TempDegC1 := 70;
Textern1 := 10nS;

end
exprset best

Vcc1 := 5.75V;
TempDegC1 := 0;
Textern1 := 0nS;

end
end

equationsheet Sheet_2

exprset worst
Vcc2:= 4.5V;
TempDegC2 := 70;
Textern2 := 10nS;

end
exprset normal
3-98 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Program Control Directives
Vcc2 := 5V;
TemDegC2 := 30;
Textern2 := 5nS;

end
exprset best

Vcc2 := 5.75V;
TemDegC2 := 0;
Textern2 := 0nS;

end
end

equationdefaults

Sheet_1:worst;
Sheet_2:best;

End Example

end

The WGL fragment above specifies that the active (or default) expression set for the
equation sheet named Sheet_1 is worst, and the active expression set for Sheet_2 is
best.

To change the active expression sets in the WDB by using TCL parameters, make an entry
in your TCL file like the one shown in the following example:

Start Example

programcontrol
. . .
TimingSheetSets := Sheet_1:best, Sheet_2:normal;
. . .

End Example

end

In your output test program, the active expression set for Sheet_1 will be best and the
active expression set for Sheet_2 will be normal.

You may want to create an output test program that includes several (or all) of the
expression sets for each equation sheet. This is possible by using the
ControlSecondarySheetSets, LevelSecondarySheetSets, and
TimingSecondarySheetSets parameters. When you use these parameters, all of the
expression sets that you specify appear in the output program. All expression sets except
for the active expression set are commented out, or otherwise disabled. For subsequent test
runs, comment out the active expression set and remove the comment characters for the
Languages, Vol. II, R2007.1 3-99
Test Systems Strategies Inc

Program Control Directives 3—Test Control Language
expression set you want to activate. The following example shows how to use the
ControlSecondarySheetSets, LevelSecondarySheetSets, and
TimingSecondarySheetSets parameters.

Start Example

programcontrol
. . .
TimingSheetSets := Sheet_1:worst, Sheet_2:normal;
TimingSecondarySheetSets := Sheet_1:best, Sheet_2:best, Sheet_2:worst;
. . .

End Example

end

The parameters shown in the previous example cause all expression sets for all of the
equations sheets defined in the WGL example on page 3-98 to be included in the output
test program, with the default expression sets active.

Depending on your tester, the ControlSheetSets, LevelSecondarySheetSets, and
TimingSheetSets parameters in the TCL file determine where in the output test program
the equations are placed. If you specify these parameters in the TCL file, your
WaveBridge automatically places these equations in the correct location in the test
program; if not specified in the TCL file, all equations automatically are placed in a single
location in the test program, based on your tester’s requirements. Since each tester has
different requirements for where the equations can be located, see the TDS chapter for
your specific WaveBridge for details.

Depending on your tester and the corresponding WaveBridge with equation support, you
may not need to use the ControlSheetSets, LevelSheetSets, TimingSheetSets,
ControlSecondarySheetSets, LevelSecondarySheetSets, and
TimingSecondarySheetSets parameters in the Program Control Directives block. For
WaveBridges such as these, all default expression set assignments in the source WDB are
used in the output test program. See the TDS chapter for your specific WaveBridge to
determine if you need to use TCL parameters to generate a test program that includes
equations.
3-100 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Program Control Directives
CAUTION
Improper use of ControlSheetSets, LevelSheetSets, TimingSheetSets,
ControlSecondarySheetSets, LevelSecondarySheetSets, or
TimingSecondarySheetSets parameters can result in unexpected behavior in equation
output. Failure to use these parameters correctly can result in the inaccurate
equations being used in the test program, since variables and equations may be output
in an unexpected order. Adherence to the following rules will insure correct output for
your equations:

• When overriding TimingSheetSets or LevelSheetSets, also override
ControlSheetSets. If not, constants that are declared in the Control Sheet could be
output after the TimingSheet causing erroneous results

• When specifying multiple sheets for any of the four parameters, be sure to specify
them in the desired output order.

For more information on Equation Sheets, please refer to the EquationSheet topic on
page 2-54.

The TimeSetMerging parameter specifies whether the WaveBridge should try to merge
identical timesets or not. The default setting is true, indicating that the WaveBridge will
try to merge timesets. To turn merging off, set TimeSetMerging to false.

The goal of TimeSetMerging is to reduce the number of tester resources required for the
output test program. The simple example below shows the effect of TimeSetMerging.
Before merging, four timesets are used, whereas afterwards only two are used; TS1, TS3,
and TS4 are combined.

Before After

TimePlate Name TimeSet Name Values TimePlate Name TimeSet Name Values

read TS1 10ns, 20ns read, idle, add TS1 10ns, 20ns

write TS2 20ns, 20ns write TS2 20ns, 20ns

idle TS3 10ns, 20ns

add TS4 10ns, 20ns
Languages, Vol. II, R2007.1 3-101
Test Systems Strategies Inc

Program Control Directives 3—Test Control Language
There is one situation when you would want to set TimeSetMerging to false. Some
WaveBridges (such as Teradyne A580, Schlumberger ITS 9000, and LTX/Trillium)
generate timeset names from the TimePlate names; this occurs only when
TimeSetMerging is false. (For these testers, when TimeSetMerging is set to true,
the WaveBridge generates default timeset names.)

The MergeCommonSignals parameter specifies whether all signals having the identical
DC, formats, and timing across all TimePlates are merged into a single pin group in the
tester program. MergeCommonSignals options are (the WaveBridge for your tester may
not support all of these options):

n true

The WaveBridge merges common signals into groups. This is desirable for final test
program generation when you want the most compact test program. The group names
are a concatenation of the signal names, and are used in the output test program. The
WaveBridge does not use the groups defined in the input WDB and Pin Assignment
File.

n false

The WaveBridge outputs timing for each individual signal.

n new

Whenever possible, the WaveBridge uses input WDB and Pin Assignment File groups
in the output test program. Additionally, the WaveBridge forms groups for signals not
included in WDB or Pin Assignment File groups. These groups are named
PINGRP<n>, are output to the destination WDB, and are used in the output test
program.

n new_flat

As with the new option, whenever possible the WaveBridge uses input WDB and Pin
Assignment File groups in the output test program. The WaveBridge forms groups for
signals not included in WDB or Pin Assignment File groups. These groups are named
PINGRP<n> and are output to the destination WDB. In contrast to the new option,
these groups are not used in the output test program.

The MapInitialXtoZ parameter specifies whether X states on bidirectional signals are
conditionally mapped to Z states, which ensures that the driver is disabled for a compare
event. The default value is false. If MapInitialXtoZ is set to true, it affects only
3-102 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Pattern Load Directives
bidirectional signals. An X state on an output track (of a bidirectional signal) or a
bidirectional track is mapped to a Z state under the following conditions:

1. The X state is the first event in the track, or

2. The event preceding the X state is an input event

If the mapping occurs for an output track, the specification of the track’s direction is
changed to B (bidirectional) in the destination WDB. (The source WDB is not changed.)
The WaveBridge makes this change because the track has the original output events plus
the mapped Z state, which is treated as an input event. Note that a TimePlate is not allowed
to have more than one bidirectional track. If this condition is violated, a fatal TRC
message is generated. You will have to remove the bidirectional track from the TimePlate
or disable the mapping.

The MapInputXto0 parameter specifies whether the X states on Input signals should be
mapped to zero. This command is available only on the Teradyne J750 IBridge and
WaveBridge when specified in the Program Control block of the user generated TCL file.

MapInputXto0 := True enables this command.

MapInputXto0 := False is the default and no mapping takes place.

3.12 Pattern Load Directives
The Pattern Load Directives block (sometimes referred to as the Burst block) controls the
transformation of complete WDBs (after timing has been assigned by TimePlate
matching) into test program files and pattern bursts.

The syntax of the TCL Pattern Load Directives block is:

burst [<burstName>]
BurstBody
end burst [<burstName>]

Example of a TCL Pattern Load Directives block:
Languages, Vol. II, R2007.1 3-103
Test Systems Strategies Inc

Pattern Load Directives 3—Test Control Language
Start Example

burst test1
source

directory := goodwdb;
start := begin;
stop := 999ms;
compress := true;

end source

destination
program := a.prog,

 pinmap := a.pin,
channelmap := a.ch,
socket := a.soc,
pattern := a.pat;

end destination

End Example

end burst test1

A complete BNF syntactical representation of the Pattern Load Directives block follows:

PatternLoadDirectives ::= { “burst” [<burstName>]
 BurstBody
 “end” “burst” BlockName }

BurstBody ::= { BurstItems }

Destination ::= “destination” “:=” DestName { “,” DestName } “;”

LabelStruct ::= “labelprefix” “:=” LabelName { “,” LabelName } “;”

BurstItems ::= (SourceBlock | DestBlock | LabelBlock)

SourceBlock ::= “source”
 { SourceSpec }
 “end” “source”

SourceSpec ::= (SourceDB | StartTime | StopTime | Pattern | Compress |
IncrResAssign |SourceSets)

SourceDB ::= (“directory” | “database”) [“modules”] “:=” (<dirNameAN>
| <dirNameStr>) “;”
3-104 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Pattern Load Directives
StartTime ::= “start” “:=” TimeSpec “;”

StopTime ::= “stop” “:=” TimeSpec “;”

TimeSpec ::= (“begin” | “end” | “prevstop” | Time)

Time ::= (<intTime> | <floatTime>) [TimeUnit]

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”)

Pattern ::= “pattern” “:=” <patburstname> { ",“ <patburstname>} “;”

Compress ::= “compress” “:=” Boolean “;”

Boolean ::= (“true” | “false”)

SourceSets ::= (GreedyTGs | FormatUsageSet | TgUsageSet
| StrobeUsageSet)

GreedyTGs ::= “notgsharing” “:=” “[” SigList “]” “;”

FormatUsageSet ::= “formatusage” “:=” “[” SigList “]” “[” NameList “]” “;”

TgUsageSet ::= “tgusage” “:=” “[” SigList “]” “[” NameList “]” “;”

StrobeUsageSet ::= “strobeusage” “:=” “[” SigList “]” “[” NameList “]” “;”

SigList ::= SigName { “,” SigName }

SigName ::= (<signalname> | <signalnameStr>)

NameList ::= NameOrString { “,” NameOrString }

NameOrString ::= (<name> | <nameString> | “edge” | “window”)

DestBlock ::= “destination”
 { BurstDestSpec “;” }
 “end” “destination”

BurstDestSpec ::= (DestName | LoadAddr | FileFormat)

LoadAddr ::= “loadaddress” “:=” <testerMemoryAddr>

FileFormat ::= “fileformat” “:=” (“binary” | “ascii”)

DestName ::= (“program” | “pinmap” | “channelmap” | “socket”
| “pattern” | “timeset” | “relevance” | “acspec” | “dcspec”
Languages, Vol. II, R2007.1 3-105
Test Systems Strategies Inc

Pattern Load Directives 3—Test Control Language
| “directory” | “netlist” | “prefix” | “extension” | “format”
| “setup” | “database”) “:= ” [‘ “ ’] <Name> [‘ ” ’] “ ; ”

LabelBlock ::= “labelprefix”
 { LabelName “;” }
 “end” “labelprefix”

LabelName ::= (“format” | “timing” | “control” | “source” | “pattern”) “:=”
 [‘ “ ’] <labelName> [‘ ” ’] “;”

In the simplest case, only one Pattern Load Directives block is required. The WDB
specified in the source definition of the Pattern Load Directives block is required and is
the same WDB specified by the destination definition in the appropriate Match Directives
block. (Match Directives blocks create WDBs; Pattern Load Directives blocks consume
them to create test programs.) Alternatively, the WDB specified by the sourceDB
reserved word could have been created with WGL source or via WaveMaker editors.

By default, the Pattern Load Directives block utilizes all the pattern rows and subroutines
in the WDB. If start and stop times appear in the Pattern Load Directives block, only that
section of the associated source WDB is transformed into a test program.

The pattern parameter in the source definition specifies the name of the Pattern block in
the WDB to use as the source of the burst.

The compress reserved word controls whether compression is done on the corresponding
burst.

The destination reserved word can be used to specify the name(s) and type(s) of output
file(s) in which to put the test program. Some testers can accept a single test program as
input. You can put the test program in a single file by specifying only the program
reserved word. The other reserved words (pinmap, channelmap, socket, pattern,
timeset, relevance, acspec, dcspec, directory, netlist, prefix, extension, format, and
setup) allow the test program generated by WaveBridge to be output to various other files,
as may be appropriate to your tester. For specific information, refer to the WaveBridge
chapter specific to your tester.

The labelprefix reserved word can tailor the creation of labels in the test program source.
The actual labels that are created usually have a numeric suffix appended to the
<labelName> specified by these settings. By optionally enclosing the <labelName> in
double quotation marks (“ ”), you can use any character string (including white space) as
a valid prefix. For detailed information, see the WaveBridge chapter specific to your
tester.
3-106 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language Pattern Load Directives
The formatusage reserved word describes the set of available formats that WaveBridge
uses in resource allocation. If this reserved word is not used, WaveBridge defaults to the
full set (all formats are available for all signals). If this reserved word is used, only the
formats in the set are used during format allocation for the specified signals.

An example of a formatusage clause is:

FormatUsage := [ALL][RZO, XOR, FCRA, WINDOW, EDGE, MCLK,
DCLK, DSTB, IO, RI, MUXPIN];

FormatUsage := [CLK] [MCLK]

The use and effects of the other options vary from tester to tester.

The tgusage reserved word describes the set of available timing generators that
WaveBridge uses in resource allocation. If this reserved word is not used, WaveBridge
defaults to the full set (all timing generators are available for all signals). If this reserved
word is used, only the timing generators in the set are used during allocation for the
specified signals.

An example of a tgusage clause is:

TGusage := [clk, clk2][tg8];

This example forces the signals clk and clk2 to share the tg8 timing generator edges.
WaveBridge validates and uses the signal-to-TG mapping specified from the settings
specified by the tgusage reserved word. If an illegal timing generator is referenced or it is
not compatible with the actual waveform timing, WaveBridge discards its use and issues a
warning message.

By default, WaveBridge seeks to share timing generators whenever possible, using like
timing values described in the individual timing tracks of a WDB TimePlate. As an
example, this means that one signal with a return-to-zero format with edge times at 100ns
and 200ns (defined in one timing track of a TimePlate) and another signal with a
return-to-one format with edge times of 100ns and 250ns (defined in another timing track
of the same TimePlate) can share a timing generator. (Note that the direction of the signals
must be identical, but the state of the signals at the shared edge is unimportant.) Both
signals have an edge time (100ns) that can use the same timing generator, as shown in the
WGL example of a TimePlate below.

Example of shared timing generator opportunity:
Languages, Vol. II, R2007.1 3-107
Test Systems Strategies Inc

Pattern Load Directives 3—Test Control Language
Start Example

timeplate read1 period 300ns
clock1 := input [0ps:D, 100ns:U, 200ns:D];
in := input [0ps:U, 100ns:D, 250ns:U];
. . .

End Example

end

By default, signals clock1 and in share a timing generator for the edge specified at
100ns. To suppress this default WaveBridge behavior, you can use the NoTGSharing
TCL statement. The WaveBridge timing generator sharing algorithm is inhibited for all
the signals mentioned in the signal list, as in:

NoTGSharing := [clock1, in];

The signals clock1 and in, because they are listed in the NoTGSharing statement, are
exempted from sharing timing generators, even if they have edge times that would
otherwise be conducive to sharing.

The strobeusage clause describes the type of strobe for the specified signals that
WaveBridge uses in resource allocation. If this parameter is absent, it defaults to the
setting of CompareType, which can be edge, window, or both. If this parameter is
defined, the specified signals are allocated the strobe type.

Examples of strobeusage clauses are:

StrobeUsage := [CMP1, CMP2][Edge];
StrobeUsage := [CMP3] [Window];

This example sets up cause signals CMP1 and CMP2 to utilize edge strobing, and signal
CMP3 to utilize a window strobe. If the suggested strobe type is incompatible with the
signal or not enough strobe resources are available, WaveBridge discards the suggestion
and issues an appropriate warning.
3-108 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Quick Reference
NOTE
A warning message is issued when “CompareType := both;” is specified in
either a Main or Override TCL files and the Window Strobe in the WDB is too narrow.
The message is as follows:

Warning: Found in Resource Assignment
Strobe type has been changed from window to edge. Because
the window strobe is too narrow for signal sig2 in
timeplate tp1, the output test program will use an edge
strobe.

The loadaddress clause describes where in tester memory the pattern is loaded. The
default value of <testerMemoryAddr> is zero (0). This provides a mechanism for loading
reusable test program parts in one portion of tester memory (starting at address 0), and
each test program burst can be repeatedly loaded beyond the shared portion.

The FileFormat clause describes whether a binary or ASCII test program is to be
generated for the burst. The default is ASCII. Any tester that does not support BINARY
reports an error when WaveBridge setting is not ASCII.

3.13 TCL Quick Reference
The following table alphabetically lists all BNF entries that define Test Control Language
syntax. Use this table directly to resolve questions about TCL syntax, or go to the
indicated page(s) for more information.

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page

AteConstraints ::= [“ate”
{ AteConstraint “;” }

“end” “ate”]

3-10

ATEVersion ::= “AteVersion” “:=” ‘ “ ’ <versionString> ‘ ” ’ “;” 3-18

Boolean ::= (“true” | “false”) 3-18

BurstBody ::= { BurstItems } 3-104

BurstDestSpec ::= (DestName | LoadAddr | FileFormat) 3-105
Languages, Vol. II, R2007.1 3-109
Test Systems Strategies Inc

TCL Quick Reference 3—Test Control Language
BurstItems ::= (SourceBlock | DestBlock | LabelBlock) 3-104

CardInfo ::= [CardType] [CardSlots] 3-76

CardSlots ::= “cardslots” “:=” “[” Slot { ”,” Slot } “]” “;” 3-76

CardType ::= “cardtype” “:=” <cardTypeName> “;” 3-76

CmpConstraints ::= “compareconstraint” Subscript “:=” TimeExpr 3-33

CmpControl ::= (CmpEdgeRange | CmpWindowRange | CmpStrobeType) 3-33

CmpEdgeRange ::= “compareedgerange” Subscript “:=” Range 3-33

CmpMatchResolution ::= “comparematchresolution” “:=” Time 3-33

CmpResolution ::= “compareresolution” “:=” Time 3-33

CmpStrobeType ::= “comparetype” “:=” (“edge” | “window” | “both”) 3-33

CmpWindowMinimum ::= “comparewindowmin” “:=” Time 3-33

CmpWindowRange ::= “comparewindowrange” Subscript “:=” Range 3-33

ColumnList ::= <colNum> { “,” <colNum> } 3-92

Columns ::= “columnformat” “:=” (SignalGroups | EveryColumn
| ColumnList) “;”

3-92

Comments ::= “comment” “:=” [“every” <rowNum>] CommentType { “,”
CommentType } “;”

3-92

CommentType ::= (“simtime” | “testtime” | “cyclenumber”
| “memoryaddress” | “simcomment” | “timeplatename”)

3-92

Compare ::= (CmpControl | CmpConstraints | CmpMatchResolution
|CmpResolution | CmpWindowMinimum)

3-33

Compress ::= “compress” “:=” Boolean “;” 3-105

CompressionAdjacency ::= CompressionSpacing 3-17

CompressionItem ::= (“burstbegin” | “burstend” | “vector”
| “repeatedvector” | “loopbegin” | “loopend”
| MoreCompressionItems)

3-17

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
3-110 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Quick Reference
CompressionMemRowMax ::= “compressionmemrowmax” “:=” RowMax 3-49

CompressionSpacing ::= “compressionspacing” CompressionItem “..”
CompressionItem “:=” <spacing>

3-17

ControlAndTiming ::= { ControlPairs } 3-92

ControlPairs ::= (ControlSheetSets | TimingSheetSets
| ControlSecondarySheetSets | TimingSecondarySheetSets)

3-92

ControlSecondarySheetSets ::= “ControlSecondarySheetSets” “:=”
EquationSheetSetName { “,” EquationSheetSetName } “;”

3-92

ControlSheetSets ::= “ControlSheetSets” “:=” EquationSheetSetName { “,”
EquationSheetSetName } “;”

3-92

ControlSpecs ::= (FormWidth | Columns | Comments
| ControlAndTiming | ProgramStructure | DisableUnused
| TimeClockFormat | ShowFormatBlock | TimePeriodFormat
| TimeEdgeFormat)

3-91

Cycle := (CycleMinimum | CycleMaximum | CycleResolution
|CycleResolutionTolerance |CycleMatchResolution
| ScanCycleMax | ScanCycleMinScanCycleResolution)

3-20

CycleMatchResolution ::= “cyclematchresolution” “:=” Time 3-20

CycleMaximum ::= “cyclemax” “:=” Time 3-20

CycleMinimum ::= “cyclemin” “:=” Time 3-20

CycleResolution ::= “cycleresolution” “:=” Time 3-20

CycleResolutionTolerance ::= “cycleresolutiontolerance” “:=” Time 3-20

CycleSteal ::= “cyclesteal” “:=” Boolean 3-39

DC ::= (“pininvoltage” | “pinoutvoltage” | “pinoutcurrent”) “:=” DCvalues 3-22

DClabel ::= (<dcName> | <dcString>) 3-22

DCsign ::= (“+” | “-”) 3-22

DCunit ::= (“ma” | “ua” | “a” | “v”) 3-22

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
Languages, Vol. II, R2007.1 3-111
Test Systems Strategies Inc

TCL Quick Reference 3—Test Control Language
DCvalue ::= [DCsign] <voltsOrAmps> DCunit 3-22

DCvalues ::= [DClabel] “[” DCvalue { “,” DCvalue } “]” 3-22

DelayChannelRange ::= “delaychannelrange” Subscript “:=” Range 3-32

DestBlock ::= “destination”
 { BurstDestSpec “;” }

“end” “destination”

3-105

Destination ::= “destination” “:=” DestName { “,” DestName } “;” 3-104

DestinationBlock ::= “destination”
 { DestSpec }

“end” “destination”

3-84

DestName ::= (“program” | “pinmap” | “channelmap” | “socket”
| “pattern” | “timeset” | “relevance” | “acspec” | “dcspec”
| “directory” | “netlist” | “prefix” | “extension” | “format”
| “setup” | “database”) “:= ” [‘ “ ’] <fileName> [‘ ” ’] “ ; ”

3-105

DestSpec ::= (WaveDestination | DestTime) 3-84

DestTime ::= (“start” | “stop”) “:=” TimeSpec “;” 3-84

DisableUnused ::= “DisableUnusedChannels” “:=” Boolean “;” 3-93

Drive := (DriveControl | DrivePulseMinimum | DriveResolution) 3-33

DriveChannelRange ::= “drivechannelrange” Subscript “:=” Range 3-33

DriveConstraints ::= “driveconstraint” Subscript “:=” TimeExpr 3-34

DriveControl ::= (DriveChannelRange | DriveMatchResolution
| DriveConstraints | DriveOnMinimum | DriveOffMinimum)

3-33

DriveMatchResolution ::= “drivematchresolution” “:=” Time 3-34

DriveOffMinimum ::= “driveoffmin” “:=” Time 3-34

DriveOnMinimum ::= “driveonmin” “:=” Time 3-34

DrivePulseMinimum ::= “drivepulsemin” “:=” Time 3-34

DriveResolution ::= “driveresolution” “:=” Time 3-34

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
3-112 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Quick Reference
EquationSheetSetName ::= <EquationSheetName> “:” <ExpressionSetName> 3-92

EventBlock := “events”
 { EventSpec }
 “end” “events”

3-84

EventSpec ::= (WaveSource | StartTime | StopTime) 3-84

EveryColumn ::= “every” <colNum> 3-92

FileFormat ::= “fileformat” “:=” (“binary” | “ascii”) 3-105

Fixture ::= (SocketType | VernierRange | FixtureOffset) 3-28

FixtureOffset ::= “fixtureoffset” “:=” [“-”] Time 3-28

Force ::= (ForceChannelRange | ForcePulseMinimum | ForceConstraints |
ForceResolution | ForceMatchResolution
|DelayChannelRange)

3-32

ForceChannelRange ::= “forcechannelrange” Subscript “:=” Range 3-32

ForceConstraints ::= “forceconstraint” Subscript “:=” TimeExpr 3-33

ForceMatchResolution ::= “forcematchresolution” “:=” Time 3-33

ForcePulseMinimum ::= “forcepulsemin” “:=” Time 3-33

ForceResolution ::= “forceresolution” “:=” Time 3-33

FormatCharMap ::= “formatcharmap” “:=” <formatCharMap> 3-39

FormatSet ::= “formatsetmax” “:=” <formatsetMaximum> 3-39

FormatUsageSet ::= “formatusage” “:=” “[” SigList “]” “[” NameList “]” “;” 3-105

FormWidth ::= “formwidth” “:=” <colNum> “;” 3-92

GlobalRepetition ::= “repetition” “:=” <integer> 3-81

GreedyTGs ::= “notgsharing” “:=” “[” SigList “]” “;” 3-105

HizRowMaximum ::= “hizrowmax” “:=” RowMax 3-49

IgnoreWhen ::= “ignore” “:=” (“informative” | “warning”) 3-81

IntRange ::= <lowerBound> “..” <upperBound> 3-32

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
Languages, Vol. II, R2007.1 3-113
Test Systems Strategies Inc

TCL Quick Reference 3—Test Control Language
IORowMaximum ::= “iorowmax” “:=” RowMax 3-49

LabelBlock ::= “labelprefix”
 { LabelName “;” }

“end” “labelprefix”

3-106

LabelName ::= (“format” | “timing” | “control” | “source” | “pattern”) “:=” [‘ “
’] <labelName> [‘ ” ’] “;”

3-106

LabelStruct ::= “labelprefix” “:=” LabelName { “,” LabelName } “;” 3-104

LoadAddr ::= “loadaddress” “:=” <testerMemoryAddr> 3-105

LocalTimeSet ::= “localtimesetmax” “:=” <localtimesetMaximum> 3-68

Loop ::= (LoopCompression | LoopCountMaximum | LoopCountMinimum |
LoopNest | LoopRowMinimum |LoopRowMaximum | LoopConstraint)

3-42

LoopAtEndLegal ::= “loopatendlegal” “:=” Boolean 3-43

LoopAtStartLegal ::= “loopatstartlegal” “:=” Boolean 3-43

LoopCompression ::= “loopcompression” “:=” Boolean 3-42

LoopConstraint ::= (LoopSpacingMin | LoopAtStartLegal
| LoopAtEndLegal| LoopRepeatCountMinimum
| LoopRepeatCountMaximum)

3-42

LoopCountMaximum ::= “loopcountmax” “:=” <loopCountMaximum> 3-42

LoopCountMinimum ::= “loopcountmin” “:=” <loopCountMinimum> 3-42

LoopNest ::= “loopnestmax” “:=” <loopNestMaximum> 3-42

LoopRepeatCountMaximum ::= “looprepeatcountmax” “:=”
<loopRepeatMaximum>

3-43

LoopRepeatCountMinimum ::= “looprepeatcountmin” “:=”
<loopRepeatMinimum>

3-43

LoopRowMaximum ::= “looprowmax” “:=” <loopRowMaximum> 3-43

LoopRowMinimum ::= “looprowmin” “:=” <loopRowMinimum> 3-43

LoopSpacingMin ::= “loopspacingmin” “:=” <loopSpaceMin> 3-43

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
3-114 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Quick Reference
MaskRowMaximum ::= “maskrowmax” “:=” RowMax 3-49

MatchBody ::= { MatchSpecs “;” } 3-83

MatchDirectives ::= { “match”
MatchBody

“end” “match” }

3-10,
3-83

MatchSpecs ::= (EventBlock | TimingBlock | DestinationBlock) 3-83

MapInitialXtoZ ::= “mapinitialxtoz” “:=” Boolean “;” 3-33

Mclk ::= (MclkType | MclkRate | MclkLeading | MclkTrailing
| MclkRecovery | MclkEdgeResolution | MclkCountMaximum)

3-45

MclkConstraints ::= “multiclockconstraint” Subscript “:=” TimeExpr 3-46

MclkCountMaximum ::= “multiclockcountmax” “:=” <countMaximum> 3-46

MclkEdgeResolution ::= “multiclockedgeresolution” “:=” Time 3-46

MclkLeading ::= (MclkLeadingMinimum | MclkLeadingMaximum) 3-45

MclkLeadingMaximum ::= “multiclockleadingmax” “:=” Time 3-46

MclkLeadingMinimum ::= “multiclockleadingmin” “:=” Time 3-46

MclkPulseMin ::= “multiclockpulsemin” “:=” Time 3-46

MclkRate ::= (MclkRateResolution | MclkRateMinimum
| MclkRateMaximum)

3-45

MclkRateMaximum ::= “multiclockratemax” “:=” Time 3-46

MclkRateMinimum ::= “multiclockratemin” “:=” Time 3-46

MclkRateResolution ::= “multiclockrateresolution” “:=” Time 3-46

MclkRecovery ::= (MclkPulseMin | MclkConstraints) 3-46

MclkTrailing ::= (MclkTrailingMinimum | MclkTrailingMaximum) 3-46

MclkTrailingMaximum ::= “multiclocktrailingmax” “:=” Time 3-46

MclkTrailingMinimum ::= “multiclocktrailingmin” “:=” Time 3-46

MclkType ::= “multiclocktype” “:=” (“none” | “cyclic” | “acyclic”) 3-45

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
Languages, Vol. II, R2007.1 3-115
Test Systems Strategies Inc

TCL Quick Reference 3—Test Control Language
McodeCallCost ::= “microcodecallcost” “:=” <microcodeCallCost> 3-44

McodeLoopCost ::= “microcodeloopcost” “:=” <microcodeLoopCost> 3-44

McodeRepeatCost ::= “microcoderepeatcost” “:=” <microcodeRepeatCost> 3-44

McodeRowMaximum ::= “microcoderowmax” “:=”
<microcodeRowMaximum>

3-44

McodeSubrCost ::= “microcodesubrcost” “:=” <microcodeSubrCost> 3-44

MemoryModel ::= “MemoryModel” “:=” <memoryModel> “;” 3-18

MemoryRadix ::= (“binary” | “octal” | “hexadecimal”
| “bin” | “oct” | “hex”)

3-93

xSignals ::= (“true” | “false” | “new” | “new_flat”) 3-93

MessageBody ::= { (Severity | Repetition | MessageText) “;” } 3-78

MessageOverrides ::= { “message” <messageName> MessageParams
MessageBody

“end” “message” [<messageName>] }

3-10,
3-78

MessageParams ::= [“(” <parameterName> { “,” <parameterName> } “:”
ParamType “)”]

3-78

MessageString ::= ‘ “ ’ <string> ‘ ” ’ { “+” ‘ “ ’ <string> ‘ ” ’ } 3-78

MessageText ::= (“terse” | “cause” | “location” | “remedy” | “generic”) “:=”
MessageString

3-78

MicroCode ::= (McodeRowMaximum | McodeRepeatCost
| McodeSubrCost | McodeCallCost | McodeLoopCost)

3-44

MoreCompressionItems ::= (“call” | “repeatedcall” | “subroutinebegin” |
“subroutineend” | “scanrun”)

3-18

MuxConversion ::= “MuxConversion” “:=” (“OLDtoNEW” | ““NEWtoOLD” |
“NONE”) “;”

3-18

NameList ::= NameOrString { “,” NameOrString } 3-105

NameOrString ::= (<name> | <nameString> | “edge” | “window”) 3-105

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
3-116 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Quick Reference
ParamType ::= (“signal” | “TimePlate” | “list” | “time” | “integer”
| “string”)

3-78

Partition ::= <partitionName> [“radix” MemoryRadix] 3-93

PartitionReplace ::= (“include” | “replace”) 3-93

PatBoundary ::= “patternboundary” “:=” <compressionValue> 3-49

PatBurstMax ::= “burstrowmax” “:=” <burstRowMaximum> 3-49

PatCompression ::= “patterncompression” “:=” (“yes” | “no”
| “threshold”)

3-49

PatRowMax ::= “patternrowmax” “:=” <patternRowMaximum> 3-49

Pattern ::= (PatCompression | PatBoundary | PatRowMaximum
| PatBurstMaximum | CompressionMemRowMax
| IORowMax | MaskRowMax | HizRowMask)

3-49

Pattern ::= “pattern” “:=” <patburstname> { ",“ <patburstname>} “;” 3-49

PatternLoadDirectives ::= { “burst” [<burstName>]
BurstBody

“end” “burst” [<burstName>] }

3-10,
3-104

Persistence ::= “persistence” “:=” <persistenceValue> “;” 3-84

Pin ::= (PinInOutMaximum | PinInOutMinimum | PinInMaximum
| PinOutMaximum)

3-51

PinGroupBody ::= CardInfo Pins { AteConstraint “;” } 3-76

PinGroupName ::= (<name> | <nameString>) 3-76

PinGroups ::= { “pingroup” <PinGroupName>
{ PinGroupBody “;” }

“end” “pingroup” <PinGroupName>}

3-10,
3-76

PinInMax ::= “pininmax” “:=” <pinInMaximum> 3-51

PinInOutMax ::= “pininoutmax” “:=” <pinInOutMaximum> 3-51

PinInOutMin ::= “pininoutmin” “:=” <pinInOutMin> 3-51

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
Languages, Vol. II, R2007.1 3-117
Test Systems Strategies Inc

TCL Quick Reference 3—Test Control Language
PinList ::= “[” Pin { “,” Pin } “]” “;” 3-76

PinNum ::= <pinNumber> [“..” <pinNumber>] 3-76

PinOutMax ::= “pinoutmax” “:=” <pinOutMaximum> 3-51

PinRange ::= <lowerBound> “..” <upperBound> 3-32

Pins ::= { “pins” “:=” PinList } 3-76

Probe ::= (Probers | Settlers | Pulsers | Monitors | Spikes) 3-53

ProbeCloseHoldTime ::= “probeclosehold” “:=” Time 3-54

ProbeCloseSetupTime ::= “probeclosesetup” “:=” Time 3-54

ProbeConstraints ::= “probeconstraint” Subscript “:=” TimeExpr 3-53

ProbeDefault ::= “probedefault” “:=” TimeExpr 3-53

ProbeHold ::= “probehold” “:=” Time 3-53

ProbeOpenHoldTime ::= “probeopenhold” “:=” Time 3-54

ProbeOpenMaximum ::= “probeopenmax” “:=” Time 3-54

ProbeOpenMinimum ::= “probeopenmin” “:=” Time 3-54

ProbeOpenSetupTime ::= “probeopensetup” “:=” Time 3-54

Probers ::= (Probers1 | Probers2) 3-53

Probers1 ::= (ProbeConstraints | ProbeOpenMinimum
| ProbeOpenMaximum | ProbeWindowMinimum)

3-53

Probers2 ::= (ProbeOpenSetupTime | ProbeOpenHoldTime
| ProbeCloseSetupTime | ProbeCloseHoldTime
| ProbeDefault | ProbeSetup | ProbeHold)

3-53

ProbeSetup ::= “probesetup” “:=” Time 3-53

ProbeWindowMinimum ::= “probewindowmin” “:=” Time 3-54

ProgControlDirectives ::= { “programcontrol”
 { ControlSpecs }

“end” “programcontrol” }

3-10,
3-91

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
3-118 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Quick Reference
ProgramStructure ::= “structure”
{ StructureBody }

“end” “structure”

3-93

PulseProbeCloseDefTime ::= “pulseprobeclosedefault” “:=” TimeExpr 3-54

PulseProbeOpenDefTime ::= “pulseprobeopendefault” “:=” TimeExpr 3-54

Pulsers ::= (PulseProbeOpenDefTime | PulseProbeCloseDefTime) 3-54

QuitOn ::= “quiton” “:=” <messageName> [“after” <integer>] 3-81

Range ::= IntRange [“pins” PinRange] [“per” <perValue>] 3-32,
3-34

RepeatAtEndLegal ::= “repeatatendlegal” “:=” Boolean 3-59

RepeatAtStartLegal ::= “repeatatstartlegal” “:=” Boolean 3-59

RepeatAtSubrEndLegal ::= “repeatatsubrendlegal” “:=” Boolean 3-59

RepeatAtSubrStartLegal ::= “repeatatsubrstartlegal” “:=” Boolean 3-59

RepeatCompression ::= “repeatcompression” “:=” Boolean 3-59

RepeatConstraint ::= (RepeatAtStartLegal | RepeatAtEndLegal
| RepeatInSubrLegal | RepeatInLoopLegal
| RepeatAtSubrStartLegal | RepeatAtSubrEndLegal)

3-59

RepeatCountMaximum ::= “repeatcountmax” “:=” <repeatCountMaximum> 3-59

RepeatCountMinimum ::= “repeatcountmin” “:=” <repeatCountMinimum> 3-59

RepeatInLoopLegal ::= “repeatinlooplegal” “:=” Boolean 3-59

RepeatInSubrLegal ::= “repeatinsubrlegal” “:=” Boolean 3-59

Repeats ::= (RepeatCompression | RepeatConstraint
| RepeatCountMinimum | RepeatCountMaximum)

3-58

Repetition ::= “repetition” “:=” <repetitionCount> 3-78

ReportFormat ::= “format” “:=” (“tabular” | “linear” | “both”) 3-81

ReportWidth ::= “formwidth” “:=” (“80” | “132”) 3-81

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
Languages, Vol. II, R2007.1 3-119
Test Systems Strategies Inc

TCL Quick Reference 3—Test Control Language
RowMax ::= (“patternrowmax” | <rowMaximum>) 3-49

Scan ::= (ScanTimes | ScanPatterns | ScanType | ScanMode) 3-60

ScanChannelMax ::= “scanchannelmax” “:=” <scanChannelMax> 3-61

ScanCycleMax ::= “scancyclemax” “:=” Time 3-20,
3-60

ScanCycleMin ::= “scancyclemin” “:=” Time 3-20,
3-60

ScanCycleRes ::= “scancycleresolution” “:=” Time 3-20,
3-60

ScanMode ::= “scanmode” “:=” (“serial” | “parallel”) 3-61

ScanPatternMax ::= “scanpatternmax” “:=” <scanPatternMax> 3-60

ScanPatternMin ::= “scanpatternmin” “:=” <scanPatternMin> 3-60

ScanPatternRes ::= “scanpatternresolution” “:=” <scanResolution> 3-61

ScanPatterns ::= (ScanPatternMin | ScanPatternMax | ScanPatternRes |
ScanChannelMax)

3-60

ScanRegistersOnly ::=”scanregistersonly” (“true” | “false”) 3-61

ScanTimes ::= (ScanCycleMax | ScanCycleMin | ScanCycleRes) 3-60

ScanType ::= “scantype” “:=” “[” ScanTypeName
{ “,” ScanTypeName } “]”

3-61

ScanTypeName ::= (“in” | “out” | “inout” | “mask” | “inmask”
| “feedback”)

3-61

SettledProbeCloseDefTime ::= “settledprobeclosedefault” “:=” TimeExpr 3-54

SettledProbeOpenDefTime ::= “settledprobeopendefault” “:=” TimeExpr 3-54

Settlers ::= (SettledProbeOpenDefTime |
SettledProbeCloseDefTime)

3-54

Severity ::= “severity” (“informative” | “warning” | “fatal”) 3-78

ShowFormatBlock ::= “showformatblock” “:=” Boolean “;” 3-93

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
3-120 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Quick Reference
SigList ::= SigName { “,” SigName } 3-105

SignalGroups ::= “signals” SignalName { “,” <signalName> } 3-92

SignalName ::= [‘ “ ’] <signalName> [‘ ” ’] 3-92

SigName ::= (<signalname> | <signalnameStr>) 3-105

Slot ::= <slotNumber> [“..” <slotNumber>] 3-76

SocketType ::= “sockettype” “:=” <socketTypeName> 3-28

SourceDB ::= (“directory” | “database”) [“modules”] “:=”
(<dirNameAN> | <dirNameStr>) “;”

3-104

SourceBlock ::= “source”
 { SourceSpec }

“end” “source”

3-104

SourceSets ::= (GreedyTGs | FormatUsageSet | TgUsageSet
| StrobeUsageSet)

3-105

SourceSpec ::= (Source | StartTime | StopTime | Compress | IncrResAssign
|SourceSets)

3-104

SpikePulseMinimum ::= “spikepulsemin” “:=” Time 3-54

Spikes ::= (SpikePulseMinimum) 3-54

StartTime ::= “start” “:=” TimeSpec “;” 3-84

StopTime ::= “stop” “:=” TimeSpec “;” 3-84

StrobeUsageSet ::= “strobeusage” “:=” “[” SigList “]”
“[” NameList “]” “;”

3-105

StructureBody ::= Partition [“:=” ‘ “ ’ <fileName> ‘ ” ’
[PartitionReplace]] “;”

3-93

SubrAfterRepeatLegal ::= “subroutineafterrepeatlegal” “:=” Boolean 3-65

SubrAtEndLegal ::= “subroutineatendlegal” “:=” Boolean 3-65

SubrAtStartLegal ::= “subroutineatstartlegal” “:=” Boolean 3-65

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
Languages, Vol. II, R2007.1 3-121
Test Systems Strategies Inc

TCL Quick Reference 3—Test Control Language
SubrCallConstraint ::= (SubrAtStartLegal | SubrAtEndLegal
| SubrAfterRepeatLegal | SubrSpacingMinimum)

3-65

SubrCompression ::= “subroutinecompression” “:=” Boolean 3-65

SubrDefnMaximum ::=”subroutinedefnmax” “:=” <suberDeferMaxer> 3-65

SubrNestMaximum ::= “subroutinenestmax” “:=” <subrNestMaximum> 3-65

Subroutine ::= (SubrCompression | SubrDefnMaximum |
SubrNestMaximum | SubrRowMaximum |
SubrRowMinimum | SubrRepeatMaximum |
SubrCallConstraint)

3-65

SubrRepeatMaximum ::= “subroutinerepeatcountmax” “:=”
<subrRepeatMaximum>

3-65

SubrRowMaximum ::= “subroutinerowmax” “:=” <subrRowMaximum> 3-65

SubrRowMinimum ::= “subroutinerowmin” “:=” <subrRowMinimum> 3-65

SubrSpacingMinimum ::= “subroutinespacingmin” “:=” <subrSpaceMin> 3-65

Subscript ::= [“[” <constIndex> “]”] 3-32

TclBody ::= (AteConstraints | PinGroups | MessageOverrides
| TrcDirectives | MatchDirectives |ProgControlDirectives
| PatternLoadDirectives)

3-10

TclProgram ::= “testcontrol” [<tclName>]
{ TclBody }
“end” “testcontrol”

3-9

TgUsageSet ::= “tgusage” “:=” “[” SigList “]” “[” NameList “]” “;” 3-105

Time ::= (<intTime> | <floatTime>) [TimeUnit] 3-20,
3-28,
3-33,
3-33,
3-46,
3-54,
3-60,
3-84

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
3-122 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

3—Test Control Language TCL Quick Reference
TimeClockFormat ::= (“freq” | “time”) 3-93

TimeEdgeFormat ::= (“freq” | “time”) 3-93

TimePeriodFormat ::= (“freq” | “time”) 3-93

Timeplate ::= TimeplateName [“<=” TimeplateName] 3-84

TimeplateName ::= (<timeplateName> | <timeplateString>) 3-84

Timeplates ::= “timeplates” “:=” Timeplate { “,” Timeplate } “;” 3-84

TimeSet ::= “timesetmax” “:=” <timesetMaximum> 3-68

TimeSetMerging ::= (“true” | “false”) 3-93

TimeSetType ::= “timesettype” “:=” (“allow_both” | “force_single” |
“force_dual”)

3-68

TimeSpec ::= (“begin” | “end” | “prevstop” | Time) 3-84

TimeUnit ::= (“ps” | “ns” | “us” | “ms” | “s”) 3-20,
3-28,
3-33,
3-33,
3-46,
3-54,
3-60,
3-85

TimingBlock ::= “timing”
 { TimingSpec }

“end” “timing”

3-84

TimingSecondarySheetSets ::= “TimingSecondarySheetSets” “:=”
EquationSheetSetName { “,” EquationSheetSetName } “;”

3-92

TimingSheetSets ::= “TimingSheetSets” “:=” EquationSheetSetName { “,”
EquationSheetSetName } “;”

3-92

TimingSource ::= “directory” “:=” <WDBname> “;” 3-84

TimingSpec ::= (TimingSource | Timeplates | Persistence) 3-84

Transform ::= (TransformPattern | TransformTiming) 3-71

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
Languages, Vol. II, R2007.1 3-123
Test Systems Strategies Inc

TCL Quick Reference 3—Test Control Language
TransformPattern ::= “transformpattern” “:=” Boolean 3-71

TransformTiming ::= “transformtiming” “:=” Boolean 3-71

TrcDirectives ::= [“trc”
{ TrcSpec “;” }

“end” “trc”]

3-10,
3-80

TrcSpec ::= (ReportFormat | ReportWidth | GlobalRepetition
| IgnoreWhen | QuitOn)

3-80

VernierRange ::= “vernierrange” “:=” Time 3-28

WaveDestination ::= “directory” “:=” <WDBname> “;” 3-84

WaveSource ::= “directory” “:=” <directoryname> “;” 3-84

Table 3-22. BNF Entries for Test Control Language (TCL).

BNF Entry Page
3-124 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

Index
A
annotations in WDB

WGL 87
ATE constraints

TCL 12
ATE parameter names 15
ATE pin group definition

WGL 75

B
binary format

WGL 103
block usage in TCL 9
Burst block

TCL 103
buses

WGL 17

C
character strings

WGL 8
comments

TCL 6
WGL 5

compression spacing constraints
TCL 17

configuration controls
TCL 18

Control Sheets
equations

TCL 97
conventions, TCL notational 3

cycle constraints
TCL 19

D
DC controls

TCL 21
directives

TRC 80

E
edge timing definition

WGL 78
Equation Sheet block

WGL 54
equation sheet defaults

TCL 98
equations

built-in variables 62
expressions 61
variables 58
WGL 53, 54

equation-specific programming blocks
WGL 52

examples
TCL 10
WGL 91

expression set
WGL 55

Expressions
built-in variables 62

Expressions in equations 61
Languages, Vol. II, R2007.1 Index-1
Test Systems Strategies Inc

Index
F
fixture controls

TCL 28
force/compare/drive constraints

TCL 30
format controls

TCL 39
format register definition

WGL 74
formatusage

TCL 107
Functions, built-in 62

G
generic programming blocks

WGL 14
global mode attributes

WGL 88
Glossary

WGL 133
groups

WGL 18

I
identifiers

WGL 6
include files

WGL 86
introduction

TCL 1
WGL 1

IsBiDir 30
IsEdge 30
IsInput 30
IsOutput 30
IsWindow 30

L
labelprefix

TCL 106

language conventions
TCL 3
WGL 4

language syntax
TCL 9
WGL 8

LevelSecondarySheetSets 97
LevelSheetSets 97
loadaddress

TCL 109
loop constraints

TCL 40

M
macro definition

WGL 81
macro invocation

WGL 82
macros

WGL 81
MapInitialXtoZ, description

TCL 102
match directives

TCL 82
match preferences

TCL 67
MatchPlate annotation

WGL 101
MergeCommonSignals, description

TCL 102
message overrides

TCL 77
microcode constraints

TCL 43
multiple ATE pins

WGL 20
multiple clocking constraints

TCL 45
multiple DUT pins

WGL 23
Index-2 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

Index
multiple expression sets
equations

TCL 99
multiplexed buses

WGL 19
multiplexed buses, example

WGL 35
multiplexed signals

WGL 19
multiplexed signals and buses

WGL
Pattern block 40
TimePlates block 33

mux
WGL 23

N
new, MergeCommonSignals 102
new_flat, MergeCommonSignals 102
notational conventions, TCL 3
NoTGSharing

TCL 108
numeric values

WGL 7

P
P mode, definitions

WGL 88
P state, inition

WGL 23
pattern ATE controls

TCL 48
pattern bit definition

WGL 38
Pattern Load Directives block

TCL 103
pin ATE controls

TCL 51
pin constraints

TCL 74

pin groups
TCL 74

probe constraints
TCL 52

program block syntax rules
TCL 12
WGL 13

program control directives
TCL 91

programming blocks in TCL 9

R
repeat constraints

TCL 57
reserved words

TCL 7
WGL 7

S
scan cell state definition

WGL 26
scan circuit definition

WGL 28
scan controls

TCL 59
scan register definition

WGL 25
ScanChannelMax

TCL 61
ScanCycleMax

TCL 61
ScanCycleMin

TCL 61
ScanCycleResolution

TCL 61
scanmode

TCL 62
ScanPatternMax

TCL 61
ScanPatternMin
Languages, Vol. II, R2007.1 Index-3
Test Systems Strategies Inc

Index
TCL 61
ScanPatternResolution

TCL 61
ScanPinDirection

TCL 61
ScanRegisterOnly

TCL 62
ScanType

TCL 61
signal definition

WGL 15
signals

order in scanchains 26, 31
single-bit signals

WGL 17
specifying pattern row separation 17
strobeusage

TCL 108
subroutine constraints

TCL 63
subroutines

WGL 47
symbolic definition of pattern bits

WGL 50
syntax notation conventions

TCL 3
WGL 4

syntax notation conventions, used in BNF de-
scriptions

TCL 4
syntax notation conventions, used in text de-

scriptions
TCL 3

T
TCL

ATC Contraints
compression spacing constraints 17

ATE Constraints
cycle constraints 19

DC controls 21
fixture controls 28
Force/Compare/Drive Constraints 30
format controls 39
loop constraints 40
microcode constraints 43
multiple clocking constraints 45
pattern ATE controls 48
pin ATE controls 51
pin constraints 74
pin groups 74
probe constraints 52
repeat constraints 57
scan controls 59
subroutine constraints 63
Timing Expressions 68

ATE Constraints block 12
ATE parameter name 15
Burst block 103
comments 6
compression spacing constraints 17
configuration controls 18
Control Sheets 97
cycle constraints 19
DC controls 21
Drive2CompareConstraints 34
equation sheet defaults 98
file example 10
fixture controls 28
force/compare/drive constraints 30
format controls 39
formatusage 107
identifying blocks 9
introduction 1
IsBiDir 30
IsEdge 30
IsInput 30
IsOutput 30
IsWindow 30
labelprefix 106
language conventions 3
Index-4 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

Index
language syntax 9
general rules 9

loadaddress 109
loop constraints 40
MapInitialXtoZ, description 102
Match Directives block 82
match preferences 67
MergeCommonSignals, description 102
Message Overrides block 77
microcode constraints 43
multiple clocking constraints 45
multiple expression sets 99
NoTGSharing 108
pattern ATE controls 48
Pattern Load Directives block 103
pin ATE controls 51
Pin Groups block 74
probe constraints 52
program block syntax rules 12
Program Control Directives block 91
programming blocks 9
repeat constraints 57
reserved words 7
scan controls 59
ScanChannelMax 61
ScanCycleMax 61
ScanCycleMin 61
ScanCycleResolution 61
scanmode 62
ScanPatternMax 61
ScanPatternMin 61
ScanPatternResolution 61
ScanPinDirection 61
ScanRegisterOnly 62
ScanType 61
specifying pattern row separation 17
strobeusage 108
syntax notation conventions 3

in BNF descriptions 4
in text descriptions 3

tgusage 107
TilerTimePlateOrderCost 67
TimePlate match preferences 67
TimePlate period constraints 19
Timeset Controls

ATE version 68
TimeSetMerging, description 101
Timing Sheets 97
Transform

ATE version 71
Transform, pattern

ATE version 73
Transform, timing

ATE version 72
TRC Directives block 80
types of files 1
when to use 2

tester-specific programming blocks
WGL 71

tgusage
TCL 107

TilerTimePlateOrderCost
TCL 67

TimePlate match preferences
TCL 67

TimePlate period constraints
TCL 19

TimePlates
multiplexing 33
TCL constraints on TimePlate Matching 82

timeset controls
TCL 68

TimeSetMerging, description
TCL 101

timing definition
WGL 32

timing expressions
TCL 68

timing generator definition
WGL 77
Languages, Vol. II, R2007.1 Index-5
Test Systems Strategies Inc

Index
Timing Sheets
equations

TCL 97
Transform

TCL 71
Transform, pattern

TCL 73
Transform, timing

TCL 72
TRC 80
TRC directives

TCL 80
types of TCL files 1

U
using for scan testing support

WGL 96
using macros and include files

WGL 91
using WGL annotations

WGL 99

V
variables

WGL 52, 55, 66
Variables in equations 58
Variables, built-in 62
variables, default values

WGL 66
variables, how to declare

WGL 55

W
waveform shape definition

WGL 71
WGL

annotations in WDB 87
binary format 103
buses 17
character strings 8

comments 5
EquationDefaults block 66
equations 54
examples 91
ExprSet sub-block 55
Formats block 71
global mode attributes 88

P Mode 88
Glossary 133
glossary of terms 133
groups 18
identifiers 6
include files 86
introduction 1
language conventions 4
language syntax 8

equation-specific programming blocks 52
general rules 8
generic programming blocks 14
program block rules 13
tester-specific programming blocks 71

macro definition 81
with parameters 84
without parameters 82

macro invocation 82
with parameters 84
without parameters 82

macros 81
MatchPlate annotation 101
multiple ATE pins 20
multiplexed buses 19
multiplexed buses, example 35
multiplexed signals 19
numeric values 7
P state, initial 23
Pattern block

multiplexed signals and buses 40
Patterns block 38
Pin Groups block 75
Registers block 74
Index-6 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

Index
relationship to WDB 2
reserved words 7
Scan Cells block 25
Scan Chain block 28
Scan State block 26
Signals block 15
single-bit signals 17
Subroutines block 47
Symbolics block 50
syntax notation conventions 4
TimeGens block 77
TimePlates block 32

multiplexed signals and buses 33
TimingSets block 78
using for scan testing support 96
using macros and include files 91
using WGL annotations 99
when to use 1

WGL multiple DUT pins 23
WGL mux reserved word 23
Languages, Vol. II, R2007.1 Index-7
Test Systems Strategies Inc

Index
Index-8 Languages, Vol. II, R2007.1
Test Systems Strategies Inc

	LANGUAGES GUIDE
	Table of Contents
	Language Overview
	1.1 Waveform Generation
	1.2 Test Control

	Waveform Generation Language
	2.1 Introduction
	2.2 When to Use WGL
	2.3 WGL and Wavemaker
	2.4 WGL Language Conventions
	2.4.1 WGL Syntax Notation Conventions
	2.4.2 Comments
	2.4.3 Identifiers
	2.4.4 Numbers
	2.4.5 Reserved Words
	2.4.6 Strings

	2.5 WGL Syntax
	2.5.1 General Syntax
	2.5.2 Program Block Syntax
	2.5.3 Generic Program Blocks
	2.5.4 Equation-Specific Program Blocks
	2.5.5 Tester-Specific Program Blocks

	2.6 Additional Features
	2.6.1 Macros
	2.6.2 Include Files
	2.6.3 Annotations
	2.6.4 Global Mode

	2.7 Examples
	2.7.1 Using WGL Macros and Include Files
	2.7.2 WGL and Scan Test Hardware
	2.7.3 Using Annotations in WGL

	2.8 Binary WGL
	2.8.1 WGL Binary Interface
	2.8.2 Binary File Format
	2.8.3 Examples of ASCII and the Equivalent Binary

	2.9 Glossary of WGL Terminology

	Test Control Language
	3.1 Introduction
	3.2 When to Use TCL
	3.3 TCL Language Conventions
	3.3.1 TCL Syntax Notation Conventions
	3.3.2 Comments
	3.3.3 Reserved Words

	3.4 General TCL Syntax
	3.5 General Program Block Syntax
	3.6 ATE Constraints
	3.6.1 Compression Spacing Constraints
	3.6.2 Configuration Controls
	3.6.3 Cycle Constraints
	3.6.4 Signal Pin DC Controls
	3.6.5 Signal Sequence Control
	3.6.6 Power Supply DC Controls
	3.6.7 Fixture Controls
	3.6.8 Force/Compare/Drive Constraints
	3.6.9 Format Controls
	3.6.10 Loop Constraints
	3.6.11 Microcode Constraints
	3.6.12 Multiple Clocking Constraints
	3.6.13 Pattern ATE Controls
	3.6.14 Timeout Control
	3.6.15 Pin ATE Controls
	3.6.16 Probe Constraints
	3.6.17 Repeat Constraints
	3.6.18 Scan Controls
	3.6.19 Subroutine Constraints
	3.6.20 TimePlate Matching Preference Control
	3.6.21 Timeset Controls
	3.6.22 Timing Expressions
	3.6.23 Transform

	3.7 Pin Groups
	3.8 Message Overrides
	3.9 TRC Directives
	3.10 Match Directives
	3.11 Program Control Directives
	3.12 Pattern Load Directives
	3.13 TCL Quick Reference

	Index

