<©IEEE

IEEE Standard for Extensions to
Standard Test Interface Language
(STIL) (IEEE Std 1450™-1999) for
Tester Target Specification

IEEE Computer Society

Sponsored by the
Test Technology Standards Committee

IEEE
IEEE Std 1450.3™-2007

3 Park Avenue
New York, NY 10016-5997, USA

7 September 2007

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

Recognized as an IEEE 1450.3™-2007
American National Standard (ANSI)

IEEE Standard for Extensions to
Standard Test Interface Language
(STIL) (IEEE Std 1450™-1999) for
Tester Target Specification

Sponsor

Test Technology Standards Committee
of the
IEEE Computer Society

Approved 24 August 2007

American National Standards Institute

Approved 8 March 2007
IEEE SA-Standards Board

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

Abstract: The STIL environment supports transferring tester-independent test programs to a
specific automated testing equipment (ATE) system. Although native STIL data are tester
independent, the actual process of mapping the test program onto tester resources may be critical,
and it is necessary to be able to completely and unambiguously specify how the STIL programs
and patterns are mapped onto the tester resources. TRC (which stands for either tester resource
constraints or tester rules checking, depending on the usage) is an extension to the STIL language
to facilitate this operation.

Keywords: Tester rules checking (TRC), tester resource reporting, tester resource targeting,
tester resource loading

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2007 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 7 September 2007. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

Print: ISBN 0-7381-5517-9 SH95624
PDF: ISBN 0-7381-5518-7 SS95624

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which brings
together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not
necessarily members of the Institute and serve without compensation. While the IEEE administers the process
and establishes rules to promote fairness in the consensus development process, the IEEE does not independently
evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or
other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or
indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a
specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards
documents are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the
viewpoint expressed at the time a standard is approved and issued is subject to change brought about through
developments in the state of the art and comments received from users of the standard. Every IEEE Standard is
subjected to review at least every five years for revision or reaffirmation. When a document is more than five
years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value,
do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely
upon the advice of a competent professional in determining the exercise of reasonable care in any given
circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this
reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an
instant response to interpretation requests except in those cases where the matter has previously received formal
consideration. At lectures, symposia, seminars, or educational courses, an individual presenting information on
IEEE standards shall make it clear that his or her views should be considered the personal views of that individual
rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership
affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text,
together with appropriate supporting comments. Comments on standards and requests for interpretations should
be addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854

USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer
Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of
any individual standard for educational classroom use can also be obtained through the Copyright Clearance
Center.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

Introduction

This introduction is not part of IEEE 1450.3-2007, Standard for Extensions to Standard Test Interface Language
(STIL) (IEEE Std 1450™-1999) for Tester Target Specification.

STIL is a collection of standards with the base standard being 1450 and the dotted extensions used to define
additional syntax for addressing additional areas; i.e., this standard addresses tester rules.

The extensions follow the same conventions as the base standard. The base and the extensions are developed
so as to work together; i.e., STIL is a single language that is defined (and has been developed) as separate
IEEE standards.

Notice to users

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http:/
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents or patent applications for which a license may be required to implement an IEEE standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Participants
The following is a list of participants in the STIL Working Group.

Tony Taylor, Chair

John V. Cosley Bruce Kaufman Ken Posse
David Dowding Ken Mandl Paul J. Reuter
Oleg Erlich Gregory Maston Jose M. Santiago
Yung D. Fan Gary Murray Doug Sprague
Dave Gallagher Chris J. Nelson Allen Yeats
iv Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Keith Chow
Tommy P. Cooper
John V. Cosley
Sourav K. Dutta
Yung D. Fan
Randall C. Groves
Kazumi Hatayama
Werner Hoelzl
Chi Tin Hon
Dennis Horwitz
Hirofumi Kamitokusari
Mark J. Knight

Susan K. Land
Adam W. Ley

G. L. Luri
Gregory Maston
Tom Micek

Gary L. Michel
Yinghua Min
Chris J. Nelson
Michael S. Newman
Noriaki Okumiya
Ulrich Pohl

Paul J. Reuter
Robert A. Robinson
Jose M. Santiago
Bartien Sayogo
Roger J. Sowada
Walter Struppler

K. S. Subrahmanyam
Tony Taylor
Srinivasa R. Vemuru
Thomas M. Wandeloski
Gregg Wilder

Oren Yuen

When the IEEE-SA Standards Board approved this standard on 8 March 2007, it had the following

membership:

Alex Gelman
William R. Goldbach
Arnold M. Greenspan
Joanna N. Guenin
Julian Forster*
Kenneth S. Hanus
William B. Hopf
Richard H. Hulett

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Steve M. Mills, Chair

Robert M. Grow, Vice Chair

Don Wright, Past Chair

Judith Gorman, Secretary

Hermann Koch
Joseph L. Koepfinger*
John Kulick

David J. Law

Glenn Parsons

Ronald C. Petersen
Tom A. Prevost

Satish K. Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Alan H. Cookson, NIST Representative

Michelle D. Turner

Michael D. Kipness

Narayanan Ramachandran
Greg Ratta

Robby Robson
Anne-Marie Sahazizian
Virginia C. Sulzberger
Malcolm V. Thaden
Richard L. Townsend
Howard L. Wolfman

IEEE Standards Program Manager, Document Development

IEEE Standards Program Manager, Technical Program Development

Copyright © 2007 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

Contents

1. OVETVIEW ...ttt sttt ettt et ettt sttt b e se et ettt eb e bt e bt e bbb et et et et eateae et e e bt saesaeebesbe st enaenee 1
Lol S0P ettt ettt et a et a et bt s bt et et e et e e bt e et e e be e sbteenbeenates 2
1.2 PUIPOSE. .ttt ettt s ettt e e at e st s bt et et et e bt et e bbb e e bt enates 2
1.3 TRC HMIEATIONS. c..eteteteteiieiieiteiteitetiet sttt st ettt ettt et eae bt s bt et ebe s b se et estessenteneebtebenae st ensensensennen 3

2 NOTMALIVE TEIETETICES ...ttt ettt ettt ettt ettt ettt ere et enaennen 3

3. DIETINITIONS ..eeniiieiiiieiieet ettt ettt ettt ettt b s e bttt eateaeeatebeeaesbese et ennennens 3

4. Structure of this StANAAIdcc.coueriiiiiiiei ettt s 4
4.1 Formats from STIL.0ccociriiriiiiiiiieieiee ettt ettt st st eae bbb et s e nnen 4
4.2 Additional formatting CONVENTIONSeeuteiuiriieiietieiietieie et eeeseeetesteeaeeteeseeseeeneeseeneesaeeseesesseeneenseens 5
4.3 Dependencies on IEEE Std 1450.1oouiiiiiiiiee ettt eee 5

5. STIL SYNaX AESCIIPLIONveeutiiieiieiietieiieete ettt ettt et te e et esteeseeseeeaeesseeseesaesseesseeseenseeneeneeeneensesnes 6
5.1 Additional reSETVed WOTITScoiruirtiriitiiiieiiteteer sttt ettt ettt se et ebe et sre b e 6
5.2 Keywords used in @ TRC BIOCKc.oeuiiiiieiiiieiiee et 6

6. Statement usage and organization bY flOWcccoeiirieiiiiiie e e 7
6.1 TRC usage for ATE constraint SPeCIfiCatioNcceeoeeierieririeriieiee et 8
6.2 TRC usage for design/pattern CONSIIAINESc.eeruerierieieeierteeie et eete it ee et eee s eeeseeeneesbeeneeseeeneeneeenes 9
6.3 TRC usage fOr pattern FEPOTTINEeecuieuieiieuieteetierteeterteette e et e et es e et eneesteeseesseeneeseeeseenseeneeneeeseensesnes 9
6.4 TRC usage fOr teSter tArGEtIINEcueeueetieiieriiee ettt ettt ettt e sttt esae e e saeeseesesbeeneenaens 10

7. STIL STATEIMENL . ..ottt ettt et e st e st e e e b e e esae e saeennesaees 10
Tl STIL SYNEAX...eeuttiiieiieetie ettt ettt ettt sttt st e b e st e bt e sa b e e bt e sbte e bt enbte e beeebeeeabeesaneeabeenbeeenaeeneens 11
7.2 STIL @XAMPLE ...ttt ettt ettt ettt e et et e s et e st e bt et e st en e e bt e e e eaeeneeeneeneeseeeneeanean 11

8. Variables DlOCK €XENSIONSceeirtiririiriinieieieieeiieieett ettt ettt ettt ettt s et sae e e e st eresae e nnene 11
8.1 Variables DIOCK SYNEAKouiiiiiiitieeietie ettt ettt et et e sttt e ae e seeenees e beeneenaens 11
8.2 Variables €XAMPIC.......cooeiiiiuieiiiieite ettt ettt ettt ettt ettt ettt et e ettt entebeeneenteens 12

9. ReESOUICE STATEMENLo.iiiiiiiiiiie e e 13
9.1 ResoUIce StatEMENt SYNTAX ...ccoutiitiirieriieiieriteete ettt sttt et e et e bt st e sbeesate et e esateeabeesbbeebeenaeeas 13

10. TRC: TestResourceConstraints BlOCK.........ccoerieveieiiininiriiieeseseee et 14
TO.T TROC SYMEAX 1.ttt ettt sttt ettt ettt et e sttt eeb e e e bt e sht e et e e bee s bt e bt e sabeesstesabeenbeesabeeseens 15
10.2 TRC @XAMPILE ...ttt ettt ettt et e sttt e bt st e sbeeseebe e st e st e eseeteeneeeaeenseeneeeesaeensennean 18
10.3 TRC Dlock Sharing TULESc.eeiiriieiieiiee ettt ettt et ettt eae et e eeseeeneesnean 19

11. TRC: SIZNALAIIDULES ...ouveieieeiieietieiieete ettt ettt ee et e a e et et e s st ebe s st eneeneeeneeneeenee 19
11.1 TRC: Signal AttribULES——SYIEAKeeuieiieeieiietieieeeerte et et et et et ettt este e enee st etesteensesseeneeeseeneensesnean 19
11.2 TRC: Signal AttributeS—eXamPLESccceeriirierieiieie ettt ettt ettt es e e e eneeeeesneas 21

vi Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

12. TRC: DCRESOUICEATITIDULES ...ttt ettt e e et e e e e e enaae e e e e eenaaeeeessnnaeeeesseneseeeesnns 22

12.1 TRC: DCReESOUICEAITDULES—SYNTAXeuieteiieieeteenientesieesteseesteeeeesteeeesteeneesteeneeeaeeneesneeeesseeneesnean 22
12.2 TRC: DCResource Attributes—eXample.ccuieieriieieriiiere ettt 24
13. TRC: PErIOAALIIDULESceeevieiiiiiitietiiete ettt ettt sttt s e ene 25
13.1 TRC: PeriodAttriDULES——SYIAXc..eeueertieieetieiietieieetesteseee e seesteeseesteeneesteeneesseeneeeaeeneesneeeesseeneesnean 25
13.2 TRC: Period Attributes—eXaAmMPLESceoveieieieiieiieie ettt ettt enee e 26
14. TRC: WavefOrMAIIDULEScoervirtirtertiieieieieeeieetcrte sttt ettt ettt s sa et ene e nnene 26
14.1 TRC: WaveformAtriDULES——SYNTAXcouieiiriieieiieeiestieieeteeee ettt et s e et et e sttt essee e e eeeeneeeneenean 27
14.2 TRC: WaveformAttributes—eXamPLesc.eeouirrierieieriiiere ettt 31
15. TRC: WavefOrmMDESCIIPIIONSecveeuiertieiietieierteeeierteeee e eteeteetee e eseeeesseeeeseeensesseensesseensenseeneeeeenes 32
15.1 TRC - WaveformDescriptionS——SYNEAX.......c.cecuieriertreierereierteseesteeetesteeeesteeneesseeeesseeneesseeneesseensesnens 32
15.2 TRC: WaveformDescriptions—eXampPlesccceeuierieririeneeiesieeiiesieeie st eeee st eeeeee e saeeseeseeeneesneas 34
16. TRC: PatterMAIIIDULESeovievierenierieieiieiteteetet ettt sttt et ettt et sre s e nene 35
16.1 TRC: PatternAttribULES——SYNTAXeeteitieiietieiiet ettt ce sttt ste ettt et e st esee bt et e saeeneesneeeeeneeneesnean 35
16.2 TRC: Pattern Attributes—eXAMPLESocueeiiieieiietieie ettt ettt see et ee e eneeenean 38
17. TRC: NameChecks BIOCKc.coiiiriiiiiiieiiiries ettt ettt s e 39
17.1 NameChecks DIOCK—SYNTAXcccuiruirieriieie ittt ettt sttt ettt et et et esae e e eneeanean 39
17.2 NameCheCKS—EXAMPLESeeiireieiiiiieie ettt ettt ettt ee st te st e e es e et eneeneeeneeneesneeneennean 40
Annex A (Informative) GLOSSATYceoiiiuieiiiieiee ettt ettt ettt ettt e e e e s ae e e s st e teeseenteeneeneeene 42
Annex B (informative) Fluid concepts in parameter specification.............cocceeverirrienenieneeieseeeeeee e 48
Annex C (informative) Tester channel Mapccocooieiiriiiiiiee e e 50
Annex D (informative) Example of TRC for a simple tester modelcccooceiiriiiiiiiineeee 52
Annex E (informative) Example of TRC used to define waveforms and timingcocceveveecenceiennnnne. 54
Annex F (informative) Example of TRC used for resource reporting..........ocoevereereenereenienieneeeeeseeeeeneeenes 58
Annex G (informative) Example of tester targeting and tester 1oading............ccooceeveviriinieieiineneeee 61
Annex H (informative) Example of vector memory checkingccoccovveiirieiiiiiineiieieseee e 66
Annex [(informative) Waveform generator model...........ooeeiiiieiiiiiinieecee e 69
Annex J (informative) File @NCTYPION.ccuivieiiiriiiee ettt ee et 75
Annex K (informative) Regular eXpression reference.........ooovveiieierieiinieie e 76
Copyright © 2007 IEEE. All rights reserved. vii

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE Standard for Extensions to
Standard Test Interface Language
(STIL) (IEEE Std 1450™-1999) for
Tester Target Specification

1. Overview

The STIL environment supports transferring tester-independent test programs to a specific automated testing
equipment (ATE) system. Although native STIL data are tester independent, the actual process of mapping
the test program onto tester resources may be critical, and it is necessary to be able to completely and
unambiguously specify how the STIL programs and patterns are mapped onto the tester resources. TRC
(which stands for either tester resource constraints or tester rules checking, depending on the usage) is an
extension to the STIL language to facilitate this operation.

Figure 1 shows the usage model for tester targeting. The four ways that the TRC statements come into play
in the flow of data from design to test are indicated by the circled numbers in the diagram. These four uses
are defined as follows:

a)

b)

¢)

d)

Tester rules checking: As carly as possible in the process of inserting “Design for Test” logic and
generation of test patterns, the rules of the target tester are identified by means of the TRC file
defining the target tester.

Tester resource reporting: As part of the pattern generation process, a report of resources required
for the pattern may be created in TRC format. This information is available for test planning
purposes, such as 1) when a pattern is for an embedded core to be integrated into a chip or 2) for
tester scheduling purposes. Each resource report is associated with a particular STIL file/stream.
The resource report data may be a separate file (as implied in the above diagram) or may be included
in the STIL pattern file.

Tester resource targeting: The process of tester targeting is that of adding additional information
into the STIL file/streams that specifies how the resources of a given tester are to be assigned. Note
the bars on the left side of the diagram, which indicate that this targeting operation can be done in
one of three places: 1) by the EDA software that generates the patterns, 2) by software created by the
test user, or 3) by the ATE sofware that loads the STIL patterns.

Tester resource loading: The tester loader is a process that maps the device-oriented STIL data to
the resources of the tester. There may or may not be targeting information provided. If targeting
information is not present, then the loader is expected to do the job of assigning resources. If
targeting information is present, then it is to be used to direct the resource assignment.

Copyright © 2007 IEEE. All rights reserved. 1

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

- pattern generation
- rules checking - pattern generation

- rules for each ATE system - resource usage report
L, -report for each STIL file/stream

‘TRC(ate) @ /S X?‘glétor @"TRC(pat)

- Generic
- Device oriented

For each
target tester

\@ - rules checking

b resource mapping

Tester
targeting TRC(ate)

Tools

Modules
comprising
a test program

- Generic
- Device oriented
- Tester directed

User Software

TRC(pat)

ATE Software

Target Tester | . gata validity checking

Loader - resource loading
Compiler

Figure 1—STIL.3 usage model (tester targeting)

Note that the semantics of the various TRC statements change, based on which flow is being addressed;
i.e., in a constraint flow, the TRC statements provide a set of rules that are to be applied to a set of data and
an error shall be generated if the test pattern data does not conform to the rules; in a report flow, the same
TRC statements are providing a summary of test pattern data regardless of whether it conforms to any given
TRC constraints. Most TRC statements can be used in either context. The definitions in this standard are
written from the constraint point of view.

1.1 Scope

— Define structures in STIL for the specification of resource mapping of ATE hardware architectures.
An example of resource mapping is the assignment of tester resources to waveform characters that

are used in STIL vectors.
— Define structures in STIL for including ATE-specific instructions in-line with the STIL data.

— Define structures in STIL that allow for “incremental processing” whereby, a set of STIL files may
be targeted to multiple ATE systems by allowing separately identified ATE data to coexist.

— Define structures in STIL for defining tester rules checks to ensure that the set of generated STIL
files conform to the selected resources on one or more ATE systems.

— Define structures in STIL for the specification of the resources required for the execution of a set of
STIL files on a given ATE system.

1.2 Purpose
Transferring “tester independent” test program/pattern data as represented in STIL to a specific ATE system
is a desired capability. It is required to be able to completely and unambiguously specify how the STIL

program/patterns are mapped onto a specific tester’s resources. Because of the various different use models
for the creation and consumption of test data, it is necessary to enable certain operations (such as rules

2 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

checking) very early in the process. Likewise it is desirable to allow other operations (such as resource
allocation) to be done very late in the process. The STIL language extensions enable the user/creator a
standard way of specifying and controlling the application of test program/pattern data to specific ATE
systems to the extent necessary for each use model scenario.

1.3 TRC limitations

In setting the scope for any standard, some issues are identified and determined not to be defined. The
following is a list of issues that are not in the scope of this standard:

a) Violations: The tester-targeting operation naturally leads to situations where a given set of
constraints cannot be met. It is not in the scope of this standard to define the content or format of
such constraint rule violations.

b) Completeness: The variations in architecture of various ATE systems makes it virtually impossible
to address all the nuances and corner cases of each design. It is the intent of this standard to provide
a common way of describing key common attributes. This standard is intended to address 80% of
the issues involved with TRC operations, because the effort to address the remaining 20% is too
complex and would make the standard unwieldy to apply in general.

2. Normative references

The following referenced documents are indispensable for the application of this Standard. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments or corrigenda) applies.

IEEE Std 1450™ (STIL.0), IEEE Standard Test Interface Language (STIL) for Digital Test Vectors. !> 2

IEEE Std 1450.1™ (STIL.1), IEEE Standard for Extensions to Standard Test Interface Language (STIL)
(IEEE Std 1450™-1999) for Semiconductor Design Environments.

IEEE Std 1450.2™ (STIL.2), IEEE Standard for Extensions to Standard Test Interface Language (STIL)
(IEEE Std 1450™-1999) for DC Level Specification.

IEEE Std 1450.6™ (STIL.6), IEEE Standard IEEE Standard Test Interface Language (STIL) for Digital Test
Vector Data-Core Test Language (CTL).

3. Definitions

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary of
IEEE Standards Terms should be referenced for terms not defined in this clause. Additional terminology
specific to this standard is found in Annex A.

STIL.0: Refers to IEEE Std. 1450. This base STIL standard is commonly referred to as “dot 0”.

IThe IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

2[EEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

Copyright © 2007 IEEE. All rights reserved. 3

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

STIL.1: Refers to IEEE Std 1450.1. This extension to the STIL base standard is commonly referred to as
“dot 1”: Design information specification.

STIL.3: Refers to IEEE Std 1450.3 (i.e., this standard). This extension to the STIL base standard is
commonly referred to as “dot 3”: Tester target specification.

STIL.6: Refers to IEEE Std 1450.6. This extension to the STIL base standard is commonly referred to as
“dot 6”: Core test language specification.

TRC: (A) (Tester resource constraint) a set of STIL statements (i.e., this standard) that are used to specify
either 1) the resources available in a tester or 2) the resources needed in support of a STIL pattern.
(B) (Tester rule check) an operation performed by an application to verify the consistency between a pattern
and a set of tester resource constraints.

4. Structure of this standard

This document is an adjunct to IEEE Std 1450. The conventions established and defined in IEEE Std 1450
are used in this document and are included verbatim below.

Many clauses in this document add additional constructs to existing clauses in the IEEE Std 1450 document
and are so identified in the title. The constructs defined in this document are limited to the Environment
block as defined by IEEE Std 1450.1. All clauses in this document are normative unless specifically
identified as “Informative.” Example code is provided within each clause. More complete examples are
provided in the annexes, which are informative.

4.1 Formats from STIL.0

The following discussion is a copy of the conventions as defined in STIL.0 and followed by this document.
Different fonts are used as follows:

a) SMALL CAP TEXT is used to indicate user data.

b) Courier text is used to indicate code examples.
In the syntax definitions:

a) SMALL CAP TEXT is used to indicate user data.

b) Bold text is used to indicate keywords.

¢) [ltalic text is used to reference metatypes.

d) () indicates optional syntax that may be used 0 or 1 time.

e) ()t indicates syntax that may be used 1 or more time.

f) ()* indicates optional syntax that may be used 0 or more times.

g) <> indicates multiple choice arguments or syntax.

In the syntax explanations, the verb “shall” is used to indicate mandatory requirements. The meaning of a
mandatory requirement varies for different readers of the standard:

4 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

a) To developers of tools that process STIL (readers), “shall” denotes a requirement that the standard
imposes. The resulting implementation is required to enforce this requirement and to issue an error if
the requirement is not met by the input.

b) To developers of STIL file/stream (writers), “shall” denotes mandatory characteristics of the
language. The resulting output must conform to these characteristics.

¢) To the users of STIL, “shall” denotes mandatory characteristics of the language. Users may depend
on these characteristics for interpretation of the STIL source.

The language definition clauses contain statements that use the phrase “it is an error” and “it may be
ambiguous.” These phrases indicate improperly defined STIL information. The interpretation of these
phrases will differ for the different readers of this standard in the same way that shall differs, as identified in
the list above.

4.2 Additional formatting conventions
The following items are new conventions that are used in the various paragraph types:

a) Inthe Syntax definitions, each statement or group of statements is identified by a syntax line number
(in paranthesis at the right side of the page). These numbers are to be referenced to the definitions
that follow, which contain the syntax line numbers in parenthesis on the left side of the page.

b) In the Syntax definitions, underlined attribute keywords indicate the default when none in a group is
selected.

¢) Inthe code example sections of the document, the text is in Courier font and each line contains a
line number followed by a colon (:) at the left-hand side of the page. This line number is for
reference only and is not part of the code.

d) In the code examples, user-defined names (for things like signalnames, signal group names, block

names, etc.) are in all uppercase with under_score separators. This is to distinguish them from STIL
keywords.

e) In the tutorial examples (Annex D through Annex G), circled numbers on the right-hand side of the
code examples are used to indicate that a note about the code is included immediately after the
example.

4.3 Dependencies on IEEE Std 1450.1

This standard is built on IEEE Std 1450 and relies on some of the syntax as defined in the Design extension
(IEEE Std 1450.1). The following list provides the IEEE Std 1450.1 statements that are used by this
standard:

— Clause 5, Expressions constructs: The additional expression capabilities are used for defining
relationships between various TRC attributes (see Annex B).

— Clause 7, STIL statement: This statement, which is required at the beginning of every STIL file, is
extended to allow specification of the STIL extension standards.

— Clause 9, Variables block: This new block is required when fluid attributes are used (see Annex B).

— Clause 18: Environment block: The block allows for the definition of STIL information pertaining
to the environment of application in which a set of test pattern data is used. TRC is one such
environment, and hence, all TRC statements are contained within an Environment block.

— 18.2 “MAP_STRING” syntax and 18.3 NameMaps example: As part of the general Environment
block, syntax is defined that defines naming relationships to other environments. Tester channel
information makes use of this facility (see Annex C).

Copyright © 2007 IEEE. All rights reserved. 5

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

5. STIL syntax description

This clause contains extensions to Clause 6 of STIL.0. All constructs and restrictions for Clause 6 of
IEEE Std 1450 are in effect here, with the following additions.

5.1 Additional reserved words

Table 1 lists new STIL reserved words defined by this standard and not defined in IEEE Std 1450.
Subsequent clauses in this standard identify the use and context of each of these additional reserved words.

Table 1—Additions to STIL reserved words

Assert
ConfigConstant
ParamConstant
Resource

5.2 Keywords used in a TRC block

Table 2 lists new STIL keywords that are used with a TRC block or TRC sub-block. These keywords are not
reserved in the general STIL context, but they are available only inside a TRC block or a TRC sub-block.

Table 2—TRC keywords

Accuracy, AllowedWhen, AppliesTo

Base, Block

CharacterContent, CompareEvents, ConditionalStatements, Contents, CoreUsageReady

DeltaChangeVectorData, DriveEvents

AllowedScanPadWaveforms

DCLimits, DCResourceAttributes, Differential Configuration

Environment

FanOut, FormatSelect

Infinite, InOut, InstructionAttributes

Length, LoopAttributes

Macro,

Max, MaxCaptureMemory, MaxData, MaxEdgeTime, MaxIO, MaxMask, MaxPeriodGenerators, MaxPeriods,
MaxShapes, MaxScanChainLength, MaxlIteration, MaxLength, MaxNest, MaxRunTime, MaxScanMemory, Max-
Signals, MaxTimeSets, MaxTimingGenerators, Max VectorMemory,

MinAfter, MinBefore, MinCompare Window, MinCompareToDriveOn, MinDriveOffTime, MinDriveOffToCom-
pare, MinDriveOnTime, MinDrivePulse, MinEdgeReTrigger, Minlteration, MinLength, MinTimeA fterMatch, Min-
VectorsAfter, MinVectorsAfterMatch, MinVectorsBefore, MinVectorsBetween,

Modulus, MultiBitData, MultipleDevices, MultipleSites

6 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

Table 2—TRC keywords (continued)

NameChecks, NonCyclized,

NumberCaptureCycles, NumberData, NumberDCLevels, NumberlO, NumberLevels, NumberMask, NumberPatter-
nUnits, NumberPeriods, NumberShapes, NumberSignals, NumberTesterChannels, NumberTimeSets, NumberVec-
torsPerShift

PatternAttributes, PatternVariables,
PeriodAttributes, PeriodSelectMemory,

PerPinConfiguration, PerTimingGenerator, Pragma, ProcedureCalls

Resolution

Scope, SelectWithPeriod, Shape, Signal Attributes, SignalsPer, STILPatterns, SubWaveformDuration, SubWavefor-
mlteration, SystemAttributes

TimeLimits

TRC

UndrivenInOut, Units, Usage

VectorCompression

WaveformDescriptions, WaveformAttributes, WaveformSelectMemory

6. Statement usage and organization by flow

As shown in Figure 1, there are four ways in which TRC blocks and statements can be utilized to accomplish
various objectives. Table 3 shows the blocks of data that are pertinent to each of these four usage models for
TRC data.

There are no special requirements for sequencing of blocks within a TRC block. A reader is expected to
process an entire TRC block prior to interpreting.

A TRC block that contains a PatternReport is typically part of the STIL file/stream for that pattern (or a
referenced Include file). The typical placement of this block (or Include) would be near the beginning, right
after the definition of Signals, Groups, Specs, and Variables.

A TRC block that contains Constraint data is typically a separate STIL file/stream from the STIL file/stream

that contains the pattern data. The constraint data file and the pattern data file would be separately identified
by the tool or ATE software that it processing the STIL file/stream(s).

Copyright © 2007 IEEE. All rights reserved. 7

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007

IEEE STANDARD FOR EXTENSIONS TO STIL

Table 3—STIL/TRC block usage

T
E -QH % =
« S 5] =
Block/Statement/Function Purpose & 2 oo s
sl 2 e =
) &~ =
]
STIL file header id X X X
Environment {} container block X X
Environment {TRC { Usage Constraints; } } specify to use for constraints X
Environment {TRC { Usage PatternReport; } } specify that data is a report X
Environment { TRC { Category {} } select one or more categories X
Environment { TRC { SystemAttributes {} }} define system application X
Environment { TRC { NameChecks {} }} define name constraints X
Environment { TRC { PatternAttributes {} }} define pattern information X X X
Environment { TRC { PeriodAttributes {} } define period information X X X
Environment { TRC { SignalAttributes {} }} define signal information X X X
Environment { TRC { WaveformAttributes {} } define waveform information X X X
Environment { TRC { WaveformDescriptions {} }} define wave shapes X X X
STIL blocks any block in STIL X X
Environment { NameMaps {} } map STIL names to other form X X
Pragma {} define ATE native statements X X
<<resource_id>> within STIL blocks define ATE resource mapping X X

Constraint = Information that is used to convey constraints for an ATE system, or else a set of arbitrary instructions to be used to
constrain the implementation of a chip design or chip test patterns.

bRepon = Information that is used to report the actual parameters of a given pattern or pattern burst.

“Tester Target = Information that is added to a STIL file/stream to specify how it is to be loaded into the resources of a given ATE
system.

dTester Loading = Information that is used in a STIL file/stream to control the loading of the resources of an ATE system.

6.1 TRC usage for ATE constraint specification

An ATE specification file is typically a separate file that specifies the attributes of one or more ATE systems.
It may contain a set of attributes that is the intersection of several ATE systems, thereby ensuring that a
pattern that meets the constraints will run on any ATE system. The file may define a class of ATE systems by
utilizing category variables or expressions. The structure of an ATE constraint file is as follows:

1: STIL 1.0 { Design 2005; TRC 2007; }

2: Header ({

3: Source "IEEE Std 1450.3-2007" ;

4: Ann {* clause 6.1 *}

5: }

6: Environment {

8 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
7: TRC ATE 1 {

8: Usage Constraints;

9: }

10: TRC ATE 2 {

11: Usage Constraints;

12: |}

13:} //end Environment

6.2 TRC usage for design/pattern constraints

A TRC file that is to be used for constraining the creation of a design or pattern set for that design looks
much the same as the ATE constraint file. The difference is that typically only one set of constraints will
exist and hence only one Environment block in the file. If there are multiple Environment blocks, then the
name of the block is an identifier for a set of constraints that are selected by the design tool. The structure of
a file with a single set of constraints is as follows:

14:STIL 1.0 { Design 2005; TRC 2007; }
15:Header (

16: Source "IEEE Std 1450.3-2007" ;

17: Ann {* clause 6.2 *}

18:}

19:Environment

20: TRC {

21: Usage Constraints;

22: }

23:} //end Environment

6.3 TRC usage for pattern reporting

The same syntax as is used for specifying resource constraints on a Pattern (as defined in STIL.0) can also
be used to report the resource utilization for that Pattern (or PatternBurst). The different application is
identified as such by the “Usage PatternReport;” statement in the TRC block. Some resource constraint
blocks do not apply in this application, i.e., System and NameChecks. The information could be included in
the same STIL file as the pattern or in a separate file. The structure of this type of file is as follows:

24:STIL 1.0 { Design 2005; TRC 2007; }
25:Header ({

26: Source "IEEE Std 1450.3-2007" ;
27: Ann {* clause 6.3 *}

28:}

29:Environment {

30: TRC PATNAME 1 {

31: Usage PatternReport;
32: }

33:} //end Environment
34:Environment {

35: TRC PATNAME 2 ({

36: Usage PatternReport;
37: |}

38:} //end Environment

Copyright © 2007 IEEE. All rights reserved. 9

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

6.4 TRC usage for tester targetting

Tester targetting is accomplished by annotating a STIL file/stream with additional information that tells an
ATE loader/translator how to map the STIL constructs onto the hardware resources of the tester. This
information can take many forms, but the following example shows one possibility:

39:STIL 1.0 { Design 2005; TRC 2007; }
40:Header ({

41: Source "IEEE Std 1450.3-2007" ;

42: Ann {* clause 6.4 *}

43:}

44:Signals { SIG[1..5] InOut; }
45:Environment ATEL

46: NameMaps { } // specify signal to channel mapping
47:}

48:SignalGroups { SIGS = SIG[1..5]1; }
49:Timing basic {

50: WaveformTable ONE

51: <<PER1>> Period 500ns; //tag the period resource

52: DIR { <<SEQl>> 01 { Ons D/U; }} // tag the per pin waveform resource
53: }

54 : WaveformTable TWO

55: <<PER1>> Period 500ns; //usesame resourse as wft one

56: DIR { <<SEQ2>> 01 { Ons D/U; }} //use different resource from wft one
57: }

58:Pragma ATELl {*

59: MAP1:

60: MAP2:

61:%*}

62:Pattern P {

63: <<MAPl>> V { SIGS 10101; } //select MAPI from pragma ATE]
64: <<MAP2>> V { SIGS = LHLHL; } /select MAP2 from pragma ATEI
65: <<MAPl>> V { SIGS 01010; } /select MAPI from pragma ATEI
66: }

7. STIL statement

This clause contains extensions to Clause 8 of STIL.0.
The STIL statement identifies the primary version of IEEE Std 1450 information contained in a STIL file

and the presence of one or more standard Extension constructs. The primary version of STIL is defined in
IEEE Std 1450.

The extension to the STIL statement allows for a block containing extension identifiers that allow for
additional constructs in the STIL file. Multiple Extension statements may be present to identify the presence
of multiple extension environments. The extension name and the extension statements are defined in the

individual documents for those standards.

All other constructs and restrictions for Clause 8 of IEEE Std 1450 are in effect here.

10 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

7.1 STIL syntax

STIL 1EEE 1450 0 IDENTIFIER { (1)
(TRC EXT_VERSION;) 2)
} // end STIL

(1) STIL: A statement at the beginning of each STIL file.
IEEE_1450 0 IDENTIFIER: The primary version of STIL, as identified by IEEE Std 1450.
(2) TRC: The specific name of this Extension.

EXT_VERSION: The version of this extension to STIL. This standard is identified by the identifier 2006.

7.2 STIL example

67:STIL 1.0 { Design 2005; TRC 2007; }
68 :Header ({

69: Source "IEEE Std 1450.3-2007" ;

70: Ann {* clause7.2 *}

71:}

8. Variables block extensions

This clause defines extensions to Clause 9, STIL.1.

This clause defines additional statements to the Variables block to support fluid constraint definitions. All
statements and capabilities as defined in STIL.1 are unchanged.

Fluid constraints are used in this standard to define how a set amount of a resource may be allocated or
shared between multiple uses of that resource. Each use may require different amounts of that resource, and
there is an identified limit to the amount of that resource available. Fluid constraints may be used to specify
aspects of a tester that are optional (i.e., present or not present) or have varying size options (e.g., memory
size, or number of channels). Fluid constraints may be used to specify tradeoffs that may be made at load
time to support the specific needs of the application. For example, a tester may be able to use two slow-
speed pin channels to make one high-speed pin channel; a tester may be able to trade off vector memory for
scan memory. See Annex B for an example of the application of this capability.

This standard does not specify how the tradeoff computation is to be accomplished or what might be the

consequences of different tradeoffs. However, the Assert statement (defined below) allows for the checking
of the fluid assignments to ensure that they satisfy the requirements of the target test system.

8.1 Variables block syntax

Variables (VARIABLES DOMAIN) {

Assert boolean_expr ; €))
ConfigConstant CONFIG_NAME (ALT _CONFIG_NAME)* ; 2)
ParamConstant PARAM_NAME ; 3)
H
Copyright © 2007 IEEE. All rights reserved. 11

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

(1) Assert: The Assert statement contains a boolean expression that is expected to be TRUE in order for the
rules checking to pass successfully. As defined in 5.6 of STIL.1, a boolean expression can be one that
contains a boolean operator (e.g., ==, :==, or <>) or it can be an expression that results in an integer value
that is interpreted as a boolean result (i.e., one or greater for TRUE or zero or less for FALSE). If the result
of the expression evaluation is FALSE, the application shall report this failure to satisfy this statement. The
operands of the boolean expression can be as follows:

a) Named constants that are defined in the current Variables block: IntegerConstant, ConfigConstant,
ParamConstant

b) Named constants that are defined in a global (unnamed) Variables block

c) Literal integer values

(2) ConfigConstant: This statement defines the name of a value that is determined by the “configuration”
of the hardware in a tester. The actual value is to be provided to the TRC process based on knowledge of the
target test system. Once defined, the value is then used as a constant value. The constant can be of type
integer (see 5.7 of STIL.1 for the definition of allowed integer forms) or real number (see 5.9 of STIL.1 for
the definition of allowed real expression forms).

CONFIG_NAME: The name of the hardware configuration parameter. This name may be used in
expressions as a defined constant.

ALT_CONFIG_NAME: Zero or more ALT CONFIG NAME identifiers may be specified. These names shall
reference CONFIG_NAME names that are defined in other ConfigConstant statements that are in scope. The
name specifies another resource that is available and capable of satisfying the same requirements and may
be used when the CONFIG_NAME resource is exhausted.

(3) ParamConstant: This statement defines the name of a value that is assignable by the TRC process. The
value chosen is typically a tradeoff with other ParamConstant values and allows the TRC process to
optimize the use of resources for a particular device test program. Once defined, the value is then used as a
constant value. The constant can be of type integer (see 5.7 of STIL.1 for the definition of allowed integer
forms) or a real number (see 5.9 of STIL.1 for the definition of allowed real expression forms).

8.2 Variables example

72:STIL 1.0 { Design 2005; TRC 2007; }

73 :Header

74: Source "IEEFE Std 1450.3-2007" ;

75: Ann {* clause 8.2 *}

76:}

77:Variables {

78: //the following illustrates usage of the Assert statement

79: IntegerConstant K1 := 99;

80: IntegerConstant K2 := 100;

81l: Assert Kl <> K2;

82: Assert K1 + K2 <= 200;

83: Assert Kil;

84: Assert K1 :== K2; //FALSE --report as ERROR

85:

86: //the following illustrates usage of the ConfigConstant and IntegerParm statements
87: ConfigConstant NUM_MODULES;

88: Assert 0 <= NUM_MODULES <= 39;

89: IntegerConstant NUM_ SIGNAL_SLOTS := NUM_MODULES * 32;
90:

91: ConfigConstant NUM PATTERN MEMORY BITS;

12 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

92: Assert 0 < NUM_PATTERN MEMORY BITS <= 4*1024*1024*1024;
93:

94 . ParamConstant NUM_ 800MBPS;

95: ParamConstant NUM_ 400MBPS;

96 : ParamConstant NUM_ SCANIN;

97: ParamConstant NUM_ SCANOUT;

98:

99: IntegerConstant NUM SIGNALS :=

100: NUM_800MBPS + NUM_400MBPS + NUM ScanIn + NUM_ScanOut;

101: Assert 2*NUM 800MBPS + NUM 400MBPS + NUM ScanIn + NUM ScanOut
102: <= NUM_SIGNAL SLOTS;

103:

104: ParamConstant NUM SCAN LOAD UNLOAD;
105: ParamConstant LONGEST SCAN SHIFT;
106: IntegerConstant SCAN BITS NEEDED :=

107: NUM_SCAN LOAD UNLOAD

108: * LONGEST SCAN SHIFT

109: * (NUM_SCANIN + 2*NUM_SCANOUT);
110:

111: ParamConstant NUM_ PATTERN VECTORS;
112: IntegerConstant MAIN MEM NEEDED :=

113: NUM_PATTERN VECTORS * NUM SIGNALS;

114:

115: Assert MAIN MEM NEEDED + SCAN BITS NEEDED <=
116: NUM PATTERN MEMORY BITS;

117:}

9. Resource statement

The resource statement is used to identify on a STIL statement or block basis, the specific resources within a
target tester that are to be assigned for this statement or block. This information is optional and may be
computed by the software load operation on the tester (see Figure 1). The content of the resource memory
itself may be defined in a Pragma block in a format appropriate to the resource for the particular tester. See
Annex G for an example of the usage of this facility.

9.1 Resource statement syntax

Resource (TESTER IDENTIFIER)+ ; // [ist of target testers 1
<< (RESOURCE_ID)+ >> 2)

(1) Resource: The Resource statement is used to define a list of tester names that are to have resource
identifiers. The ordering of the tester identifiers determines the ordering of the resource identifier tags in
the <<RESOURCE_ID>> tags that follow. Typically this statement will be at the beginning of a pattern block.
It shall occur prior to the occurence of any <<RESOURCE ID>> tag. The Resource statement and the
<<RESOURCE_ID>> tags may be used in either a Pattern or a Timing block, and only one Resource statement
shall be allowed within a Pattern or Timing block.

(2) <<RESOURCE_ID>>: The resource id tag is a string contained in double angle brackets that may
optionally be placed prior to any block or statement keyword. The purpose of this <<RESOURCE_ID>> tag is
twofold: (a) it is used to identify the tester resource that is to be assigned to support the tagged block or
statement, and (b) as a reference to some other block (quite possibly a Pragma block) that defines the
loading of the tester resource. The surrounding angle brackets are a required part of the syntax and are

Copyright © 2007 IEEE. All rights reserved. 13

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

expected to be ignored by parsers that are not involved with loading patterns to a tester. There may be
multiple RESOURCE_ID names within the angle brackets, separated by a space; in which case, they are to be
correlated with the tester names as listed in a Resource statement that shall be contained within the Timing
or Pattern block. If no tag exists in a list of resource id tags, this shall be indicated by the use of the asterisk
(*) character.

The resource id tag within the angle bracket is a format as required by the tester loader. The following are
examples of allowed formats for resource id tags. The actual format that is used for any given tester loader is
as defined by that application and is not defined in this standard:

a) Auser-defined name (see definition of user-defined name characteristics in 6.8 of STIL.0)
b) An integer

¢) An asterisk (*) indicating a null resource id tag

10. TRC: TestResourceConstraints block

The TRC block is used to define the constraints for a given test system or the required resouce attributes for
a given test program. The TRC block always exists within a Environment block. If a single set of constraints
is being defined in a STIL file/stream, then neither the Environment nor the TRC block need be given a
name. If the STIL file/stream contains TRC blocks for different classes of tester or different classes of user,
then these would typically be in separately named Environment blocks. If the STIL file/stream contains
TRC blocks for similar testers (e.g., different models or configurations), then these would typically be in
separately named TRC blocks. When a TRC file contains multiple TRC blocks, the application processing
that file may process all blocks present or specify which blocks to apply, depending on the application.When
a TRC file contains multiple TRC blocks, the application processing that file may process all blocks present
or specify which blocks to apply, depending on the application.

Either the Module block or the SignalAttributes block shall serve as the entry point into a set of TRC rules.
If all resources are uniform, then a global (unnamed) SignalAttributes block should be used. If resources
with different attributes are to be defined, then multiple Modules blocks are used. Refer to the statement
syntax defintions in this clause for detailed definition of the rules.

A series of sub-blocks within a TRC block contain attributes of various different aspects of a system:
SignalAttributes, PeriodAttributes, or PatternAttributes. Each of these blocks is referenced by either a
Module block statement or a Signal block statement to construct the set of constraints that apply to a given
instance.

There are facilities in the syntax to allow for sharing of common blocks. Refer to 10.3.

The following are general rules of interpretation that apply to all statements in a TRC block and all blocks
that are contained within a TRC block:

a) In the syntax definitions, optional statements are identified with parenthesis (). When one optional
statement is omitted in a STIL-TRC file, then this means that no checking of this constraint shall be
done.

b) An integer value of “-1°” means that the parameter is unbounded and therefore need not be checked.
This usage is effectively the same as omitting the statement altogether, however, it indicates a
purposeful intent rather than a possible oversight.

14 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

10.1 TRC syntax

prefix=<EPTGMkmunp fa>/ used by Units statement
eng unit=<A Cel F HHz m Ohm s W V > // used by Units statement

Environment (ENV_NAME) { (1)
(TRC (TRC_NAME) { (2
(STILExtensions (< Design | DCLevels | TRC | CTL >)+ ;) (3)
(Usage < Constraints | PatternReport > ;) 4)
(Category (CAT NAME)+ ;) (5)
(Selector (SEL_NAME)+ ;) (6)
(Variables (VAR_NAME)+ ;) (7
(MultipleDevices integer _expr;) (3)
(MultipleSites integer expr;))
(Module (MODULE_NAME) { (10)
(DCResourceAttributes DC_ATTR NAME;) (11)
(MaxNumberModules integer expr;) (12)
(PatternAttributes (PAT ATTR NAME)+ ;) (13)
(PeriodAttributes PER_ ATTR NAME (<Synchronous | Asynchronous>) ;) (14)
(SignalAttributes (SIG_ATTR NAME) +;) (15)
(WaveformAttributes WAV_ATTR_NAME ;) (16)
(WaveformDescriptions WAV _DESC_NAME ;) (17)
})* // end Module
(Units (< (prefix) eng_unit | Integer | Real >)+;) (18)
(dc_resource_attributes_block)* (19)
(name_checks block)* (20)
(pattern_attributes_block)* (1)
(period_attributes_block)* (22)
(signal_attributes block)* (23)
(waveform_attributes block)* (24)
(waveform_descriptions_block)* (25)
})* // end TRC

} // end Environment

(1) Environment: The Environment block is a general-purpose construct defined in STIL.1 for the purpose
of containing application environments for STIL data. In this case, the Environment block is used to contain
tester resource constraint data that are used for transferring data from an EDA (pattern generation)
environment into an ATE (pattern consumption environment). The environment block (and hence the
environment block name) is used to (a) differentiate from all other environment blocks that may be used for
other purposes and (b) to identify classes of TRC blocks (e.g., all like testers from a given manufacturer, or
all testers on a test floor).

(2) TRC: This statement begins a block describing a set of constraints for a given tester or the set of test
requirements for a given test program. The TRC_NAME is typically the name/model of the ATE system that is
being defined. If the TRC block is unnamed, then all blocks within it are global (i.c., available within all the
named TRC blocks within the containing Environment block). This facility allows for the sharing of
common attributes by placing them in the “global TRC block” and referencing them from individual,
named, TRC blocks. It is an error to have a block of the same name in both the global and a named TRC
block. In the case where multiple blocks are allowed (e.g., Module or PatternAttributes), it is permissable to
reference blocks in both the global and the named TRC as long as the names are unique.

(3) STILExtensions: This statement is used to indicate which of the STIL extensions are supported by the

target tester or test program. If this statement is not present, then only STIL.0 is supported. The extensions
available at the time of this writing are Design, DCLevels, and CTL.

Copyright © 2007 IEEE. All rights reserved. 15

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

(4) Usage: This statement is used to indicate the intent of the TRC block. The default if this statement is not
present is Constraints. The allowed identifiers are as follows:

Constraints: This keyword specifies that the TRC block is used to define a set of target constraint
attributes. These attributes will typically be for a particular model or instance of an ATE system.
However, they may also be attributes that a user defines to constrain a test data flow, or constraints that a
chip design application applies to a design flow.

PatternReport: Specify that the TRC block contains a report summary of the resources and requirements
needed in support of execution of a pattern (or pattern burst).

(5) Category (CAT_NAME)+ : This statement is optional and is used to define the category names that are
used within the TRC block. The typical usage for variables within TRC is for “fluid” constraints, i.e.,
constraints that are coupled one to another. See Annex B for information about fluid constraints.

(6) Selector (SEL_NAME)+ : This statement is optional and is used to choose a selector block that picks the
min, typ, max values for spec-variables. If a selector block is not referenced, then all spec.-variables use the
“Typical” values.

(7) Variables (VAR _NAME)+ : This statement is optional and is used to choose a variables block. If a named
variables block is referenced, the names shall not conflict with the names defined in the global variables
block (if one exists). The variables in the global block and the variables in the referenced block(s) are
available in the current TRC block.

(8) MultipleDevices: This statement defines the number of like devices that may be tested simultaneously
in a given tester. If this statement is omitted, then only single device testing is allowed.

(9) MultipleSites: This statement defines the number of un-like devices that may be tested simultaneously
in a given tester. If this statement is omitted, then only single device type testing is allowed.

(10) Module: This statement begins a block that contains attribute information for one module or instrument
of a tester. The allowed statements within a Module are defined immediately below. The name of a Module
block is optional and is for documentation purpose only (a module is never referenced). There may be
multiple unnamed and named Module blocks that together define a system. If an unnamed SignalAttributes
exists, then it is an error to have any Module blocks.

(11) DCResourceAttributes: This statement references the block that defines the dc resource attributes for
the module. There shall be only one DCResourceAttributes statement in the Module block. This statement in
the Module block takes precedence over a global, unnamed block.

(12) MaxNumberModules: This statement specifies the maximum number of like instances of the module
that are allowed. If this statement is omitted, the default value is 1.

(13) PatternAttributes: This statement references the block that defines the pattern attributes for the
module. There shall be only one PatternAttributes reference statement in a Module block. There may be
multiple names in the statement indicating that any one of the referenced blocks may be used; i.e., this is an
“OR” function indicating that one OR the other of the named blocks may satisfy the rule checking.
“ANDing” of rules sets that are contained in multiple blocks can be accomplished using the Inherit
statement. The following code example indicates how the desired block is accomplished:

TRC {
PatternAttributes PAl { }
PatternAttributes PA2 { }

}

TRC TRC2 {
PatternAttributes PA3 { }

16 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

PatternAttributes PA4 { }
Module MOD1 ({

PatternAttributes PAl; //select PAl from global TRC
}

Module MOD2 ({
PatternAttributes PA3 ; //select PA3 from the local TRC
}

Module MOD3 ({
PatternAttributes PA1l PA2 PA3 PA4 ; //selectfrom all four
}

}

(14) PeriodAttributes: This statement references the block that defines the period attributes for the module.
There shall be only one PeriodAttribute statement in a Module block. This statement in the Module block
takes precedence over a global, unnamed block. This reference may be used either at the module level
indicating that all signals share the same attributes or at the signals level if the attributes vary by signal. The
following optional keywords are allowed:

a) Synchronous: Signals of this type shall be synchronous with all other signals blocks that specify the
same period attributes block. This is the default value.

b) Asynchronous: Signals of this type shall be asynchronous with all other signals blocks; i.e., these
signals shall use a private reference period generator.

(15) SignalAttributes: This statement references the block that defines the signal attributes for the module.
There shall be only one SignalAttributes statement in a Module block. There may be multiple names in the
statement indicating that any one of the referenced blocks may be used; i.e., this is an “OR” function
indicating that one OR the other of the named blocks may satisfy the rule checking. “ANDing” of rules sets
that are contained in multiple blocks can be accomplished using the Inherit statement.

(16) WaveformAttributes: This statement references the block that defines the waveform attributes for the
module. There shall be only one WaveformAttributes statement in a Module block. It is allowed to have both
a WaveformAttributes block and a WaveformDescriptions block; in which case, both sets of constraints
must be met.

(17) WaveformDescriptions: This statement references the block that defines the waveform descriptions for
the module. There shall be only one WaveformDescriptions statement in a Module block. It is allowed to
have both a WaveformAttributes block and a WaveformDescriptions block; in which case, both sets of
constraints must be met.

(18) Units: This statement defines allowed forms of unit representations that are allowed in the
representation of literal numbers. If this statement is omitted, then all forms of numbers are allowed. If any
eng_unit, Integer, or Real is specified, then all others are disallowed. If, for any given engr unit, a prefix is
specified, then all other prefixes are disallowed for this engr_unit. The following are some examples:
Units ns; /allowonly ns; disallow all other forms
Units ns Integer; /allow ns and integer; disallow us, ms, etc; disallow exponential forms
Units s mV Integer Real; /allowms, us, ns, etc.; also mV, integers, and exponential

(19)dc_resource_attributes _block: This named or unnamed block contains dc resource attribute statements.
There shall be only one DCResourceAttributes statement associated with a Module block, either the global
block or a referenced, named block. Refer to Clause 12 for details.

(20) name_checks block: The NameChecks block is optional and contains statements describing naming

rules for the objects within a STIL file/stream. Refer to Clause 17 for details. The name checks apply to all
blocks in the current TRC block.

Copyright © 2007 IEEE. All rights reserved. 17

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

(21) pattern_attributes_block: This named or unnamed block contains pattern attribute statements. This
block may be referenced by either (a) a PatternAttributes statement within a Module block, (b) a
PatternAttributes statement with a SignalAttributes block, or (c¢) an Inherit statement within another
PatternAttributes block. Refer to Clause 16 for details.

(22) period_attributes block: This named or unnamed block contains attribute statements with respect to the
period. There shall be only one PeriodAttributes statement associated with a Module block, either the global
block or a referenced, named block. Refer to Clause 13 for details.

(23)signal_attributes_block: This named or unnamed block contains signal attribute statements. There shall
be only one SignalAttributes statement associated with a Module block, either the global block or a
referenced, named block. Refer to Clause 11 for details. If the SignalAttributes block is unnamed, then it
serves as the top level reference to the system and all signal resources shall be the same. If the system
contains resources with different attributes, then the Module statement shall be used.

(24) waveform_attributes_block: This named or unnamed block contains waveform attribute statements.
There shall be only one WaveformAttributes block associated with a Module block, either the global block
or a referenced, named block. Refer to Clause 14 for details. Note that whereas this block describes
attributes of the waveforms, the WaveformDescriptions block describes actual waveforms that can be
represented on an ATE system. Either method of describing waveforms may be used as appropriate to a
given ATE system. It is allowed to have both a WaveformAttributes block and a WaveformDescriptions
block; in which case, both sets of constraints must be met.

(25)waveform_descriptions_block: This named or unnamed block contains waveform description
statements. There shall be only one WaveformDescriptions block associated with a Module block, either the
global block or a referenced, named block.. Refer to Clause 15 for details. Note that whereas this block
describes actual waveforms that can be represented on an ATE system, the WaveformAttributes block
describes attributes or capabilities of the waveforms. Either method of describing waveforms may be used as
appropriate to a given ATE system. It is allowed to have both a WaveformAttributes block and a
WaveformDescriptions block; in which case, both sets of constraints must be met.

10.2 TRC example

118:STIL 1.0 { Design 2005; TRC 2007; }
119:Header

120: Source "IEEE Std 1450.3-2007" ;

121: Ann {* clause 10.2 *}

122:}

123:Variables {

124 : ConfigConstant T1;
125:}

126:Environment ATE CLASS
127: TRC ATE NAME

128: STILExtensions Design DCLevels;

129: Usage Constraints;

130: Category MY CAT;

131: MultipleDevices 4;

132: MultipleSites 16;

133:

134: NameChecks { Length 12; }

135: SignalAttributes MY SIGS { MaxSignals 256; }

136: DCResourceAttributes MY DC { DCLimits VIH (0 <= @@ <= 5V); }
137: PatternAttributes MY PATS { Max Locations 4096; }

138: PeriodAttributes { TimeLimits (5ns <= @@ <= T1); }

18 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
139: WaveformAttributes MY WF CHAR { Resolution 100ps; }

140:

141: Module M1 {

142: MaxNumberModules 2;

143: SignalAttributes MY SIGS;

144 : DCResourceAttributes MY DC;

145: PatternAttributes MY PATS;

1l46: WaveformAttributes MY WF CHAR;

147: } // end Module
148: } //end TRC
149:} //end Environment

10.3 TRC block sharing rules

Sharing of blocks is a technique for defining a set of rules that are then referenced and used in other blocks.
The following are general rules that apply to block sharing:

a) There is NO implicit use of global (unnamed) blocks in this standard. All blocks are referenced by
name.

b) Each block type has its own name space; i.e., all PatternAttributes block names are in one name
space, all PeriodAttributes block names are one name space, and so on.

¢) Blocks may reside in a global (unnamed) TRC block. The names of these blocks are included along
with all block names in the current TRC block, and they are therefore available for reference by
name.

11. TRC: SignalAttributes

The SignalAttributes block is used to define the number of signals and attributes of each type of signal.
Multiple SignalAttributes blocks may exist, with each defining signals with different attributes. This block
may contains references to other blocks that together with the explicit statements herein define the attributes
of the signals.

11.1 TRC: SignalAttributes—syntax

signal_attributes block =

SignalAttributes (SIG ATTR_NAME) { (1
(Inherit SIG_ ATTR NAME;)* 2)

(AllowedScanPadWaveforms WAV _DESC NAME (< ScanlIn | ScanOut >) ;) * 3)

(DCResourceAttributes DC_ATTR NAME;) 4)

(FanOut integer expr;) 5)

(InOut < WithinCycle | OnCycleBoundary | Static | InOnly | OutOnly >;) 6)

(MaxScanMemory integer expr;) @)

(MaxCaptureMemory integer expr (<FailOnly | Result>)+ ;) ®)

(MaxScanChainLength integer expr ;) ©)

(MaxSignals integer expr;) (10)

(PatternAttributes (PAT ATTR NAME)+ ;) 11

(PeriodAttributes PER_ ATTR NAME (<Synchronous | Asynchronous>) ;) (12)

(UndrivenInOut < Yes | No >;) (13)

(WaveformAttributes WAV_ATTR NAME ;) (14)

(WaveformDescriptions WAV_DESC NAME ;) (15)
Copyright © 2007 IEEE. Al rights reserved. 19

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

} // end SignalAttributes

(1) SignalAttributes: The SignalAttributes block defines the attributes of a set of signals that have like
functionality. There may be multiple SignalAttributes blocks if there are different types of tester channels
(pins) on an ATE system. This block contains the reference to other block types that make up a system, i.e.,
PeriodAttributes and PatternAttributes. If the SignalAttributes block is unnamed, then it shall be referenced
by a Module block to become effective. See Clause 10 for the definition of Module versus the
Signal Attributes block for defining the TRC rules for a system.

(2) Inherit: This statement allows reference to another SignalAttributes block. All rules in the inherited
block and the current block shall be satisfied; i.e., this is an “AND” of the statements in both blocks. See
Clause 10 for examples of referencing global and named blocks in either the current or the other TRC
blocks.

(3) AllowedScanPadWaveforms: This statement references a named WaveformDescriptions block that
contains the allowed wave shapes to be used for scan padding. Optional attributes allow the specification of
unique waveforms for Scanln and ScanOut. The allowed waveforms are defined using the syntax as defined
in Clause 15. A typical set of allowed pad wavefroms would look as follows:

WaveformDescriptions SCANPAD Explicit {
Shape { Z; X; }
Shape { Z; L; }
Shape { X; }

}

(4) DCResourceAttributes: This statement references the block that defines the dc resource attributes for
the containing module. There shall be only one DCResourceAttribute statement in the Module block. This
statement in the SignalAttributes block takes precedence over one in the Module block.

(5) FanOut integer expr: The FanOut statement is used to define the number of tester pin channels that
may be driven by a given signal.

(6) InOut: The InOut statement is used to specify the in/out switching capabilities of a tester channel. The
following are allowed:

a) WithinCycle: This keyword specifies that in/out switching may occur within a cycle (period). The
exact time of the switch is specifed by the WaveformTable and the drive/compare event times within
the waveform definition.

b) OnCycleBoundary: This keyword specifies that in/out switching may occur only on period
boundaries. This effectively means that each waveform definition may have only drive or compare
events, and that the first one must occur at TO of the cycle.

¢) Static: This keyword specifies that the in/out cannot be switched during the execution of a pattern.
For a static signal, it is typically established at the beginning of the pattern exec. See also the pattern
statement “Fixed” as defined in STIL.1.

d) InOnly: This keyword specifies that the signal is always an input to the DUT.
e) OutOnly: This keyword specifies that the signal is always an output from the DUT.

(7) MaxScanMemory integer expr: This statement is used to specify that a scan state memory is available
for this signal type and the number of scan states that can be defined for the signal. If this statement is
omitted, it may still be possible to load scan states using vector memory.

(8) MaxCaptureMemory infeger expr: This statement is used to specify that there is a capture memory
associated with the signal and the size of the capture memory. An additional keyword is used to specify how
the memory is to be used. If both keywords are present, then the tester is capable of both.

a) FailOnly: The capture memory can be used to capture fail data.

20 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

b) Result: The capture memory can be used to capture result data.

(9) MaxScanChainLength: This statement is used to specify the maximum length of each scan chain.

(10) MaxSignals integer expr: This statement is used to specify the maximum number of signals of a given
type that are available on an ATE system.

(11) PatternAttributes: This statement is used to reference a named block that defines the pattern/vector
attributes across a set of signals. See the definition of PatternAttributes in Clause 16 for more detail.

(12) PeriodAttributes PER_ATTR NAME: This statement is used to reference a named block that defines the
PeriodAttributes for this type of signal. An additional keyword indicates whether to share period attributes
with other signal types. If both keywords are present, then the tester is capable of both.

a) Synchronous: Signals of this type shall be synchronous with all other signals blocks that specify the
same period attributes block.

b) Asynchronous: Signals of this type shall be asynchronous with all other signals blocks; i.e., these
signals shall use a private reference period generator.

(13) UndrivenInOut: This statement is used in pattern reporting to indicate that there are times within the
pattern where signals are not driven by either the tester or the device. This situation can cause unreliable test
conditions if not managed appropriately by the tester.

(14) WaveformAttributes WAV_ATTR NAME: This statement is used to reference a waveform attributes
block (within the current TRC block) that defines the waveform generation capabilities of this signal type.
Note that the waveforms may also be defined as shapes (via the WaveformDescriptions block) as well as by
their attributes. If both blocks exist, then the rules of both blocks shall be satisfied.

(15) WaveformDescriptions WAV _DESC NAME: This statement is used to reference a waveform
descriptions block (within the current TRC block) that defines the waveshapes that can be created by this
signal type. Note that the waveforms may also be defined as attributes (via the WaveformAttributes block)
as well as by their waveforms. If both blocks exist, then the rules of both blocks shall be satisfied.

11.2 TRC: SignalAttributes—examples

150:STIL 1.0 { Design 2005; TRC 2007; }
151:Header

152: Source "IEEE Std 1450.3-2007" ;

153: Ann {* clause 11.2 *}

154:}

155:Environment { TRC {

156:

157: PeriodAttributes MY PERS { TimeLimits 5ns <= @@ <= lus; }
158: WaveformAttributes MY WF CHARS { Resolution 100ps; }
159:

160: SignalAttributes ({

161: FanOut 4;

162: InOut OnCycleBoundary;

163: MaxScanMemory 512*1024%1024;

164: MaxCaptureMemory 65 536;

165: MaxScanChainLength 1302;

166: MaxSignals 95;

167: PeriodAttributes MY PERS Synchronous;

168: WaveformAttributes MY WF_CHARS;

169: } // end SignalAttributes

170:}} //end Environment-TRC

Copyright © 2007 IEEE. All rights reserved. 21

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

12. TRC: DCResourceAttributes

The DCResourceAttributes block is used to define the number and attributes of each type of dc resource for
an ATE tester. If there is a single DCResourceAttributes block, then it may be unnamed and it applies to all
Module and SignalAttributes blocks. There may be multiple DCResourceAttributes blocks; in which case,
the name is required and is used as a reference in the Module or SignalAttributes block.

12.1 TRC: DCResourceAttributes—syntax

DCResourceAttributes DC_ RESOURCE NAME { (1

(Inherit DC_RESOURCE NAME;)* 2)

(PerPinAttributes 3)
(<Supply | PMU | Driver | Comparator | Load | Termination | Clamp>)+ {

(Differential Configuration (<Driver | Comparator>)+;) “)

(NumberTesterChannels integer expr;) %)

(DCLimits (6)

(<VIH | VIL | VICM | VID | VIHD | VILD | VIHSlew | VILSlew
| VOH | VOL | VOCM | VOD | VOHD | VOLD

| IOH | IOL | LoadVRef | ClampHi | ClampLo

| ResistiveTermination | TermVRef

| VForce | IClamp | IForce | VClamp >)+ boolean_expr;)*

(NumberLevels (< VIH | VIL | VOH | VOL >)+ integer_expr;)* @)
})* // end PerPinAttributes
(NumberDCLevels integer expr < ;| { 8)
SignalsPer integer expr,
§>)
(NumberDCSets integer expr <;|{ 9)
SignalsPer integer expr,
;>
(DCSequenceAttributes (10)
(< Supply | PMU | Driver | Comparator | Load | Termination | Clamp >)+ {
(Shape { (11)

((boolean_expr) (< Connect | Disconnect | Apply | Ramp >);)+
})+ // end Shape
}) // end DCSequenceAttributes
} // end DCResource

(1) DCResourceAttributes: The DCResourceAttributes block defines the attributes of the dc resources.
There may be multiple DCResourceAttributes blocks if there are different types of dc resources on an ATE
system. The DCResourceAttributes block is referenced by either a Module block, a SignalAttributes block,
or an Inherit statement.

DC RESOURCE NAME: The name of the DCResourceAttributes block that is used as a reference.

(2) Inherit: This statement allows reference to another DCResourceAttributes block. All rules in the
inherited block and the current block shall be satisfied; i.e., this is an “AND” of the statements in both
blocks. See Clause 10 for examples of referencing global and named blocks in either the current or the other
TRC blocks.

(3) PerPinAttributes: This statement defines a block of per-pin dc resources with like attributes. The dc
resources (Supply, PMU, Driver, Comparator, Load, Termination, Clamp) are defined in STIL.2. If

there are multiple PerPinAttributes block, then each must be for a different set of DCResources; there can be
one for Supply and one for PMU, but the cannot be two for Supply.

22 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

(4) (DifferentialConfiguration: This statement specifies which differential dc resources are used for the
signals in the referencing SignalAttributes block. The differential dc resources (Driver, Comparator) are
defined in STIL.2.

(5) NumberTesterChannels: This statement specifies the number of tester channels required to implement
the specified PerPinConfiguration or DifferentialConfiguration. The default is no limit.

(6) DCLimits: This statement defines the minimum and maximum dc levels for each specified dc resource.
The boolean-expression defines the allowed limits of the identified levels. Delimiters are required around
the boolean-expression. The dc resources are defined in STIL.2.

a)
b)
c)
d)
e)
f)
g)
h)
)
i)
k)
)

VIH: This statement defines the VIH voltage capability of the tester driver.

VIL: This statement defines the VIL voltage capability of the tester driver.

VICM: This statement defines the VICM voltage capability of the tester differential driver.

VID: This statement defines the VID voltage capability of the tester differential driver.

VIHD: This statement defines the VIHD voltage capability of the tester differential driver.
VILD: This statement defines the VILD voltage capability of the tester differential driver.
VIHSIlew: This statement defines the VIH slew rate capability of the tester driver.

VILSlew: This statement defines the VIL slew rate capability of the tester driver.

VOH: This statement defines the VOH voltage capability of the tester comparator.

VOL: This statement defines the VOL voltage capability of the tester comparator.

VOCM: This statement defines the VOCM voltage capability of the tester differential comparator.
VOD: This statement defines the VOD voltage capability of the tester differential comparator.
VOHD: This statement defines the VOHD voltage capability of the tester differential comparator.
VOLD: This statement defines the VOLD voltage capability of the tester differential comparator.
IOH: This statement specifies the IOH current capability of the tester dynamic load.

IOL: This statement specifies the IOL current capability of the tester dynamic load.

LoadVRef: This statement specifies the LoadVRef voltage capability of the tester dynamic load.

ClampHi: This statement specifies the ClampHi voltage capability of the tester voltage clamp
circuit.

ClampLo: This statement specifies the ClampLo voltage capability of the tester voltage clamp
circuit.

ResistiveTermination: This statement specifies the resistive termination capability of the tester
driver.

TermVRef: This statement specifies the TermVRef voltage capability of the tester driver
termination.

VForece: This statement specifies the VForce voltage capability of the tester supply or PMU.
IClamp: This statement specifies the IClamp current capability of the tester supply or PMU.
IForce: This statement specifies the [Force current capability of the tester supply or PMU.
VClamp: This statement specifies the VClamp voltage capability of the tester supply or PMU.

(7) NumberLevels: This statement defines the maximum number of dc level values for each of the
specified dc resources. The dc resources are defined in STIL.2. The default is 1.

a)

b)

VIH: This statement defines the number of different VIH levels provided by the tester, when used to
switch dc levels within a cycle.

VIL: This statement defines the number of different VIL levels provided by the tester, when used to
switch dc levels within a cycle.

Copyright © 2007 IEEE. All rights reserved. 23

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

¢) VOH: This statement defines the number of different VOH levels provided by the tester, when used
to switch dc levels within a cycle.

d) VOL: This statement defines the number of different VOL levels provided by the tester, when used
to switch dc levels within a cycle.

(8) NumberDCLevels integer expr: This statement specifies the number of DCLevels that may be
referenced in a DCSets block (i.e., the number of levels that can be selected on-the-fly from a pattern). If not
specified, the default is no limit. The following optional statement may be specified:

SignalsPer integer expr: This statement specifies the incremental number of signals that are
associated with each DCLevels block. If not specified, then the incremental number of signals allocated
shall be one.

(9) NumberDCSets integer expr: This statement specifies that the number of DCSets that may be
referenced in a PatterExec block (i.e., the number of levels that can be selected on-the-fly from a pattern). If
not specified, the default is no limit. The following optional statement may be specified:

SignalsPer integer expr: This statement specifies the incremental number of signals that are
associated with each DCSets block. If not specified, then the incremental number of signals allocated
shall be one.

(10) DCSequenceAttributes: This statement defines the allowed sequencing of dc resources. One or
multiple of the following identifiers indicate to which resources the block applies to: Supply, PMU, Driver,
Comparator, Load, Termination, or Clamp. If there are multiple DCSequenceAttributes blocks, each shall be
for a different set of resources, i.e., at most one block defining Supply sequencing and one block defining
PMU sequencing. Each block shall contain one of more Shape blocks.

(11) Shape: This block defines the allowed action sequencing and allowed timing of these actions in
controlling the associated dc resources.

a) boolean_expr: The boolean timing expression is optional. If not defined, then only the action
sequence is defined. If the boolean expression is defined, then it is interpreted as an assert; i.e., the
expression must evaluate to a true for the action being constrained to be valid. The following are the
allowed tokens in a timing expression (see 6.13 of STIL.0 and 5.10 of STIL.1):

i) absolute numbers that refer to the time from the beginning of the sequence
ii) the @ label, which refers to the time of the prior action
iii) @n, which refers to the time of the n’th action (where first action is numbered @1)

b) Connect | Disconnect | Apply | Ramp: This list of actions is allowed to construct a Shape.

12.2 TRC: DCResourceAttributes—example

171:Environment {

172: TRC {

173: DCResourceAttributes LOGIC {

174 : PerPinConfiguration Driver Comparator Load;
175: NumberTesterChannels 1;

176: NumberLevels VIH 2;

177: NumberDCLevels 16 { SignalsPer 64; }

178: DCLimits VIH (1V <= @@ <= 5V);

179: DCLimits VIL (-2V <= @@ <= 3V);

180: DCLimits VOL VOH (0V <= @@ <= 5V);

181: DCLimits IOH (@@ > -10mA) ;

182: DCLimits IOL (@@ < 20mA) ;

183: DCLimits LoadVRef (@@ < = 4V;}

24 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
184: }

185: }

186: }

13. TRC: PeriodAttributes

The PeriodAttributes block contains information about the timing control system of a tester. If there is only a
single PeriodAttributes block, then it may be unnamed and it applies to all Module and SignalAttributes
blocks. There may be multiple PeriodAttributes blocks; in which case, the name is required and is used as a
reference in the Module or SignalAttributes block.

13.1 TRC: PeriodAttributes—syntax

period_attributes _block =

PeriodAttributes (PER_ATTR NAME) {)
(Inherit PER_ATTR NAME;)* 2)
(Accuracy time_expr;) 3)
(MaxPeriods integer _expr;) 4)
(MaxPeriodGenerators integer_expr (< Dynamic | Static >) <; | { %)

(SignalsPer integer expr;)
} >) // end MaxPeriodGenerators
(PeriodSelectMemory integer expr <; | { 6)
(SignalsPer integer expr;)
} >) // end PeriodSelectMemory
(TimeLimits boolean _expr;) @)
(Resolution fime_expr;) ®)
} /I end PeriodAttributes

(1) PeriodAttributes PER_ ATTR NAME: The period attributes block contains statements defining the
attributes of the period (or cycle) generator of an ATE system. The name (PER_ATTR_NAME) of this block is
used by a SignalAttributes block to reference the capabilities that apply to the signals.

(2) Inherit: This statement allows reference to another PeriodAttributes block. All rules in the inherited
block and the current block shall be satisfied; i.e., this is an “AND” of the statements in both blocks. See
Clause 10 for examples of referencing global and named blocks in either the current or the other TRC
blocks.

(3) Accuracy time_expr: Specify the accuracy of the ATE system in generating the period. The accuracy
means that the actual period shall be within (period — time_expr <t > period + time_expr). (Note that there
are multiple factors that must be considered in the overall timing: (a) period accuracy and resolution,
(b) drive event accuracy and resolution, and (c) compare event accuracy and resolution. This statement
specifies only the accuracy of the period.)

(4) MaxPeriods integer expr: This statement specifies the maximum number of period values that may be
specified. The periods are to be selected on a vector basis by means of the associated waveform table.

(5) MaxPeriodGenerators integer expr: This statement specifies the number of independent periods that
may be specified simultaneously. These independent period generators are to be assigned to blocks of
signals that will then execute independently according to the separate period generation sequence of each
one. This capability is typically used to support multiport devices with different timing domains. The
following additional parameters shall be specified:

Copyright © 2007 IEEE. All rights reserved. 25

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

a) Dynamic: This keyword specifies that the signal assignment may be changed from one pattern exec
to the next. This is the default attribute.

b) Static: This keyword specifies that the signal assignment to a period generator is fixed according to
the architecture of the ATE system and cannot be changed.

The MaxPeriodGenerator may optionally be defined as a block and contain the following statement:

SignalsPer integer expr: This statement specifies the incremental number of signals that are
associated with a period generator. If not specified or if SignalsPer statement set to 1, then the incremental
number of signals allocated shall be one.

(6) PeriodSelectMemory integer expr: This statement specifies that the period selection is accomplished
by means of an indirect selection memory. The integer value specifies the size of the indirect memory. The
following optional statement may be specified:

SignalsPer integer expr: This statement specifies the incremental number of signals that are
associated with each period selection. If not specified or if SignalsPer statement set to 1, then the
incremental number of signals allocated shall be one.

(7) TimeLimits: This statement specifies the limits of the period generator. The @@ symbol is used to
represent the value to be programmed by the period generator, and a boolean expression is used to specify
the min/max limits allowed.

(8) Resolution time_expr: This statement is used to specify the minimum increments that the period can be
set to. Note that this is different from accuracy, which defines the relation between the value programmed
and the resulting effect on an ATE system.

13.2 TRC: PeriodAttributes—examples

187:STIL 1.0 { Design 2005; TRC 2007; }
188:Header ({

189: Source "IEEFE Std 1450.3-2007" ;

190: Ann {* clause 13.2 *}

191:}

192:Environment {TRC {

193: PeriodAttributes ({

194: Accuracy 200ps;

195: MaxPeriods 16;

196: MaxPeriodGenerators 2 Static {SignalsPer 64;}
197: PeriodSelectMemory 16 { SignalsPer 32; }

198: TimeLimits (2ns <= @@ <= 10us) ;

199: Resolution 100ps;

200: } // end PeriodAttributes

201:}} //end Environment-TRC

14. TRC: WaveformAttributes

The WaveformAttributes block contains information about the timing attributes of the signals. If there is
only a single WaveformAttributes block, then it may be unnamed and it applies to all Module and
SignalAttributes blocks. There may be multiple WaveformAttributes blocks; in which case, the name is
required and is used as a reference in the Module or SignalAttributes block.

26 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

14.1 TRC: WaveformAttributes—syntax

waveform_attributes block =

WaveformAttributes (WAV_ATTR NAME) { (1)
(Inherit WAV_ATTR NAME;)* 2)
(Accuracy <Edge|[EdgeToEdge> time_expr;)* 3)
(CompareEvents 4)

(<H|LIX|V|T|h|lx|v|t|full_name>(/<H|L|X|V|Thl|x|v|t|ficll_name>)*)+
(integer_expr (integer _expr)) ;)* // number events, number substitutes
(DriveEvents %)
(<U|D|Z|P|full name>(/<U|D|Z|P|full name>)*)+
(integer_expr (integer _expr)) ;)* // number events, number substitutes

// use the following syntax to define MaxShapes

< (FormatSelect < In | Out | InOut > { 6)
(< MaxShapes integer expr (< Dynamic | Static >) <; | { @)

| MaxShapes infeger expr (< Dynamic | Static >) {
(SignalsPer integer expr;)
}>)
})* // end FormatSelect with MaxShapes

// use following syntax to define format attribute statements
| (FormatSelect < In | Out | InOut > {
(< MaxTimeSets integer expr (< Dynamic | Static >) <; | { ®)
(SignalsPer integer expr;)
(PerTimingGenerator;)

}>)
(MaxTimingGenerators infeger _expr (< Dynamic | Static >) <; | { 9
(SignalsPer integer expr;)
)

(MaxData <Drive|Compare|DriveCompare> integer expr (<Dynamic | Static>) <; | { (10)
(SignalsPer integer expr;)

}>)
(MaxIO integer expr (< Dynamic | Static >) <; | { (11)
(SignalsPer integer expr;)
}>)
(< MaxMask integer_expr (< Dynamic | Static >) <; | { (12)
(SignalsPer integer expr;)
5 >)
D* // end FormatSelect with format attribute statements
>
(MaxEdgeTime time_expr;) (13)
(MinCompareWindow time_expr;) (14)
(MinCompareToDriveOn time expr;) (15)
(MinEdgeReTrigger time _expr (<Drive | Compare>)* ;)* (16)
(MinDriveOffTime time_expr;) 17)
(MinDriveOffToCompare time expr;) (18)
(MinDriveOnTime time_expr;) (19)
(MinDrivePulse time_expr;) (20)
(SubWaveformlteration integer expr;) 21
(SubWaveformDuration boolean expr;) (22)
(Resolution time_expr;) (23)
(TimeLimits boolean_expr;) (24)
(WaveformSelectMemory integer expr < | { (25)
Copyright © 2007 IEEE. All rights reserved. 27

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

(SignalsPer integer expr;)
(SelectWithPeriod;) (26)
1>)
} // end WaveformAttributes

(1) WaveformAttributes WAV_ATTR NAME: This block describes key attributes of the waveforms. The
WAV_ATTR NAME defines a name for this block that is used within a Signal Attributes block to reference the
appropriate waveform attributes block. Note: See the SignalAttributes block for the relationship between the
WaveformAttributes block and the WaveformDescriptions block

(2) Inherit: This statement allows reference to another WaveformAttributes block. All rules in the inherited
block and the current block shall be satisfied; i.e., this is an “AND” of the statements in both blocks. See
Clause 10 for examples of referencing global and named blocks in either the current or the other TRC
blocks.

(3) Accuracy: This statement is used to specify the accuracy of each edge (i.e., each event in a waveform).
a) Edge: This keyword specifies that the accuracy is relative to the beginning of the period.
b) EdgeToEdge: This keyword specifies that the accuracy is relative to any other timing event.

c) time_expr: This is the value to be assigned to the accuracy. The occurence of the event shall be
within (edge_time - accuracy time) <t > (.edge time + accuracy_time).

(4) CompareEvents: This statement defines all compare events and compare event sequences that shall be
allowed within a waveform. If the list contains only uppercase event identifiers, then only the edge strobe is
allowed. Likewise, if only lowercase, then only the window strobe is allowed. If it contains both types of
events, then either edge or window is allowed. The single character event identifiers or the full name
indentifiers may be used interchangeably. The single character event identifiers or the full name indentifiers
may be used interchangeably. The events represent what may be used to make up a WFT on a tester. The
tester WFT may contain either single events (e.g., H L X) or substitutable set of events (e.g., H/L).

a) <H|LIX|V|T|h|lx|v|t|full_name>: A list of the allowed single events shall be defined (i.e., HL X h
1). Also allowed are the full name equivalents for the single character event names (e.g.,
CompareHigh = H).

b) /<H|L|X|V|T|hlx|v|t[full_name>: A list of allowed compound compare events shall be defined (i.e.,
H/L, H/L/T). Also allowed are the full name equivalents for the single character event names (e.g.,
CompareHigh = H).

c) integer expr: The first integer expression defines the maximum number of compare events that shall
occur in any cycle. This parameter is optional with the default of 1. This is typically determined by
the number of timing edge generators in the tester, and it may be a function of tester speed or
degrees of multiplexing.

d) integer _expr: The second integer expression defines the number of compound compare events that
shall exist in a given waveform. This parameter is optional with the default of 1. For example, if this
integer is a “2,” then two unique compound events requiring two WFCs are allowed. The waveform
definition would look like AB{10ns L/H[0]; 15ns X; 20ns L/H[1]; 25ns X;}. Note the use of the
square bracketed index number. If there is no index number, then the default is a single substitute
(see STIL.0). Multiple instances of the same compound data still count as one usage.

(5) DriveEvents: This statement defines all drive events and drive event sequences that shall be allowed
within a waveform. This parameter is optional with the default of 1. The single character event identifiers or
the full name indentifiers may be used interchangeably. The events represent what may be used to make up a
WFEFT on a tester. The tester WFT may contain either single events (e.g., U D Z) or substitutable set of events
(e.g., U/D).
a) <U|D|Z|P|full_name>: A list of allowed drive events shall be defined (e.g., U D Z). Also allowed are
the full name equivalents for the single character event names (e.g., DriveUp = U).

28 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

b) /<U|D|Z|P|full name>: A list of allowed compound drive events shall be defined (e.g., D/U). Also
allowed are the full name equivalents for the single character event names (e.g., DriveUp = U).

c) integer _expr: The first integer expression defines the maximum number of drive events that shall
occur in any cycle. This parameter is optional with the default of 1. This is typically determined by
the number of timing edge generators in the tester, and it may be a function of tester speed or
degrees of multiplexing.

d) integer expr: The second integer expression defines the number of compound (i.e., substitute) drive
events that shall exist in a given waveform. This parameter is optional with the default of 1. For
example, if this integer is a “2,” then the following waveform is allowed: pP{Ons P; 10ns D/UJ[0];
15ns D; 20ns D/U[1]; 30ns Z;}, and two WFC definitions are expected from the pattern to control
each event instance.

(6) FormatSelect: This statement begins a block that defines the format selection attributes of a waveform.
See Annex I for the explanation of the terms and concepts as used herein. There are two forms of this block:
one that defines only shapes and one that defines specific attributes. These two forms are mutually
exclusive; i.e., they use only one form or the other. The total number of possible waveforms is the product of
all the integers within this block. If select operations are combined (e.g., timing and I/O select is a common
select operation on a given ATE system), then use the MaxShapes statement only. The In|Out keywords in
this statement shall coordinate with the keyword on a referencing SignalCharacteristic block (i.e., if a
Signal Attributes block is of type “In,” then only FormatSelect of “In” shall be allowed).

a) In: This keyword specifies that this block contains waveforms with drive events only.
b) Out: This keyword specifies that this block contains waveforms with compare events only.

¢) InOut: This keyword specifies that this block contains waveforms with both drive and compare
events.

(7) MaxShapes integer expr: This statement specifies the total number of shapes that shall be allowed. See
Annex I for the explanation of the terms and concepts as used herein. If this statement is used, then it shall be
the only one within this block. If this statement is omitted, then the other statement shall be used to specify
the individual selections criteria.

a) Dynamic: Specify that shapes are selectable on a vector by vector basis.
b) Static: Specify that shapes are selectable only at the beginning of a pattern exec.

c) SignalsPer integer expr: This statement specifies the incremental number of signals that are
associated with each shape selection. If not specified or if SignalsPer statement is set to 1, then the
incremental number of signals allocated shall be one.

(8) MaxTimeSets integer_expr: This statement specifies the number of time sets that shall be allowed. See
Annex [for the explanation of the terms and concepts as used herein. This determines the number of timing
values that may be assigned to a given waveform in order to create formats that are of the same shape but
different timing.

a) Dynamic: Specify that time sets are selectable on a vector by vector basis.
b) Static: Specify that time sets are selectable only at the beginning of a pattern exec.

c) SignalsPer integer expr: This statement specifies the incremental number of signals that are
associated with each time set selection. If not specified or if SignalsPer statement is set to 1, then the
incremental number of signals allocated shall be one.

d) PerTimingGenerator: Specify that time set selection is done on a per-TG basis. See the
MaxTimingGenerators statement for further definition.

(9) MaxTimingGenerators integer expr: This statement specifies the number of timing generators that
shall be allowed. See Annex I for the explanation of the terms and concepts as used herein. A timing
generator is a function that can generate multiple sets of timing events (i.e., time sets) for multiple signals.

a) Dynamic: Specify that TGs are selectable on a vector by vector basis.

Copyright © 2007 IEEE. All rights reserved. 29

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

b) Static: Specify that TGs are selectable only at the beginning of a pattern exec.

c) SignalsPer integer expr: This statement specifies the incremental number of signals that are
associated with each timing generator selection. If not specified or if SignalsPer statement is set to 1,
then the incremental number of signals allocated shall be one.

(10) MaxData: This statement specifies the number of data values that are used to make up a waveform. See
Annex I for the explanation of the terms and concepts as used herein. This is typically referred to as pattern
memory data. For example, if the pattern memory has one bit per pin for both drive and compare, then this
condition is defined by “DriveCompare 2;”, whereas if the pattern memory has separate data bits for drive
and compare, then it would be defined by “Drive 2; Compare 2;”.

a) Drive integer expr: Specify the number of data states available for drive.

b) Compare integer_expr: Specify the number of data states available for compare.

c) DriveCompare integer expr: Specify the number of data states to be shared by drive and compare.
d) Dynamic: Specify that data states are selectable on a vector by vector basis.

e) Static: Specify that data states are selectable only at the beginning of a pattern exec.

f) SignalsPer: This statement specifies the incremental number of signals that are associated with each
data selection. If not specified or if SignalsPer statement is set to 1, then the incremental number of
signals allocated shall be one.

(11) MaxIO integer_expr: This statement specifies the number of input/output select values that are used to
make up a waveform. See Annex I for the explanation of the terms and concepts as used herein.

a) Dynamic: Specify that input/output selection is on a vector by vector basis.
b) Static: Specify that input/output selection is only at the beginning of a pattern exec.

c) SignalsPer: This statement specifies the incremental number of signals that are associated with each
1I/O selection. If not specified or if SignalsPer statement is set to 1, then the incremental number of
signals allocated shall be one.

(12) MaxMask integer_expr: This statement specifies the number of compare mask select values that are
used to make up a waveform. See Annex I for the explanation of the terms and concepts as used herein.

a) Dynamic: Specify that compare mask selection is on a vector by vector basis.
b) Static: Specify that compare mask selection is only at the beginning of a pattern exec.

c) SignalsPer: This statement specifies the incremental number of signals that are associated with each
mask selection. If not specified or if SignalsPer is statement set to 1, then the incremental number of
signals allocated shall be one.

(13)MaxEdgeTime time_expr: Specify the maximum allowed time that an edge can be programmed from
TO (i.e., the beginning of the period).

(14) MinCompareWindow time_expr: Specify the minimum allowed strobe width (i.e., from L/H to X).
Note that the next occurence may be in a following period.

(15) MinCompareToDriveOn time_expr: Specify the minimum allowed time from doing a compare strobe
to turning the driver on (i.e., from L/H to P/U/D).

(16) MinEdgeReTrigger time expr: Specify the minimum time that shall exist prior to the next occurence
of a like event. Note that the next occurence may be in a following period. The following optional keywords
are allowed:

a) Drive: Specify that the retrigger time applies to drive events.
b) Compare: Specify that the retrigger time applies to compare events.

¢) default if Drive or Compare not specified is that retrigger applies to all events.

30 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

(17) MinDriveOffTime time_expr: Specify the minimum allowed drive off time (i.e., from Z to next U/D/
P). Note that the next occurence may be in a following period.

(18) MinDriveOffToCompare time expr: Specify the minimum allowed time from turning the driver off to
doing a compare strobe (i.e., from Z to L/H/T).

(19) MinDriveOnTime fime expr: Specify the minimum allowed drive on time (i.e., from U/D, or P/Z).
Note that the next occurence may be in a following period.

(20) MinDrivePulse time_expr: Specify the minimum allowed drive pulse width (i.e., from U/D, or D/U).
Note that the next occurence may be in a following period.

(21) SubWaveformlteration integer expr: Specify the number of times that the waveform may be
repeated. Refer to 18.1 of STIL.0 for the definition of sub-waveforms. The infeger is the maximum number
of iterations allowed. The integer shall be a literal integer or a constant integer expression.

(22) SubWaveformDuration boolean expr: Specify the limits of the allowed time duration of each
iteration. Refer to 18.1 of STIL.0 for the definition of sub-waveforms. The time expression is an assert;
i.e., the expression must evaluate to a true for the waveform being constrained to be valid. For more
explanation and examples of edge time expressions, see the Shape block in Clause 15.

(23) Resolution time_expr: This statement defines the minimum increment for specifying a time value of a
waveform event. Note that there is a separate statement for specifying the period resolution.

(24) TimeLimits: This statement specifies the limits of the waveform edge generators. The @@ symbol is
used to represent the value to be programmed by the edge generator, and a boolean expression is used to
specify the min/max limits allowed. Time edges may extend beyond the end of the period. A negative time
value can be used to specify time that begins prior to TO of the period.

(25) WaveformSelectMemory integer expr: This statement defines the size of a indirect memory that has
the function of accessing the specific waveforms. If this statement is not present, then no indirect memory is
present.
SignalsPer integer expr: This statement specifies the incremental number of signals that are associated
with each waveform selection. If not specified or if SignalsPer statement set to 1, then the incremental
number of signals allocated shall be one.

(26) SelectWithPeriod: This statement defines that the indirect memory specified by the
WaveformSelectMemory statement is to be accessed in common with the indirect memory specified by the
PeriodSelectMemory.

14.2 TRC: WaveformAttributes—examples

202:STIL 1.0 { Design 2005; TRC 2007; }
203 :Header ({

204: Source "IEEE Std 1450.3-2007" ;

205: Ann {* clause 14.2 *}

206:}

207:Environment {

208: TRC {

209: WaveformAttributes (

210: Accuracy 1ns;

211: CompareEvents X T L/H 4;

212: DriveEvents Z P D/U 3;

213: FormatSelect In ({

214: MaxShapes 8 Dynamic { SignalsPer 32; }

Copyright © 2007 IEEE. All rights reserved. 31

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1450.3-2007

215:
216:
217:
218:
219:
220:
221:
222:
223:
224 :
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:

} // end FormatSelect
FormatSelect Out ({
MaxTimesets 4 Dynamic { SignalsPer 32; }
MaxTimingGenerators 2 Static;
MaxData Compare 2;
MaxIO 2;
MaxMask 2;
} // end FormatSelect
MaxEdgeTime 4us;
MinCompareWindow 2ns;
MinEdgeRetrigger 5ns Drive Compare;
MinDriveOffTime 2ns;
MinDriveOnTime 4ns;
MinDrivePulse 1ns;
SubwaveformInteration 1024;
SubwaveformDuration 5ns <= @@ <= 100ns;
Resolution 500ps;
TimeLimits (0Ons <= @@ <= 1lus) ;

WaveformSelectMemory 4096 { SelectWithPeriod;

} // end WaveformAttributes
} //end TRC

236:} //end Environment

15. TRC: WaveformDescriptions

}

IEEE STANDARD FOR EXTENSIONS TO STIL

The WaveformDescriptions block contains definitions of waveform shapes applied to the signals. If there is
only a single WaveformDescriptions block, then it may be unnamed and it applies to all Module and
SignalAttributes blocks. There may be multiple WaveformDescriptions blocks; in which case, the name is
required and is used as a reference in the Module or SignalAttributes block.

15.1 TRC - WaveformDescriptions—syntax

waveform_descriptions_block =

32

WaveformDescriptions (WAV_DESC_NAME) (< Rule | Explicit >) {
(Inherit WAV_DESC_NAME;)*
WFNAME {

(NumberData integer _expr ;)
(NumberlO integer_expr ;)
(NumberMask integer_expr ;)
(NumberPeriods integer _expr;)
(NumberShapes integer _expr ;)
(NumberSignals integer_expr;)
(NumberTimeSets integer _expr ;)
Shape {
((TRC_LABEL:) (boolean_expr) < EVENT | EVENT_LIST> ;)*
} // end Shape
* // end WFNAME

} // end WaveformDescriptions

0y
2
A3)
“)
)
(6)
(7
®)
)
(10)
(11)

Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

(1) WaveformDescriptions WAV_DESC NAME: This block contains descriptions of allowed waveform
shapes and times. It also defines the waveform select resources consumed by each waveform. This block is
referenced by a SystemAttributes block by means of the WAV_DESC NAME identifier. Note: See the
SystemAttributes block for the relationship between the WaveformAttributes block and the
WaveformDescriptions block

Rule: This optional parameter means that the shape definitions are rules that must be met by the
waveform definitions. All waveforms shall conform to all rules. “Rule” is the default if neither “Rule” nor
“Explicit” is specified.

Explicit: This optional parameter means only defined waveforms are allowed. For a waveform to be
allowed, it must conform exactly to one of the definitions in the Shape block; i.e., it shall contain all
events and in the same order; it shall conform to the time expression assertions.

(2) Inherit: This statement allows reference to another WaveformDescriptions block. All rules in the
inherited block and the current block shall be satisfied; i.e., this is an “AND” of the statements in both
blocks. See Clause 10 for examples of referencing global and named blocks in either the current or the other
TRC blocks.

(3) WFNAME: This statement begins a block that defines a waveform and the resources needed to create that
waveform.

(4) NumberData integer expr: Specify the number of data states used to create this waveform. Default =
no check. Typically, a waveform has two data states (1/0) that are used to select U/D for a drive waveform or
H/L for a compare waveform.

(5) NumberlO integer_expr: Specify the number of I/O states used to create this waveform. Default = no
check. A bidirectional waveform typically has two I/O states: to select drive on/off.

(6) NumberMask integer expr: Specify the number of mask states used to create this waveform. Default =
no check. Typically an output waveform has two mask states: compare/don’t compare

(7) NumberPeriods integer expr: Specify number of periods needed to create this shape. Default = no
check. This statement is for tester architectures that can create complex shapes that encompass multiple
periods.

(8) NumberShapes integer expr: Specify the number of shape selects used to create this waveform.
Default = no check. This is an alternative way of specifying shape selection. If this statement is used, then it
should combine NumberData, NumberlO, and NumberMask into this one attribute.

(9) NumberSignals infeger expr: Specify the number of tester pins needed to create this shape. Default =
no check. This statement is to support special tester architecture where multiple pin channel resources can be
tied together to create a complex waveform.

(10) NumberTimeSets integer expr: Specify the number time sets selects used to create this waveform.
Default = no check.

(11) Shape: This statement begins a block to specify the events that make up the shape and the timing limits
of the waveform. Note that the syntax follows the same form as for a waveform as defined in Clause 18 of
STIL.0. The difference between a STIL.0 waveform and this waveform is that the definition is to be used as
a constraint for a valid waveform rather than for a waveform itelf. The following is the definition of the
components that make up a shape:

a) EVENT LABEL: The label is optional and, if present, allows for reference by other shapes in the
current WaveformDesctiptions block to be in reference to this timing lable. The ending colon is
required syntax.

Copyright © 2007 IEEE. All rights reserved. 33

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

b) boolean_expr: The boolean time expression is optional. If not defined, then only the shape of the
waveform is defined (for this one event time). If the boolean time expression is defined, then it is
interpreted as an assert; i.e., the expression must evaluate to a true for the waveform being
constrained to be valid. The following are the allowed tokens in a timing expression (see 6.13 of
STIL.0 and 5.10 of STIL.1):

i) Absolute numbers that refer to the time from TO

ii) The @ label, which refers to the time of the prior event

iii) @n, which refers to the time of the n’th event (where first event is numbered @1)

iv) An event-label within the current WaveformDescriptions block

v) @Tm, which refers to the beginning of the m’th cycle of this waveform definition (where
the @TO is the beginning of the first cycle of this waveform definition)

vi) @Tm.n, which refers to the n’th event in the m’th cycle of this waveform definition

c) < EVENT | EVENT_LIST>: The event of the event list defines the waveform shape attributes in a
similar manner as the waveform shape definitions of a Timing block in STIL.O.

15.2 TRC: WaveformDescriptions—examples

237:STIL 1.0 { Design 2005; TRC 2007; }
238:Header ({

239: Source "IEEE Std 1450.3-2007" ;

240: Ann {* clause 15.2 *}

241:}

242:Environment {

243: TRC {

244: WaveformDescriptions Explicit {
245: WF1 {

246: NumberData 2;

247 : NumberIO 2;

248 : NumberMask 2;

249: NumberPeriods 1;

250: NumberShapes 2;

251: NumberSignals 1;

252: NumberTimeSets 1;

253: Shape {

254 : (@l :== Ons) P;

255: (@2 >= @l1+2ns) D/U;

256: ((@3 >= @2+2ns) && (@3 < 200ns)) D;
257: } // end Shape

258: } //end WF1

259: WE2

260: Shape {

261: (@1 >= 10ms) D/U;

262: (@2 >= @+5ns) D;

263: (@T1 >= 25ns) ;

264 : (eT1.1 >= @T1+10ns) D/U;
265: (@T1.2 >= @+5ns) D;

266: } // end Shape

267: } //end WF2

268: } // end WaveformDescriptions

269: } //end TRC
270:} //end Environment

34 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

16. TRC: PatternAttributes

The PatternAttributes block contains information that applies to the vector generation process. If there is
only a single PatternAttributes block, then it may be unnamed and it applies to all Module and
SignalAttributes blocks. There may be multiple PatternAttributes blocks; in which case, the name is required
and is used as a reference in the Module or SignalAttributes block.

Within this block, the term “vectors” and the term “locations” are used to refer to two different aspects of the
pattern generation system. The term “vectors” refers to the V statements in a STIL file/stream, whereas the
term “locations” refers to the pattern memory on an ATE system that stores the vector information.

16.1 TRC: PatternAttributes—syntax

instruction_enum =
< Condition | GoTo| IddqTestPoint| Loop | Macro | MatchLoop | Call | Shift | BreakPoint > €]
pattern_attributes block =

PatternAttributes (PAT _ATTR NAME) { 2)
(Inherit PAT ATTR NAME;)* 3)

(Base < Hex | Dec > INTEGER;) 4

(InstructionAttributes (instruction_enum)+ <; | { %)

(MinAfter < Locations | Vectors > integer expr;) 6)

(MinBefore < Locations | Vectors > integer expr;) 7)

(WithParameters < Yes | No >) ®)

(LoopAttributes (< Loop | MatchLoop | Shift | BreakPoint >)* { C)

(Infinite;)
(MaxIteration integer expr;)
(MaxLength integer expr;)
(MaxNest integer _expr;)
(Minlteration integer expr;)
(MinLength integer expr;)
(MinTimeAfterMatch time expr;)
(MinVectorsAfterMatch integer expr,)
(Modulus < Locations | Vectors > integer expr;)
})* // end LoopAttributes
} >)* // end InstructionAttributes

(MaxRunTime time_expr;) (10)
(Max < Locations | Vectors > integer_expr;) (11)
(Modulus < Locations | Vectors > integer_expr;) (12)
(MultiBitData (< InWaveforms | InPatterns | No >)+ ;) (13)
(NonCyclized < Yes | No >;) (14)
(NumberCaptureCycles (integer expr (integer _expr)) ;) (15)
(NumberPatternUnits integer expr ;) (16)
(NumberVectorsPerShift (integer _expr) (integer _expr);) a7
(PatternVariables (18)
(< Integer | IntegerConstant | SignalVariable | WFCConstant | Spec | All | No >)* ;)
(VectorCompression integer (< PerVectorMemory | VectorMemoryPer >) ;) (19)

} // end PatternAttributes

(1) instruction_enum: This list of enums is used on the InstrurctionAttributes statement, which is defined
below.

(2) PatternAttributes (PAT ATTR NAME): This block specifies the attributes associated with running a
pattern. This block may also be used to document the attributes of a given pattern. The perspective of the

Copyright © 2007 IEEE. All rights reserved. 35

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

descriptions herein is from the tester constraint perspective. Note that some statements have little or no
significance as a tester hardware constraint and are so described.

(3) Imherit: This statement allows reference to another PatternAttributes block. All rules in the inherited
block and the current block shall be satisfied; i.e., this is an “AND” of the statements in both blocks. See
Clause 10 for examples of referencing global and named blocks in either the current or other TRC blocks.

(4) Base < Hex | Dec > INTEGER: Specify whether vector data and parameters in radix other than WFC are
supported. By default, only WFC data are supported. This pattern data characteristic is not typically a tester
hardware constraint, but it may be a constraint of the ATE software. The INTEGER defines the maximum
number of WFCs that can can be mapped from hex or decimal.

(5) InstructionAttributes: This statement specifies the instructions that are allowed. The form of this
statement may be either semicolon terminated; in which case, it indicates only the availability of the
instruction. This statement may be a block statement; in which case, it specifies the capabilities, limitations,
and attributes of the named instructions types (instruction_enum) within a pattern. A series of keywords
follow that indicate which specific pattern instructions are defined in the block. There may be multiple
blocks, with each pattern instruction being defined, at most, in one block. There are no defaults for pattern
instructions. If a pattern instruction is not defined in one InstructionAttributes block, then it is not allowed.

(6) MinAfter < Locations | Vectors > integer expr: This statement specifies the minimum number of
vectors (or the minimum vector memory locations) that must exist after this instruction type with no
intervening instructions. The actual number of STIL vectors (for each “location™) is determined by the
VectorCompression statement.

(7) MinBefore < Locations | Vectors > integer expr: This statement specifies the minimum number of
vectors (or the minimum vector memory locations) that must exist before this instruction type with no
intervening instructions. The actual number of STIL vectors (for each “location™) is determined by the
VectorCompression statement.

(8) WithParameters < Yes | No >: This statement is allowed for Macro and Call instructions and specifies
whether parameters are supported. This pattern data characteristic is not typically a tester hardware
constraint, but it may be a constraint of the ATE software. By default no checking or limitations are applied
in the usage of macros or calls; hence, parameters are allowed. Note that whereas Macros are typically
supported by expanding the pattern statements in-line, procedures are typically supported by transferring
control to a preloaded pattern sequence. Also note that it is possible to expand procedures to in-line pattern
statements; however, the rules for procedure calls shall be maintained.

(9) LoopAttributes: This statement is to be used only within an InstructionAttributes block describing one
or more of the looping statements: Loop, MatchLoop, Shift, BreakPoint. If this statement is not present,
for one looping statement, then the defaults as defined in the following LoopAttributes statements apply.
The following statements are allowed in a LoopAttributes block:

a) Infinite: The number of interations in the loop may be infinite. An infinite loop overrides any value
specified in a MaxIteration statement.

b) Maxlteration integer expr: The statement specifies the maximum number of times the loop may be
executed. The default value is no limit.

c¢) MaxLength integer expr: This statement specifies the maximum number of Vector statements that
may occur within the loop. The default value is no limit.

d) MaxNest integer expr: This statement specifies the maximum number of loops that may be
contained within a loop; i.e., “MaxNest 8;” means that there may be an outer loop and up to seven
more loops embedded within. This statement also serves to specify when to expand vectors. If
“MaxNest 0;” is specified, then all loops must be converted into in-line instruction sequences. The
default value is no limit.

36 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

e) Minlteration integer expr: This instruction specifies the minimum number of iterations allowed.
The default value is one.

f) MinLength integer expr: This statement specifies the minimum number of Vector statements that
may occur within the loop. The default value is one.

g) MinTimeAfterMatch time expr: This statement specifies the minimum time after a match before
the pattern can continue. This time is defined in a BreakPoint block or statement within the
MatchLoop. Due to pipelining, an ATE system typically cannot respond with valid compare results
immediately after a match is found. This statement specifies the minimum amount of time that is
required before a compare can be done. The default value is zero. See also MinVectorsAfterMatch.

h) MinVectorsAfterMatch integer expr: This statement specifies the minimum number of vectors
after a match before the pattern can continue. These vectors are defined in a BreakPoint block or
statement within the MatchLoop. The default value is zero. See also MinTimeA fterMatch.

i) Modulus < Locations | Vectors > integer_expr: The statement specifies the incremental number of
vectors (or locations) that shall be defined within the loop; i.e., “Modulus Vectors 7;” means that
only loops of size 7 vectors, 14 vectors, and so on are allowed. The default is one.

(10) MaxRunTime fime_expr: This statement specifies the maximum run time for a pattern execution. By
default, there is no limit to the run time.

(11) Max < Locations | Vectors > integer expr: This statement specifies the maximum number of vectors
(or the maximum vector memory locations) that are allowed in this pattern type. The actual number of STIL
vectors is determined by the VectorCompression statement. The default is to provide no limit to the number
of vectors.

(12) Modulus < Locations | Vectors > integer expr: The statement specifies the incremental number of
vectors (or locations) that shall be defined within the pattern type; i.e., “Modulus Vectors 7;” means that
only patterns of size 7 vectors, 14 vectors, and so on are allowed. The default is one.

(13) MultiBitData (< InWaveforms | InPatterns | No >: Ths statement specifies whether patterns with
multibit vectors are supported. By default, multibit data are not allowed.

a) InWaveforms: Multiple bits used to select events in waveforms.
b) InPatterns: Multiple bits in pattern parameters to Macros and Procs.

(14)NonCyclized < Yes | No >: This statement specifies whether patterns with non-cyclized data are
supported. By default, only cyclized patters are supported.

(15) NumberCaptureCycles (integer_expr (integer_expr)): This statement specifies the number of vectors
in ATPG generated capture cycles. This pattern data characteristic is not typically a tester hardware
constraint, but it is used for documenting a pattern. There is no default.

a) no integers: All capture sequences have the same number of cycles.
b) first integer: Minumum number of capture cycles.

¢) second integer: Maximum number of capture cycles.

(16) NumberPatternUnits integer expr: This statement specifies the number of ATPG generated pattern
sequences (i.e., scan patterns). This pattern data characteristic is not typically a tester hardware constraint,
but it is used for documenting a pattern. There is no default.

(17) NumberVectorsPerShift (integer expr) (integer expr): This statement specifies the number of
vectors in ATPG scan shift sequences. The number represented is the number of DUT vectors that contain a
parameter substitute on a scan-in or scan-out signal (either a #, %, sig-var, or wfc-string) after the Shift block
is unrolled. This pattern data characteristic is not typically a tester hardware constraint, but it is used for
documenting a pattern. There is no default.

a) no integers: All shift sequences have the same number of cycles.

Copyright © 2007 IEEE. All rights reserved. 37

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

b) first integer: Minumum number of shift cycles.

¢) second integer: Maximum number of shift cycles.

(18) PatternVariables: This statement specifies whether variables are supported and which types of
variables. Each of the various variable types can be individually specified or “All” allows for any type. By
default, all are allowed. One or more of the following identifiers are allowed:

a) Integer: Allow integer variables to be used in pattern statements.

b) IntegerConstant: Allow integer constants to be used in pattern statements.

c) SignalVariable: Allow signal variables to be used in pattern statements.

d) WFCConstant: Allow WFC-constants to be used in pattern statements.

e) Spec: Allow spec-variables to be used in pattern statements.

f) All: Allow all of the above to be used in pattern statements (this is the default).
g) No: Do not allow any of the above to be used in pattern statements.

(19) VectorCompression: This statement specifies the number of vector memory locations that are to
consumed by each vector of the pattern. If the attribute, PerVectorMemory, is specified, then each vector
memory location generates the number of device vectors (i.e., STIL vectors) as specified by the integer
attribute. If the attribute, VectorMemoryPer, is specified, then each device vector (i.e., STIL vector) requires
the number of vector memory locations as specified by the integer attribute. The default is one STIL vector
per vector memory location.

16.2 TRC: PatternAttributes—examples

271:STIL 1.0 { Design 2005; TRC 2007; }
272 :Header {

273: Source "IEEFE Std 1450.3-2007" ;

274: Ann {* clause 16.2 *}

275:}

276:

277:Environment ATEL {

278: TRC {

279: PatternAttributes {

280: Base Hex 64;

281: NonCyclized No;

282: InstructionAttributes Breakpoint IddgTestPoint;
283: InstructionAttributes Condition Loop Call Shift
284: MinVectorsBefore 2;

285: MinVectorsAfter 2;

286: } 7/ end InstructionAttributes

287: InstructionAttributes MatchLoop(

288: MinVectorsBefore 2;

289: MinVectorsAfter 35;

290: LoopAttributes MatchLoop {

291: MaxIteration 4096;

292: MaxLength 65 000;

293: MaxNest 3;

294 : MinIteration 2;

295: MinLength 2;

296: } // end LoopAttributes

297: } // end InstructionAttributes

298: Macro WithParameters;

38 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
299: MaxRunTime 15s;

300: Max Locations 5 000 _000;

301: MultiBitData InWaveforms;

302: PatternVariables SignalVariable;

303: ProcedureCalls Yes;

304: } // end PatternAttributes

305: } //end TRC
306:} //end Environment

17. TRC: NameChecks block

STIL defines a specific set of rules for naming objects and identifies namespaces that contain each type of
object. Different environments and applications of STIL data often define different naming constructs from
the STIL environment.

When STIL names are passed to contexts outside of STIL, additional restrictions may be imposed on these
names. The NameChecks block is used to validate STIL names against a limited set of additional naming
restrictions. These limited checks support checking names against an environment that supports reduced
naming flexibility. It may be necessary in some circumstances to define restrictions using these rules that are
a subset of the complete external context in order to simplify the checks to a naming environment that
overlaps both the basic STIL constructs and the external environment. Obviously a name in an external
context cannot be defined that is more flexible than the incoming STIL capabilities.

NameChecks operations come in three forms: character-content, length, and scope. They are specified
against the names defined either inside a STIL block (for instance, the contents of the STIL Signals block) or
against the blocknames of a STIL block (for instance, across the names of all WaveformTable blocks).
Character-content checks validate that the set of characters contained in a name are appropriate; length
checks confirm restrictions on the length of a name; and scope constraints check that this name is uniquely
defined across the specified set of STIL blocks.

NameChecks shall be performed under an executable STIL context, that is, after STIL name resolution
processes have identified a set of names that are actually used under a PatternExec context.

17.1 NameChecks block—syntax

name_checks _block =

NameChecks {)
(Contents (STIL_BLOCK_NAME)+ ;) 2)
(Block STIL_ BLOCK_NAME ;)* 3)
(CharacterContent regular_expr ;) 4)
(Length integer expr ;) &)
(Scope (STIL_BLOCK _NAME)+ ;) (6)
H

(1) NameChecks NAM_CHECKS NAME: An optional STIL block inside TesterResourcesConstraints to
identify a set of STIL naming restrictions for this TesterResourcesConstraints block. Name checks shall be
unique across all NameChecks blocks in one TRC block.

(2) Contents STIL BLOCK NAME: Defines a set of STIL names, defined by user-defined keyword
statements, in this STIL BLOCK NAME, to be checked against the CharacterContent, Length, and Scope
requirements identified in this block. STIL BLOCK NAME is any STIL block that contains user-defined name
keywords (such as Signals). At least one Contents statement or Block statement shall be present in a

Copyright © 2007 IEEE. All rights reserved. 39

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

NameChecks block. If the keyword AllNames is specified for STIL BLOCK NAME, then All STIL
namespaces will be checked against these constraints.

(3) Block STIL_BLOCK NAME: Defines a set of STIL names, defined by the set of all blocknames defined
under STIL BLOCK NAME, to be checked against the CharacterContent, Length, and Scope requirements
identified in this block. STIL BLOCK NAME is any STIL block. At least one Contents statement or Block
statement shall be present in a NameChecks block

(4) CharacterContent regular _expr: Defines a regular expression construct to identify any character
restrictions on a name. See annex K for details about regular expressions.

(5) Length integer expr: Defines an absolute limit on the number of characters a name may contain.

(6) Scope (STIL_BLOCK NAME)+: Defines one or more STIL blocks to check for a unique name. This
statement is only required when the TesterResourcesConstraints namespace context is different than the
STIL environment, typically containing multiple namespaces. If the keyword AllNames is specified for
STIL_BLOCK NAME, then each name checked here will be checked against all the names contained in all
STIL namespaces. Be aware that STIL namespaces that are defined as unique under another name (for
instance, ScanChain names inside a ScanStructures block) will not maintain that restriction if that block is
referenced in a Scope statement.

17.2 NameChecks—examples

307:STIL 1.0 { Design 2005; TRC 2007; }
308:Header ({

309: Source "IEEFE Std 1450.3-2007" ;

310: Ann {* clause 17.2 *}

311:}

312:Environment {

313:

314 :TRC WGL {

315: NameChecks

316: // partial WGL name checks for Signals, Groups

317: //in WGL, Signals and SignalGroups share the same namespace
318: Contents Signals;

319: Contents SignalGroups;

320: CharacterContent (\".*\"|[A-Za-z] [A-Za-20-9 \-1%*);
321: // Names are either enclosed in double-quotes,

322: // or start with an alphabetic character, followed by

323: // any number of alphanumeric characters, underscore, or dash.
324: // Does not trap use of WGL reserved words

325: Scope Signals SignalGroups;

326: } //end NameChecks

327:

328: NameChecks
329: // partial WGL name checks for ScanChains

330: Block ScanChain;

331: CharacterContent (\".*\"|[A-Za-z] [A-Za-2z0-9 \-1%);
332: // Does not trap use of WGL reserved words

333: Scope ScanChains;

334: // Note STIL ScanChain names are scoped under ScanStructures.

335: // This statement assures unique names for all chains across

336: // all referenced ScanStructure blocks.

337: } //end NameChecks

40 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

338:} /end TRC

339:

340:// Namechecks for a tester that places all names into one big, untyped, pool.
341:TRC FLAT TESTER {

342: NameChecks FOR ALL NAMES {

343: // This context supports only one big namespace
344 : Contents AllNames;

345: Length 22;

346: Scope AllNames;

347: }

348:} //end TRC

349:

350: } // end Environment

Copyright © 2007 IEEE. All rights reserved. 41

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

Annex A

(informative)

Glossary

The following glossary contains definitions of terms found in this document. This annex may contain
definitions of terms for which syntax is defined in other STIL documents. The annex also contains
definitions that are commonly used in reference to ATE systems.

accuracy: Usually used in reference to a resource of a tester, such as a timing or voltage value; refers to the
maximum difference between the value specified and the value actually produced on a tester.

bidirectional signal: A signal that can both drive data into a device pin and compare data out of a device
pin; this capability usually also involves controlling the strength of the drive signal such that it can be in a
high drive current mode for input and high impedance (low current) mode for output; on most testers,
signals are normally bidirectional. See also: split 1/0.

boolean_expr : An expression the evaluates to a true/false as defined in STIL.1.

break point: A point in a pattern where the application of data (i.e., vectors) can be interrupted; typically
used for reloading patterns or for synchronizing with other patterns/events.

capture/capture memory: The process of capturing test result information on a tester channel; capture
memory is used for capturing multiple results at functional test rates; capture may consist of fail data only or
may be a capture of all strobe activity

central timing architecture: Atester architecture where the timing generation logic is common across
multiple tester channels and is connected/selected by means of some kind of multiplexing scheme; typically
found on older test systems since the trend is toward per-pin timing systems. See also: distributed resource
tester.

channel: The electronics in a test system used to create drive and compare data to each pin of the tester and,
hence, to a signal of the DUT; typically consists of data generation logic, timing generation circuits, pin
electronic circuits; may also contain logic for scan data, algorithmic generation logic, and other.
conditional statement: The ability for a tester to conditionally execute statements in a pattern based on
decisions that are defined in the pattern; conditions are specified by the If/Else statements as defined in
STIL.1.

core: A submodule of a design that can be tested independantly of the whole design; details of the embedded
core definition are defined in STIL.6; the TRC statement CoreUsageReady is used to indicate that the tester
supports core testing or to indicate that patterns are constructed for core test.

constraint: See: tester resource constraint.

cycle/cyclized/noncyclized: A cycle is one period of a tester; a cycle also corresponds to one vector of a
pattern; data may be defined in either cyclized form (i.e., periods, waveformtables, or waveformchars) or

noncyclized (i.e., sequences of events on a per-signal basis).

data channel: Data channel refers to the data generation part of a tester channel. See: channel.

42 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

delta change vector data: The definition of vector data by defining only the signals that change from the
prior vector; this is defined in STIL.O.

distributed resource/distributed resource tester: A tester architecture where the resources exist on a
channel basis; typically refers to the timing and logic control functions of the tester. See also: central timing
architecture.

device under test (DUT): Refers to the physical device to which a test system connects for the purpose of
validation, characterization, or failure diagnosis.

edge/drive edge/compare edge: The points in time that are created by a test system to determine when drive
events or compare events can occur; whereas events refer to the STIL defined waveform, edges refer to the
tester actions that implement these STIL events. See also: events.

edge time: The timing placement of a drive or compare edge relative to the beginning of the period.

environment: Refers to things that are related to the application or usage of STIL data rather than the STIL
pattern data itself; STIL.1 defines a new block called Environment for containing this information; TRC
blocks are contained in environment blocks since they are not necessary for interpreting the STIL data, but
only for applying it to a specific test system.

Event Sequence Store Memory: A term used on some testers to refer to a memory that holds sequences of
a waveform event that generates a waveform; usually contains both shape and time values.

events/compare events/drive events/compound events: The components that make up a cyclized
waveform; drive events define the operation of input to a DUT; compare events define the operation of
monitoring the output from a DUT; compound events are multiple events that can occur at a given edge time

based upon control and selection mechanisms. See also: edge.

flow: The user flow in which the STIL data are used; the path of transporting/translating data from one
environment to another; refer to Clause 1 for definition of the flows that use TRC data.

fluid: The use of variables and expressions to define relationships between various resources of a tester.

functional tester: A tester architecture that is designed to test a DUT in a manner that mimics the
application of the mission mode of the DUT. See also: structural tester.

iddq/iddq test points: A point in a pattern where an iddq measurement is to be performed; iddq refers to the
quiescent current on a device power pin.

instruction/instruction attributes: Refers to a statement used in the high-speed functional pattern
generation system of a tester to control the sequence of vectors; typically, condition statements are across all
channels of a tester or all channels of a segment; example of instructions are Loop, Call, GoTo, etc.;
instruction attributes is a block of TRC statements that defines the allowed instructions.
integer/integer_expr: An integer or an integer expression as defined in STIL.1.

label: An identifier in a pattern or waveform that is used as a reference by another statement. See also: tag.
local memory: A tester term that is used to refer to a pattern data memory that can be accessed according to

the vector-period timing; this term historically differentiates from earlier testers that relied on CPU memory
to produce tester data.

Copyright © 2007 IEEE. All rights reserved. 43

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

loop/loop attributes: Refers to a series of vectors that are to be repeated; loop attributes are the set of
capabilities/limitations that exist with regard to looping.

macro: Refers to a set of pattern statements that are defined in a MacroDefs block and are invoked by the
STIL.0 statement “Macro”; marco statements are to be interpreted as if they were in-line statements.

non return to zero (NRZ)/delayed non return to zero (DNRZ): NRZ is a tester term for a waveform that
does not go back to a low state within the a tester cycle; typically NRZ data are applied at the beginning of
the period. ADNRZ is one that applies data after the beginning of the period; in STIL, this waveform is
represented as {U/D;}. See also: RZ, RO, and SBC.

map/mapping: The action of translating STIL data to the resources of a tester; theTRC statements are
defined to assist in this process.

mask: The capability of a tester to ignore the state of an output signal of a DUT.
memory/vector memory/scan memory/subroutine memory: Memory resources in a tester for containing
pattern data; memory is often assigned for specific usage (i.e., storage of pattern vectors, storage of scan

patterns, storage of subroutine, or procedure vectors).

multibit data: The definition of multiple data states in a pattern; can be assigned to a WFC; can be passed to
either a procedure, macro, or waveform. See also: events/compare events/drive events/compound events.

on-the-fly: The ability of a tester to process an action at pattern speeds; contrast this definition with “static.”
pattern attributes: The set of attributes that defines how a tester processes/creates pattern data.

pattern report: A set of TRC statements that define the attributes of a specific STIL pattern, pattern burst,
or set of patterns.

pattern unit: A term used for a sequence of vectors that make up a test as created by an automatic test
pattern generation (ATPG) tool; typically used in the context of scan and composed of a scan-in, some
activity in DUT pins, followed by a scan-out.

pattern variable: A variable, as defined in STIL.1, that is used to control the flow or data within a pattern.

period: The time from the start of a tester cycle (T0) to the beginning of the next tester cycle (next TO); the
time that it takes to execute one pattern vector.

period attributes: The attributes of a tester that are used to implement the period processing function.

period generator: The electronic circuitry in a tester that generates a period; a period generator may be
associated with a single tester channel, or it may be shared across multiple tester channels.

period select memory: An indirect memory that is used to select a period generator.

per-pin architecture: The tester architecture where resources are allocated on an individual channel basis;
this typically applies to timing resources but can also apply to pattern formatting resources. See also: central
timing and shared resource architecture.

pin: The point of contact on either a DUT or a tester; the electronics behind the tester pin is typically

referred to as the tester channel; the abstract waveform on a DUT and as defined in STIL is referred to as a
signal.

44 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

postprocess: The processing of STIL data after they are initially created by some generation process; the act
of tester targetting is a postprocess.

pragma: A set of instructions for loading tester resources that is defined in a non-STIL or tester-specific
form. Refer to Clause 19 of STIL.1 for the definition of pragma.

procedure call: Refers to a set of pattern statemements that are defined in a Procedures block and are
invoked by the STIL.0 statement “Call”; a procedure differs from a macro in that it is defined stand-alone,
no information is carried over from the prior sequence of vectors, and no information is carried back to the
pattern vectors to follow.

range: Refers to the common technique used in test systems of using ranges to cover the needed spread and
resolution for resources such as time, voltage, and current.

real / real_expr: A real number or a real expression as defined in STIL.1. A real number may be expressed
in exponent form (i.e., 23.5E-9) or in engineering unit form (i.e., 23.ns). An integer may be used anywere a
real number is called for.

regular expression/regular_expr: A software technique for the manipulation of text strings. See Annex K
for details.

resolution: Usually used in reference to a tester resource; refers to the incremental value to which a resource
can be programmed. See also: range.

resource: Refers to a capability of a test system; resources typically have a size attribute associated (i.e.,
number of pin channels or number of vectors).

return to one (RO/RTO): A tester term for a waveform that returns to a high state within the period; in
STIL, this waveform is represented as {U/D; U;}. See also: RZ, RO, and SBC.

return to zero (RZ/RTZ): A tester term for a waveform that returns to a low state within the period; in
STIL, this waveform is represented as {U/D; D;}; See also: RZ, RO, and SBC.

run time: The time it takes to execute a pattern or pattern burst.

surround by complement (SBC): A tester term for a waveform that has the complementary state before
and after the desired data state; in STIL, this waveform is represented as {D/U; U/D; D/U;}; See also: NRZ,
RO, and RZ.

scan/scan chain/scan memory: Refers to the structural design technique of connecting sequential elements
together to allow for load/unload of data; also used to refer to special resources on a tester for the purpose of
storing/loading/unloading scan chain data. See also: shift.

scope: Term used in STIL to refer to the area of affectivity over the STIL file/stream; i.e., global procedures
and global variables blocks are available for use throughout all blocks of the file, whereas named procedures
and named variables blocks are available only when specifically referenced.

segment: A partition of a tester that has common resource attributes.

select memory: Memory on a test system that is used to address a resource such as timing, formatting, or

level select; this is a technique for optimizing the select capabilities by using an indirect memory to select a
limited resource.

Copyright © 2007 IEEE. All rights reserved. 45

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

sequence control memory: Term for a tester resource that controls the flow of execution of pattern
statements; a necessary resource to support loop and conditional statements in a pattern.

shape: The sequence of events that make up a waveform; typically the shape is defined independent of the
timing. See also: NRZ, RZ, RO, and SBC.

shared resource architecture: The tester architecture where resources are shared or multiplexed to multiple
channels; this typically applies to timing resources but can also apply to pattern formatting resources. See
also: central timing and per-pin architecture.

shift: A STIL pattern statement that is used to load/unload scan data; also refers to the capability on a test
system that implements the load/unload of scan data.

signal attributes: The set of attributes that define the capabilities of a tester channel.

signals per: A term used in this standard to identify the incremental number of signals that are associated
with a given tester resource.

split I/O: A tester term for the ability to connect the input part of a pin channel to one tester pin and the
output part of the pin channel to a second (usually adjacent) tester pin.

static: Attributes of a tester that are defined prior to the beginning of pattern execution. Con: on-the-fly.

STIL file/stream: A term used to refer to either a single STIL file or a set of STIL files, called a stream, that
are connected by means of “Include <file-name> IfNeed;” statements. Although the term “stream” was not
used in STIL.0, all statements necessary to create a stream are defined therein.

strobe/edge strobe/window strobe: Terms used to define the compare capabilities of a tester; strobe refers
to the ability to do a compare on an output signal of a DUT; edge strobe refers to the ability to do a point
compare on an output signal of a DUT (requires only one compare event: L/H/X/V/T); window strobe refers
to the ability to do a compare over a time interval on a DUT output signal (requires two events: 1/h/t/v
followed by x).

structural tester: A type of tester that is designed with resources to test the elements that make up the
design (i.e., the structural elements of a DUT); typical resources are scan memory and shift hardware. See
also: functional tester.

synchronous: Refers to the execution of two or more patterns such that they start at the same time.

tag: An identifier in a pattern or waveform that is used for the specific purpose of tester targeting. See also:
label.

target tester: Refers to the tester or tester family for which a set of rules (i.e., a TRC block) is created.
tester resource: See: resource.

tester resource constraint (TRC): Refers to a set of rules that must be adhered to in order for a STIL file/
stream to be suitable for load/execution. These rules may be applied at various stages in the generation of a
DUT and its associated test program. They may be applied in the design of the DUT, in the generation of the
test program by an ATPG tool, in making adjustments to a STIL file for a particular tartet tester, or in the

load process on a test system. See Clause 1 for a discussion of these operations.

tester rule: A single statement in a TRC file; the action of applying a tester resource constraint to a test
pattern.

46 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

tester targetting: Refers to the process of making a STIL file/stream ready for consumption by a test
system. The process may involve checking resources, mapping resources, or making adjustments to the
STIL file. See Clause 1 for a discussion of these operations.

time_expr: A time value or a time expressions as defined in STIL.0.

time set: A tester resource that defines the period and the timing of all signals across a segment.

timing generator: A tester resource that defines period and signal timing; it may contain multiple time sets;
timing values may be statically or dynamically selected.

usage model: The various flows or ways that a TRC file/stream may be used or applied. See Clause 1 for a
discussion of these operations.

vector: A STIL statement inside a pattern block that defines the activity (via a WFC) on the signals of the
device.

vector rate: The frequency at which vectors are applied to a DUT; the frequency of application of vectors in
a pattern as defined by the period statements in the waveform tables.

waveform characteristic: The set of attributes that define the capabilities of a tester in the creation of
waveforms; this is opposed to waveform descriptions that define the exact waveform.

waveform description: The definition of exact waveforms that can be created on a tester; this is opposed to
waveform attributes that define only the attributes of the waveforms.

waveform generator: Refers to the tester resource that creates the input event sequence and/or output
compare event sequence for application to the DUT.

Copyright © 2007 IEEE. All rights reserved. 47

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

Annex B

(informative)

Fluid concepts in parameter specification

In many cases, a given ATE system can be configured in many ways with optional or modular additions to
the hardware of a system. This flexibility is referred to in this document as a “fluid” specification and is
handled by means of new statements that have been added to the Variables block: Assert, ConfigConstant,
and ParamConstant (see Clause 8 for the syntax definition).

Two types of parameters may be defined: 1) fixed attributes of a tester that relate to a specific model of tester
such as max pin size or hardware range options, which are defined with the ConfigConstant statement, and
2) variable attributes that are selectable by a given application and are defined with the ParamConstant
statement. The Assert statement is used to specify the allowed relationships between the various parameters.

Subclauses B.1 and B.2 illustrate examples of fluid specification.

B.1 Example of pins in a segment

This is an example of an ATE system that has variable pin assignments. There are two configurations of the
tester defined, one with a maximum of 1024 pins and the other with 512 pins. In both cases, the tester may
have either 1 or 2 segments with the pins being assigned to the segments in increments of 64. The following
TRC/STIL code defines this case:

351:STIL 1.0 { Design 2005; TRC 2007; }
352:Header ({

353: Source "IEEE Std 1450.3-2007" ;

354: Ann {* clause B.1 *}

355:}

356:Variables {

357: ConfigConstant MAX PINS;

358: Assert (MAX PINS :== 512) || (MAX PINS :== 1024);
359: ParamConstant SEG ONE_ PINS;

360: Assert (SEG_ONE PINS % 64) :== 0;

361: IntegerConst SEG TWO PINS := MAX PINS - SEG ONE PINS;
362:}

363 :Environment TESTER SPECS {

364: TRC {

365: SignalAttributes SEG1 {

366: MaxSignals SEG_ONE_PINS;

367: }

368: }

369: SignalAttributes SEG2

370: MaxSignals SEG_TWO_ PINS;

371: }

372: Module MOD1 ({

373: SignalAttributes SEG1;

374: }

375: Module MOD2 ({

376: SignalAttributes SEG2;

48 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

377: }
378: } // end TRC
379:} // end Environment

B.2 Example of multiple ranges on the period

This example of fluid ATE constraints is defining allowed ranges on the period specification. The ATE
system has the ability to switch between 16 different period values on-the-fly. Each of these periods must
select from one of three ranges based on the value that is to be programmed into the period. Once the period
range is selected, the specification for accuracy, resolution, and max edge times are determined from the
period. The following shows how this is specified by means of ParamConstant definitions for the three
parameters: PER, ACC, and RES, and an Assert statement that defines the allowed combinations of these
three parameters.

380:STIL 1.0 { Design 2005; TRC 2007; }
381:Header {

382: Source "IEEE Std 1450.3-2007" ;

383: Ann {* clause B.2 *}

384:}

385:Variables {

386: ParamConstant PER;

387: ParamConstant ACC;

388: ParamConstant RES;

389: Assert

390: (PER :== 100ns) && (ACC :== 200ps) && (RES :== 100ps) /RNGI
391: || (PER :== 1lus) && (ACC :== 5ns) && (RES :== 1ns) /RNG2
392: || (PER :== 10us) && (ACC :== 10ns) && (RES :== 5ns) /RNG3
393: ;

394:}

395:Environment TESTER SPECS {

396: TRC {

397: PeriodAttributes {

398: MaxPeriods 16; //max ranges switched on the fly

399: TimeLimits 10ns <= @@ <= PER;

400: Resolution RES;

401: Accuracy ACC;

402: } // end Periods

403: WaveformAttributes ({

404 : TimeLimits Ons >= @@ >= (2*PER-10ns) ;

405: Resolution PER/4096;

406: Accuracy PER/8192;

407: }) * // end WaveformAttributes

408: } //end TestResourceConstraints
409:} //end Environment

Copyright © 2007 IEEE. All rights reserved. 49

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

Annex C

(informative)

Tester channel map

This clause makes use of the NameMap block as defined in Clause 17 of STIL.1.

In STIL.1, there is the definition of how to specify a mapping of Signals and other objects from the STIL
pattern interchange environment to some other environment. This facility can be used to specify the
mapping of a STIL test program to a set of tester channels on a tester. This clause is informational only as no
new syntax is defined herein.

C.1 Tester channel map—syntax

Environment (ENV_NAME) {
(NameMaps (MAP_NAME) {
(Signals { (SIG_NAME “MAP_STRING”;)* })*
} // end NameMaps
} // end Environment

C.2 Tester channel map—example

410:STIL 1.0 { Design 2005; TRC 2007; }
411 :Header {

412: Source "IEEE Std 1450.3-2007" ;

413: Ann {* clause C.2 *}

414:}

415:

416:Environment ATE SC212 {

417: NameMaps WAFER {

418: Signals ({

419: // sig-name “‘channel, type”’;
420: SIG1 “13, INPUT”;
421: SIG2 “45, BIDI”;
422: SIG3 “46, OUT”;

423 } // end Signals

424: '} //end NameMaps WAFER
425: NameMaps PACKAGE ({

426: Signals {

427 : SIG1 “42, INPUT”;
428: SIG2 “19, BIDI”;
429: SIG3 “l6, OUT”;
430: } // end Signals

431: } //end NameMaps PACKAGE
432: NameMaps MULTISITE {

433: Signals ({

434 : SIG1 "INPUT 13 48 96";

435: SIG2 "BIDI 45 83 99";

436: SIG3 " OUT 46 85 128";

50 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

437: } // end Signals
438: } //end NameMaps MULTISITE
439: NameMaps MULTISITE PINGPONG {

440: Signals ({

441 : SIG1 "INPUT (13 48) (96 106)";
442 : SIG2 "BIDI (45 83) (99 107)";
443 : SIG3 "OUT (46 85) (128 126)";

444 : } // end Signals
445: } //end NameMaps MULTISITE PINGPONG
446:} //end Environment

Copyright © 2007 IEEE. All rights reserved. 51

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

Annex D

(informative)

Example of TRC for a simple tester model

Four usage models (or flows) use the TRC statements (refer to Figure 1): 1) Tester Rule Checking, 2) Tester
Resource Reporting, 3) Tester Resource Targeting, and 4) Tester Resource Loading. This example uses a
simplified model of a per-pin architecture tester to illustrate the TRC syntax for flow 1 and flow 3. This
simplified tester has 256 data channels with two drive and one compare edges per vector period. The vector
rate is up to 200 MHz (i.e., 5 ns period). The regular vector memory has 64 000 000 and 2000 vectors of
subroutine memory. The data channels can be either inputs or outputs. This tester has a single period
generator with both resolution and accuracy of 10 ps for the usage model 1) and 3). Assuming the period
value can be programmed between 5 ns to 4 us.

447:STIL 1.0 { Design 2005; TRC 2007; }
448:Header {

449: Source "IEEE Std 1450.3-2007" ;

450: Ann {* Annex D *}

451:}

452

453 :Environment TESTER RULES ({ <:>
454 : TRC SIMPLE ({

455: Usage Constraints;

456: PeriodAttributes PERIOD INFO ({

457: Accuracy 10ps;

458 : MaxPeriods 16;

459: MaxPeriodGenerators 1;

460: TimeLimits (@@ >= 5ns && @@ <= 4us) ;

461 : Resolution 10ps;

462: } //end PeriodAtiributes

463

464: WaveformAttributes DATA WAV { <:>
465: Accuracy Edge 500ps;

466: Accuracy EdgeToEdge 'lns';

467 : CompareEvents L/H/X 1 1;

468: DriveEvents D/U Z P 2 1;

469: FormatSelect InOut {

470: MaxShapes 64 Dynamic { SignalsPer 1 };

471: MaxData DriveCompare 3 Dynamic;

472: MaxTimeSets 64 Dynamic { SignalsPer 1 };

473: } // end Formats DataWav

474 : MaxEdgeTime 4*4us;

475 : Resolution 40ps;

476: } //End Data Waveform Attributes

477

478: PatternAttributes PATTERN MEMORY { @
479: Max Locations 16*1024*1024;

480: }

481:

482: PatternAttributes SUBROUTINE MEMORY {

483: Max Locations 2*1024;

52 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
484: }

485:

486: SignalAttributes ({

487 : MaxSignals 256;

488 : InOut WithinCycle;

489: PeriodAttributes PERIOD INFO Synchronous;

490: WaveformAttributes DATA WAV;

491 : PatternAttributes PATTERN_ MEMORY;

492: PatternAttributes SUBROUTINE MEMORY;

493: } //end SignalAttributes
494:} //end TRC Rules
495:} //end Environment

NOTES

1—The PeriodAttributes block contains the properties of the period generator of the corresponding ATE or ATE
family. This specific ATE has a single period generator with 10 ps accuracy and resolution. The period value range is
bounded within 5 ns to 4 us. It also identifies that the tester has the potential of 16 different period values that can be
switched on-the-fly. There is only one period generator for this tester, so all signals are synchronized.

2—The WaveformAttributes block contains the data channel’s waveform attributes of this tester. The data channel only
has a single event per cycle with 500 ps edge accuracy. There are 64 timing sets available for each channel. Each channel
is allowed to switch between 1/O on-the-fly. Supported Output measure operations are Compare High, Compare Low, or
Mask. Input states allowed are Drive high, Drive low, or tri-state.

3—The SignalAttributes block defines the properties of the data signals. If applied according to the usage model 1)
Tester Rules Checking, it defines the data channels of a particular tester’s capability. If applied according to the usage
model 3) Tester Resource Targeting, it defines the data channels of a target tester (the configuration information). This
tester has 256 data channels available. This tester has up to 16 Meg vectors behind each data channel.

Copyright © 2007 IEEE. All rights reserved. 53

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

Annex E

(informative)

Example of TRC used to define waveforms and timing3

Four usage models (or flows) use the TRC statements (refer to Figure 1): 1) Tester Rule Checking, 2) Tester
Resource Reporting, 3) Tester Resource Targeting, and 4) Tester Resource Loading. This example shows the
use of TRC to define explicit waveforms and the allowed timing for the waveforms. This example might
represent actual waveforms on a specific tester. It might also represent an arbitrary set of waveforms that are
to be allowed by a design or manufacturing process.

The examples in this annex use timing expression syntax that is defined in 5.1 of dotl. Refer to dotl for
definition of timing symbols such as: @@, @1, @T1, @T1.1.

496:STIL 1.0 { Design 2005; TRC 2007; }
497 :Header {

498: Source "IEEE Std 1450.3-2007" ;

499: Ann {* clause *}

500:}

501:Variables {

502: ParamConstant MAX VECTORS;

503: ParamConstant MAX FREQUENCY;

504: Assert

505: (MAX FREQUENCY <= 5MHz && MAX VECTORS :== 65536)
506: || (MAX FREQUENCY <= 10MHz && MAX VECTORS :== 32768)
507: || (MAX FREQUENCY <= 20MHz && MAX VECTORS :== 16384);
508: }
509:Environment TESTER RULES {
510:TRC T3320 {
511: Usage Constraints;
Periods
TO TO
I |
t> 50ns l/)
512: PeriodAttributes PER_CHAR {
513: MaxPeriods 1;
514: TimeLimits @@ >= 1/MAX FREQUENCY;
515: Resolution 1ns;
516: }
517: WaveformAttributes WAV CHAR {
518: Resolution 1ns;
519: FormatSelect InOut {
520: MaxTimeSets 4 Dynamic;
3This annex is derived from information provided by Toshiba Corporation.
54 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
521: }

522: }

523:

524: WaveformDescriptions WAV DESC Explicit

a N

4X / | INTVC
<> t> 10ns
B — t<32ns
e t> 10ns
S — t<25ns
\\\ <> t> 10ns ‘//
525: INTVC // two cycle double pulse
526: Shape
527: U/D/P;
528: (@@>=@1+10ns) D;
529: (e@>=@2+10ns && @@<@l+32ns) U/D;
530: (@@>=@3+10ns && @@<@2+25ns) D;
531: }
532: }
X - | DNWMIN
<— t>10ns
533: DNWMIN { // delayed non-return to zero
534: Shape
535: U/D/P;
536: (@@>@+10ns) Z;
537: }
538: }
X - DNRZ
<—> t>10ns
539: DNRZ // DNRZ Bidir
540: Shape
541: U/D/P;
542 : Z;
543: (@e@>@+10ns) U/D;
544 : }
545: }
Copyright © 2007 IEEE. All rights reserved. 55

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007

IEEE STANDARD FOR EXTENSIONS TO STIL

=X X -« DRZ
<—> t>10ns
546: DRZ { // DRZ Bidir
547: Shape
548: U/D/P;
549: U/D;
550: Z;
551: (e@e>@+10ns) U/D/P;
552: }
553: }
==X X X WCKVC

<— t>10ns
<———> t<32ns
<—> t>10ns

<——> t<25ns

\\\¥ <—> t>10ns

/

554 : WCKVC { // single cycle double pulse
555: Shape {
556: U/D/P;
557: (e@>@+10ns) U/D;
558: (e@>@2+10ns && @@<=@1+32ns) U/D;
559: (e@>@3+10ns && @@<=@2+25ns) U/D;
560: }
561: }

| RZ

\

562: RZ // return to zero
563: Shape

564 : U/D/P;

565: D;

566: }

567: }

56

Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

FOR TESTER TARGET SPECIFICATION

568:

.

<—> t>5ns
<> t<32ns

<—> t>10ns
<> t>10ns

INTVS

569:
570:
571:
572:
573:
574:
575:
576:

577:

}

578:

579:

580:

581:
582:

}

583:
584:
585:
586:

587:
588:

}
}

589:

590

)

INTVS // window compare
Shape
L/H;
(@@>@+5ns) X;
(e@>@2+10ns && @@<=@1+32ns)
(@@>@+5ns) X;

}

}
// end of WaveformAttributes

PatternAttributes {

Max Vectors MAX VECTORS;

SignalAttributes ({

MaxSignals 256;
PeriodAttributes PER _CHAR;
WaveformAttributes WAV CHAR;
WaveformDescriptions WAV _DESC;

// end of TestResourceConstraints T3320

// end Environment

Copyright © 2007 IEEE. All rights reserved.

L/H;

IEEE
Std 1450.3-2007

57

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

Annex F

(informative)

Example of TRC used for resource reporting

Four usage models (or flows) use the TRC statements (refer to Figure 1): 1) Tester Rule Checking, 2) Tester
Resource Reporting, 3) Tester Resource Targeting, and 4) Tester Resource Loading. The LS245 test pattern
(refer to the Figure 3 of STIL.0, page 9 for the STIL pattern) is used as a basis for the TRC pattern resource
report herein to illustrate flow 2 and flow 4. Details of this design can be found in the Annex E of STIL.0.

591:STIL 1.0 { Design 2005; TRC 2007; }
592:Header

593: Source "IEEE Std 1450.3-2007" ;

594: Ann {* clause *}

595:}

596:

597 :Environment PATTERN LS245 {

598:TRC LS245 RESOURCES ({

599: Usage PatternReport;

600

601: PeriodAttributes PERIOD_INFO ({ (:)
602: Accuracy 1lns;

603: TimeLimits (@@>=500ns) ;

604: } //end PeriodAttributes

605

606: WaveformAttributes RTO WAV { // OE_needs be RTO format <:>
607: Accuracy Edge '500ps';

608: DriveEvents U D/U 2 1;

609: FormatSelect In ({

610: MaxShapes 1 Static;

611: MaxData Drive 2 Dynamic;

612: } // end FormatSelect

613: } //End WaveformAitributes

614

615: WaveformAttributes NRZ WAV { //DIR and ABUS only have RTZ format (:)
616: DriveEvents U/D 1 1;

617: FormatSelect In ({

618: MaxShapes 1 Static;

619: MaxData Drive 2 Dynamic;

620: } // end FormatSelect

621: } //End WaveformAitributes

622

623: WaveformAttributes WINDOW WAV { // BBUS uses window compare <:>
624 : CompareEvents x h/l/x 2 1;

625: DriveEvents Z;

626: FormatSelect Out ({

627: MaxData Compare 2 Dynamic;

628: } // end FormatSelect

629: } //End Data WaveformAitributes

630

631: WaveformDescriptions LS245 CLOCK Explicit ({ <:>
58 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
632: RTO FORMAT {

633: Shape

634: D/U;

635: '@+100ns' U;

636: } // end Shape

637: } //end In RTO Format
638: } //end WaveformDescriptions

639

640: SignalAttributes CLOCK { (:)
641: MaxVectorMemory 9;

642 : PeriodAttributes PERIOD INFO Synchronous;

643 : WaveformAttributes RTO WAV;

644 : WaveformDescriptions LS245 CLOCK;

645: } //end SignalAttributes

646

647: SignalAttributes DATA_IN ({ (:)
648 : MaxSignals 9;

649: MaxVectorMemory 9;

650: PeriodAttributes PERIOD INFO Synchronous;

651: WaveformAttributes NRZ WAV;

652: |} //end SignalAttributes

653:

654: SignalAttributes DATA_OUT {
655: MaxSignals 8;

656: MaxVectorMemory 9;

657 : PeriodAttributes PERIOD INFO Synchronous;

658: WaveformAttributes WINDOW WAV;

659: } //end SignalAttributes
660: Module MOD

661: SignalAttributes CLOCK;
662: SignalAttributes DATA IN;
663: SignalAttributes DATA OUT;
664: }

665:} //end TRC Usage of LS245
666:} //end Environment

NOTES

1—The PeriodAttributes block contains the requirements of period for the LS245’s STIL pattern. The period value
required by the DUT and this STIL pattern is 500 ns.

2—The WaveformAttributes RTO_WAY block contains the signal OE ’s attributes of LS245. The OE _ signal needs
to have a single RTO format that has a drive to data substitute event (D/U) and a drive up event (U).

3—The WaveformAttributes NRZ_WAV block contains the signal attributes of DIR and ABUS of LS245. These
signals only need to have a single event (or NRZ format).

4—The WaveformAttributes WINDOW_WAV block contains the signal attributes of BBUS of LS245. The BBUS
signal needs to have a window strobe with two timing values. It needs the X state to turn off the window strobe. It may
need to have the DriveEvents statement, if the signal BBUS is declared as an InOut signal (as page 14 of STIL.0). The
DriveEvents statement can be omitted, if the signal BBUS is declared as an Out signal (as page 9 of STIL.0).

5—The WaveformDescriptions block defines the OE ’s formats of LS245.

Copyright © 2007 IEEE. All rights reserved. 59

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

6—The SignalAttributes DATA CLOCK block defines the corresponding property of the signal OE _. In this example,
it has nine vectors for this signal (MaxVectorMemory statement). The rest of the statements refer to the period and
waveform attributes. The keyword Synchronous indicates all signals are always synchronized together.

7—The SignalAttributes DATA IN block defines the corresponding property of the data input signals: DIRS and
ABUS. The MaxSignals statement indicates the STIL pattern has nine input signals that will be treated as data inputs,
e.g., the DIR and ABUS signals. It refers to a predefined WaveformAttributes named as “NRZ_WAV”.

8—The SignalAttributes DATA_OUT block defines the corresponding property of the BBUS signals. The MaxSignals

statement indicates the STIL pattern has eight signals. The WaveformAttributes statement refers to a predefined
WaveformAttributes named “WINDOW_WAV”,

60 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

Annex G

(informative)

Examples of tester targeting and tester Ioading4

Four usage models (or flows) use the TRC statements (refer to Figure 1): 1) Tester Rule Checking, 2) Tester
Resource Reporting, 3) Tester Resource Targeting, and 4) Tester Resource Loading. This is an example of
flow 3 and flow 4.

A STIL test program must be loaded onto a tester for execution. This requires mapping the various
statements of the STIL file/stream to the resources available on a given tester. This resource allocation
process (as depicted graphically in Figure 1) can occur as a preload operation wherein the resource
information is placed in the STIL file/stream, flow 3, or it can happen at the time the file is loaded onto the
tester, flow 4.

G.1 Example of a resource assignment in a Pattern block

The following example shows the use of <<resource id>> tags within a pattern block. Refer to Clause 9 for
the syntax and definitions of the statements.

Two pragmas are contained in this example (refer to Clause 19 of STIL.1 for the definition of pragma). The
content of the pragma is entirely dependent on the format/syntax of the consuming tester loader or translator.
The pattern (P1) contains references to the content of these pragmas by means of the information in angle
brackets. It is assumed in the pragma for “TESTER1” that there is some kind of tagging capability. In the
pragma for “TESTER2,” the reference is by index number, which possibly, could correspond to a memory
assignment in the tester memory.

667:STIL 1.0 { Design 2005; TRC 2007; }
668 :Header ({

669: Source "IEEE Std 1450.3-2007" ;

670: Ann {* clause G1 *}

671:}

672:

673:Signals { s[1..100] InOut; }

674 :

675: // Load resource mapping memory for TESTERI

676 :Pragma TESTER1 {*

677: L1: ... tester statement (:)
678: L2: ... tester statement

679: “L3-x": ... tester statement

680:*} //end Pragma TESTERI

681:

682:// Load resource mapping memory for TESTER2

683 :Pragma TESTER2 {*

684: (0) ... tester statements (:)
685: (5) ... tester statements

686: (13) ... tester statements

“This annex is derived from information provided by Credence Corporation.

Copyright © 2007 IEEE. All rights reserved. 61

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

687:*} //end Pragma TESTER?2

688:

689:Pattern P1 {

690: Resource TESTER1 TESTER2;
691: W wftl;

692: ¢ { s[1..100]
693: <<Ll 0>> V { s[5] = 1;
694: <<L2 13>> V { s[1..4] 1011; }
695: <<Ll 5>> V { s[10,11] HH; }

696: <<"L3-x" 13>> V { s[1..4] = 0011; }
697: << * 17 >> IddgTestPoint;

698:} //end Pattern Pl

®
\r100 0; }
®

NOTES

1—This pragma block contains the loading instructions for “TESTER1”. For this example, there are three references
that need to be resolved, named: L1, L2, and “L3-x". The content of this block is arbitrary, as far as STIL is concerned,
as long as it it bounded by the {* *} characters. In fact, even the tag syntax is arbitrary and is shown here only for
informational purposes.

2—This second pragma block is included to show how a pattern can be targetted for two different testers within a single
file. This second pragma is indexed by number rather than by tag as in the previous example.

3—The Resource statement at the beginning of pattern P1 serves two purposes. It indicates that the pattern has
embedded within it the resource allocation tags for the purpose of tester targetting. It also indicates that the first identifier
in the resource tag is to be associated with “TESTER1” and the second identifier is to be associated with “TESTER2”.

4—The pattern contains the resource tags as required by the loader/translator application. These resource tags are
contained in angle brackets. Note also the use of * in the tag reference field wich indicates for TESTER1 that there is no
reference for this statement.

G.2 Example of resource assignment in a Timing block

The following example shows the use of <<resource id>> tags within a timing block. See also G.3 for an
example of how to implicitly define common resources using the Inherit statement.

This example is different from the previous one in that no pragma information is defined. In this case it is
showing only the waveforms and periods that are expected to be assigned to the same tester resource.

699:STIL 1.0 { Design 2005; TRC 2007; }
700:Header ({

701: Source "IEEE Std 1450.3-2007" ;

702: Ann {* clause G2 *}

703:}

704 :

705:Timing BASIC ({

706: WaveformTable ONE {

707 : <<PER1>> Period 500ns;

708: DIR { <<SEQl>> 01 { Ons D/U; }} <:>

709: OE { 01 { Ons U; 200ns D/U; 300ns U; }}

710: ABUS { <<SEQ1>> 01 { 1lo0ns D/U; }}

711: BBUS { <<SEQl>> LHX { Ons Z; 260ns L/H/X; 280ns T; }}

712: } // end WaveformTable ONE

713 : WaveformTable TWO

62 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
714 : <<PER1>> Period 500ns;

715: DIR { <<SEQ2>> 01 { Ons D/U; }} (:)
716: OE { 01 { ons U; 200ns D/U; 300ns U; }}

717: ABUS { <<SEQ2>> LHZX { Ons Z; 260ns 1/h/t/x; 280ns x; }}
718: BBUS { <<SEQ2>> 01 { 1o0ns D/U; }}

719: } // end WaveformTable TWO

720: WaveformTable THREE {

721 : <<PER2>> Period 550ns;

722: DIR { <<SEQl>> 01 { Ons D/U; }}

723: OE { 01 { ons U; 200ns D/U; 300ns U; }} (:)
724: ABUS { <<SEQ3>> 01 { 10ns D/U; }}

725: BBUS { <<SEQ3>> LHX { Ons Z; 260ns L/H/X; 280ns T; }}

726: } // end WaveformTable THREE

727: WaveformTable FOUR {

728 : <<PER3>> Period 550ns;

729: DIR { <<SEQ2>> 01 { oOns D/U; }}

730: OE { 01 { ons U; 200ns D/U; 300ns U; }}

731: ABUS { <<SEQ4>> LHX { Ons Z; 460ns L/H/X; 480ns T; }}

732: BBUS { <<SEQ4>> 01 { 1lo0ns D/U; }}

733: } // end WaveformTable FOUR

734: WaveformTable FIVE {

735: <<PER1>> Period 500ns;

736: DIR { <<SEQl>> 01 { Ons D/U; }}

737: OE { 01 { ons U; 200ns D/U; 300ns U; }}

738: ABUS { <<SEQ2>> LHX { Ons Z; 260ns L/H/X; 280ns T; }}

739: BBUS { <<SEQl>> LHX { Ons Z; 260ns L/H/X; 280ns T; }}

740: } // end WaveformTable FIVE

741:} //end Timing BASIC

742

743 :Pattern BASIC {
744: W FIVE; V { ALL = 00ZZZZZZZZXXXXXXXX; }

745: W ONE; V { ABUS = 00000000; BBUS = LLLLLLLL; }
746: W THREE;V { ABUS = 10000000; BBUS = LHLLLLLL; }
747: W THREE;V { ABUS = 00001000; BBUS = LLLLLHLL; }
748: W TWO; V { DIR = 1; ABUS = LLLLLHLL; BBUS = 00001000; }
749: W TWO; V { ABUS = LHLLLLLL; BBUS = 10000000; }
750: W FOUR; V { ABUS = LHLLLLLL; BBUS = 10000000; }

751:} //End Pattern BASIC

NOTES

1—The resource tag <<PER1>> in front of the Period statement indicates that this is a resource that is to be shared with
some other statements in the STIL file/stream.

2—The resource tag <<SEQI1>> in front of the two WFCs (0 and 1) indicates that this waveform resource is to be shared
by other waveforms in the STIL file/stream.

3—This is a second reference to the <<PER1>> tag and indicates that the same tester hardware resource is to be used as
the prior use of this resource tag.

4—The use of resource tag <<SEQ1>> in waveform table “THREE” indicates that the same tester hardware resource is
to be used as in waveform table “one.”

Copyright © 2007 IEEE. All rights reserved. 63

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

G.3 Example of implicit resource allocation in STIL

This example illustrates an alternative method of identifying shared resource assignments within a timing
block. Compare and contrast this with the usage of the <<resource id>> tags, which accomplishes a similar
purpose (see G.2). The difference between these two approaches is that the <<resource id>> tags are added
in a postprocessing flow, whereas the inheritance technique illustrated in this example is part of the
originally generated code.

752:STIL 1.0 { Design 2005; TRC 2007; }
753 :Header (

754: Source "IEEE Std 1450.3-2007" ;

755: Ann {* clause G3 *}

756:} //end Header

757 :

758:Timing BASIC {

759: WaveformTable PERIOD ONE

760: Period 500ns;

761: }

762: WaveformTable PERIOD TWO {

763 : Period 550ns;

764 : }

765: WaveformTable PERIOD THREE {

766: Period 550ns;

767: }

768: WaveformTable SEQUENCE_ONE {

769: Waveforms {

770: DIR { 01 { ons D/U }}

771: OE { 01 { ons U; 200ns D/U; 300ns U;}}

772 ABUS { 01 { 10ns D/U; 300ns U;}}

773 : BBUS { 01 { 10ns D/U; 300ns U;}}

774 : } // end Waveforms

775 } // end SEQUENCE ONE

776 :

777: WaveformTable SEQUENCE TWO {

778: Waveforms (

779: DIR { 01 { Ons D/U }}

780: ABUS { LHX { Ons Z; 460ns L/H/X; 480ns T; }}
781: BBUS { LHX { Ons Z; 460ns L/H/X; 480ns T; }}
782: } 7/ end Waveforms

783: } //end SEQUENCE TWO

784 :

785: WaveformTable SEQUENCE THREE {

786: Waveforms

787: BBUS { LHX { Ons Z; 260ns L/H/X; 280ns T;}}
788: } 7/ end Waveforms

789: } //end SEQUENCE THREE

790:

791: WaveformTable SEQUENCE_ FOUR {

792: Waveforms (

793: ABUS { LHX { Ons Z; 460ns L/H/X; 480ns T; }}
794 : BBUS { 01 { 10ms D/U; }}

795: } 7/ end Waveforms

796: } // end SEQUENCE _FOUR

797 :

64 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

798 :

WaveformTable ONE {

799: InheritWaveformTable PERIOD_ONE;

800: Waveforms (

801: DIR { InheritWaveform SEQUENCE ONE.DIR; }
802: OE_ { InheritWaveform SEQUENCE ONE.OE ; }
803: ABUS { InheritWaveform SEQUENCE ONE.ABUS; }
804: BBUS { InheritWaveform SEQUENCE ONE.BBUS; }
805: } // end Waveforms

806: } // end ONE

807:

808: WaveformTable TWO

809: InheritWaveformTable PERIOD_ONE;

810: Waveforms (

811: DIR { InheritWaveform SEQUENCE TWO.DIR; }
812: OE_ { InheritWaveform SEQUENCE ONE.OE ; }
813: ABUS { InheritWaveform SEQUENCE TWO.ABUS; }
814: BBUS { InheritWaveform SEQUENCE TWO.BBUS; }
815: } // end Waveforms

816: } // end WaveformTable

817:

818: WaveformTable THREE {

819: InheritWaveformTable PERIOD_TWO;

820: Waveforms (

821: DIR { InheritWaveform SEQUENCE ONE.DIR; }
822: OE_ { InheritWaveform SEQUENCE ONE.OE ; }
823: ABUS { InheritWaveform SEQUENCE TWO.ABUS; }
824: BBUS { InheritWaveform SEQUENCE THREE.BBUS; }
825: } // end Waveforms

826: } // end WaveformTable

827:

828: WaveformTable FOUR ({

829: Period InheritWaveformTable PERIOD_ THREE;
830: Waveforms (

831: DIR { InheritWaveform SEQUENCE TWO.DIR; }
832: OE_ { InheritWaveform SEQUENCE ONE.OE ; }
833: ABUS { InheritWaveform SEQUENCE ONE.ABUS; }
834: BBUS { InheritWaveform SEQUENCE FOUR.BBUS; }
835: } // end Waveforms

836: } // end WaveformTable

837:

838: WaveformTable FIVE ({

839: InheritWaveformTable PERIOD_ONE;

840: Waveforms (

841: DIR { InheritWaveform SEQUENCE ONE.DIR; }
842: OE_ { InheritWaveform SEQUENCE ONE.OE ; }
843: ABUS { InheritWaveform SEQUENCE TWO.ABUS; }
844: BBUS { InheritWaveform SEQUENCE THREE.BBUS; }
845: } // end Waveforms

846: } // end WaveformTable

847: } // end Timing

Copyright © 2007 IEEE. All rights reserved. 65

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

Annex H

(informative)

Example of vector memory checking

A typical application environment will define multiple PatternAttributes blocks. These PatternAttributes
blocks must be referenced from a SignalAttributes (where each SignalAttributes block contains a set of
signal types) or from a Module block.

For instance:

Environment all tricks {
TRC trickl {
PatternAttributes “single-memory” {...}
PatternAttributes “bidi-memory” {...}
SignalAttributes SEPARATE IO ({
PatternAttributes “single-memory”;
}

SignalAttributes BIDI {
PatternAttributes “bidi-memory”;

Module {
SignalAttributes SEPARATE IO;
SignalAttributes BIDI;
}
}
}

In this example, it is up the the application to determine which of the SignalAttributes blocks are appropriate
to each signal.

H.1 Limitations to this approach

ATE contexts may handle one statement type in multiple ways. For instance, Loops of a single Vector
statement may be processed differently than Loops containing multiple statements, and Macro and
Procedure calls may be processed differently based on the presence and structure of arguments passed into
the functions. It is not possible to take into account these types of effects without additional differentiating
mechanisms to identify subattributes of each statement type or defining additional MaxVectorsCount
statements to indicate sub-behaviors of how these statements may be applied in a set of patterns.

H.2 Application example
The following example demonstrates one application of the proposed constructs. The PatternAttributes
block is used to define the maximum number of vectors available for each “type” of Pattern, although more

accurately it represents the attributes of a specific type of memory.

The advantage of placing the memory behaviors under PatternAttributes blocks that are then associated with
Signal Attributes is the ability to define multiple types of memories.

66 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

This example counts “sequencer memory” separately from “parallel vector memory,” with separate limits. A
different architecture might place these two blocks into one large contiguous memory. If sequencer and
parallel memory are contained in a single large count, the integer values specified in the sequencer block
below can be inserted into the statements in the other two memory blocks (remember this syntax allows
specifying multiple count attributes per statement) to count both sequencer effects and parallel vector effects
against a single value.

848:STIL 1.0 { Design 2005; TRC 2007; }
849:Header ({

850: Source "IEEE Std 1450.3-2007" ;

851: Ann {* clause H *}

852: }

853 :Environment TRC {

854: TRC " example " {

855: PatternAttributes "sequencer"

856 : Max Locations 1024 ;

857: VectorCompression 0 ;

858: // All macro and procedure bodies are expanded
859: //into the Parallel Vector space for each call
860: InstructionAttributes Macro Call (
861: MaxNest 0 ;

862: }

863: // Shift and Loop operations generate a seq-jump and
864: // iteration operation, and a seq-"return" to the main flow
865: InstructionAttributes Shift Loop ({
866 : MinBefore Locations 1 ;

867 : MinLength Locations 1;

868: }

869: } // end PatternAttributes "sequencer"
870:

871: PatternAttributes "inlinemem"

872: Max Locations 1 _000_000_000 ;

873: Modulus Vectors (7 * 4) ;

874 : VectorCompression 1 ;

875: // All macro and procedures are expanded

876: //into the Parallel Vector space for each call
877: InstructionAttributes Macro Call
878: MaxNest 0 ;

879: }

880: // Loops and Shifts are defined once

881: // iteration is controlled by sequencer operations.
882: InstructionAttributes Shift {

883: MaxNest 1 ;

884: }

885: InstructionAttributes Loop ({

886: MaxNest 1 ;

887: Modulus Vectors 7 ;

888: }

889: } // end PatternAttributes "inlinemem"
890:

891: PatternAttributes "scanmem" {

892: Max Locations 10 _000_000_000 ;

893: Modulus Vectors (7 * 4) ;

894 : VectorCompression 1 ;

Copyright © 2007 IEEE. All rights reserved. 67

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL
895: InstructionAttributes Macro Call (
896: MaxNest O0;

897: }

898: // Shift data consumes the number of iterations
899: // defined by the equivalent Vectors generated
900: InstructionAttributes Shift {

901: MaxNest 1 ;

902: }

903: InstructionAttributes Loop ({

904 : MaxNest 1;

905: Modulus Vectors 7 ;

906: }

907: } // end PatternAttributes

908: Module MOD ({

909: PatternAttributes "inlinemem" ;
910: PatternAttributes "scanmem"

911: PatternAttributes "sequencer" ;
912: }

913: } // end TRC

914:} // end Environment

68 Copyright © 2007 IEEE. Al rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

Annex |

(informative)

Waveform generator model

The waveform generation architecture of an ATE system can take on many different forms. The TRC rules
as defined in this standard are flexible enough to describe commonly used architectures from waveform
generation-per-pin to a central timing architecture. The following list provides the definitions of terms that
are used in the syntax statements of 14.1 for specifying waveforms:

shape: This term refers to the wave shape that is created by the combination of the individual attributes
listed below (time set, timing generator, data vaues, I/O values, mask values). If a given test system does not
represent well using the individual attributes, then the term shape should be used, instead.

time set: This term is used to represent an indirect memory that is used to select timing generators that do
the actual work of creating period and wave shape timing edges.

timing generator: This term is used to represent a function (usually a hardware function in a test system)
that is used to create timing edges for the creation of period boundaries or waveform events.

data values: This term is used to represent the number of data values in the vector memory that are used for
the construction of wave shapes.

I/O values: This term is used to represent the number of values in the vector memory that are used for the
control of I/O switching in the formation of wave shapes.

mask values: This term is used to represent the number of values in the vector memory that are used for
compare masking in the formation of wave shapes.

1.1 The general timing model

Figure 1.1 shows the generic picture of an ATE system and how the constraint rules apply.

Copyright © 2007 IEEE. All rights reserved. 69

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

Period
Attributes
Block

? MaxPeriods # ;

= MaxPeriodGenerators # <Dynamic | Static> SignalsPeﬁ%> ;

number of signals
Waveform sharing this resource
Attributes
Block
P MaxShapes # <Dynamic | Static> SignalsP
mala l_ MaxTimeSets # <Dynamic | Static> SlgnalsP
MaxTimingGenerators # <Dynamic | Static> SlgnalsPe@>

Signal Attributes
Block

PeriodAttributes per_block name <Synchronous | Asynchronous>;
WaveformAdttributes block name;

Figure I.1—General timing model

1.2 Timing model with static timing selection
To better illustrate the timing resource assignment, Figure 1.2 shows a system with the following attributes:

— 120 signals arranged in two groups of 60.

— 1 period generator for each group of 60 signals. Each period generator has 16 values that are
selectable by the per signal time set select.

— 16 timing generators can be assigned to any of the signals statically. Each TG has 16 values that are
selectable by the per signal time set select.

— 16 time sets for each signal that can be selected dynamically.

— The selection of the PER and TG blocks is common between the two modules (indicated by the
dashed line), thus making the two 60 pin modules run in lock-step as a 120 pin system.

70 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007
per group per group
S TS
i//// 1.16 i//// 1..16
PER - — — — — — — — 4 PER
\L er signal \L er signal
16 TS 16 TS
=l | 1.16 m #EEEFz///’lnusH
TG || — — T T TG
[123.. 60] [616263... 120] signals

Figure |.2—Example of timing model with static timing select

Here is the code that defines the above architecture.

915:STIL 1.0 { Design 2005; TRC 2007; }
916 :Header ({

917: Source "I[EEE Std 1450.3-2007" ;

918: Ann {* clausel2 *}

919:}

920:Environment {

921: TRC ATE X {

922: PeriodAttributes PER {

923: MaxPeriods 16 Dynamic SignalsPer 120;

924 : MaxPeriodGenerators 1 Static SignalsPer 120;
925: }

926: WaveformAttributes WAV {

927: FormatSelect InOut {

928: MaxTimeSets 16 Dynamic SignalsPer 1;

929: MaxTimingGenerators 16 Static SignalsPer 120;
930: }

931: }

932: SignalAttributes ({

933: MaxSignals 120;

934: PeriodAttributes PER Synchronous;

935: WaveformAttributes WAV;

936: }

937: } //end TRC
938: } // end Environment

Copyright © 2007 IEEE. All rights reserved. 71

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL

1.3 Timing model with per signal timing

per group per group
TS TS
1..16 1..16
y | J
PER PER 1
T R
per signal per signal
TS TS
1.4 1.4 |
TG TG
[123.. 256] [257 258259 ... 512] signals

Figure |.3—Example of timing model with per signal timing

Here is the code that defines the above architecture.

939:STIL 1.0 { Design 2005; TRC 2007; }
940:Header {

941: Source "IEEE Std 1450.3-2007" ;

942: Ann {* clausel3 *}

943:}

944 :Environment {

945: TRC ATE Y {

946: PeriodAttributes PER ({

947 : MaxPeriods 16 Dynamic SignalsPer 256;

948: MaxPeriodGenerators 2 Static SignalsPer 256;
949: }

950: WaveformAttributes WAV

951: FormatSelect InOut {

952: MaxTimeSets 4 Dynamic;

953: }

954 : }

955: SignalAttributes ({

956: MaxSignals 1024;

957: PeriodAttributes PER Synchronous Asynchronous;
958: WaveformAttributes WAV;

959: }

960: } /end TRC
961: } // end Environment

72 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

1.4 Timing model with waveform select memory

64M
; Per Group : Per Channel
I
[6 * Num of Channels
Sequence Local | | 64 - 4 events
1?/[%1::11;)21 Memory | 4095 ' 63-4 events, 1 - § events
y I 62-4 events, 1 - 12 events
| | 61-4events, 1-16events
0 | | 6l-4events, 2 -8 events
| Event |
| Sequence 1 - 4 events, 1 - 252 events
Store I 1 -4 events, 1 - 8 events, ...
[Memory [
| | 1 - 8 events, 1 - 248 events
12 | 1-256events
4096 Timesets | [
I 0 | A
I | B
\ | 63 ale
| D
Event
6/ per channel | Sequence
4095 | Store
15 |
Period 0
- T RAM |
|
0 0 |
1

Figure I.4—Example of timing model with waveform/event select memory

The following code shows is for the above architecture with select memory:

962:STIL 1.0 { Design 2005; TRC 2007; }
963 :Header ({

964: Source "IEEE Std 1450.3-2007" ;

965: Ann {* clausel4 *}

966: }

967:Environment {

968: TRC ATE Z {

969: PeriodAttributes PER ({

970: MaxPeriods 16 Dynamic SignalsPer NUM PINS;

971: MaxPeriodGenerators 1 Static SignalsPer NUM_PINS;
972: PeriodSelectMemory 4096 SignalsPer NUM_PINS;

973: }

974: WaveformAttributes WAV {

975: FormatSelect InOut {

976: MaxTimeSets 64 Dynamic;

977 : MaxTimingGenerators 1 SignalsPer 1;

978: WaveformSelectMemory 4096 SignalsPer NUM PINS;
Copyright © 2007 IEEE. All rights reserved. 73

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1450.3-2007 IEEE STANDARD FOR EXTENSIONS TO STIL
979: SelectWithPeriod;

980: }

981: }

982: SignalAttributes ({

983: PeriodAttributes PER Synchronous Asynchronous;

984 : WaveformAttributes WAV;

985: MaxSignals NUM_PINS;

986: }

987: } /end TRC
988 : } // end Environment

74 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE

FOR TESTER TARGET SPECIFICATION Std 1450.3-2007

Annex J

(informative)

File encryption

It is recognized that the TRC information may contain sensitive proprietary information about either a
specific tester architecture or a methodology for transferring data to a tester format. It is beyond the scope of

this standard to define or recommend an encryption technique. However, the following suggestions may be
helpful:

Tester resource constraint information (i.e., TRC block of STIL data) should be maintained as
separate files from the STIL pattern data. This allows for the TRC information to be protected by
encryption while allowing the pattern files to be viewed.

— The encryption technique could be established as a tool-tool protection scheme; i.e., tool-A (perhaps

an ATE rule generator tool) could produce TRC files that tool-B (perhaps a specific pattern
generation tool) can decrypt.

The encryption technique could be established as a user—user protection scheme; i.e., the user of
tool-A produces TRC files that tool-B can only read if the decryption password is known.

Copyright © 2007 IEEE. All rights reserved. 75

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.3-2007

Annex K

(informative)

Regular expression reference

A regular expression (abbreviated as regexp or regex, with plural forms regexps, regexes, or regexen) is a
string that describes or matches a set of strings, according to certain syntax rules. Regular expressions are
used by many text editors and utilities to search and manipulate bodies of text based on certain patterns.
Many programming languages support regular expressions for string manipulation. For example, Perl and
Tcl have a powerful regular expression engine built directly into their syntax.

For a detailed definition of regular expressions, refer to Mastering Regular Expressions, by Jeffrey E. F.
Friedl.”

To implement regular expressions into a STIL reader, the “Free Software Foundation” software package6 is
recommended. Information on the gnu regular expression software package can be found at:

http://directory.fsf.org/regex.html
The source code is available in a tar file at:
http://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz

The version of this software available at the time of this writing is version 0.12, which was released on 1993-
04-12 and is reported as “stable” (meaning the software does not seem to be undergoing revisions).

The actual documentation of the GNU regular expression handler is found on several websites (it is part of
the software library package as well). Here are two sites where it can be found:

http://www.codeforge.com/help/GNURegularExpr.html
http://www.gnu.org/software/grep/doc/grep 7.htmI#SEC7

SFriedl, JE.F. Mastering Regular Expressions. Sebastopol, CA: O’Reilly Media, Inc., 2006. ISBN: 0596528124. This publication is
available from O’Reilly Media, Inc., 1005 Gravenstein Highway North. Sebastopol, CA 95472, USA (http://www.oreilly.com).

6«fsf is the home location of the “Free Software Foundation,” a.k.a. “the GNU home.

76 Copyright © 2007 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:43:29 UTC from IEEE Xplore. Restrictions apply.

	IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450TM-1999) for Tester Target Specification
	Introduction
	Notice to users
	Errata
	Interpretations
	Patents
	Participants

	Notice to users
	Errata
	Interpretations
	Patents

	Participants
	Contents
	IEEE Standard for Extensions toStandard Test Interface Language (STIL) (IEEE Std 1450TM-1999) for Tester Target Specification
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 TRC limitations

	2. Normative references
	3. Definitions
	4. Structure of this standard
	4.1 Formats from STIL.0
	4.2 Additional formatting conventions
	4.3 Dependencies on IEEE Std 1450.1

	5. STIL syntax description
	5.1 Additional reserved words
	5.2 Keywords used in a TRC block

	6. Statement usage and organization by flow
	6.1 TRC usage for ATE constraint specification
	6.2 TRC usage for design/pattern constraints
	6.3 TRC usage for pattern reporting
	6.4 TRC usage for tester targetting

	7. STIL statement
	7.1 STIL syntax
	7.2 STIL example

	8. Variables block extensions
	8.1 Variables block syntax
	8.2 Variables example

	9. Resource statement
	9.1 Resource statement syntax

	10. TRC: TestResourceConstraints block
	10.1 TRC syntax
	10.2 TRC example
	10.3 TRC block sharing rules

	11. TRC: SignalAttributes
	11.1 TRC: SignalAttributes—syntax
	11.2 TRC: SignalAttributes—examples

	12. TRC: DCResourceAttributes
	12.1 TRC: DCResourceAttributes—syntax
	12.2 TRC: DCResourceAttributes—example

	13. TRC: PeriodAttributes
	13.1 TRC: PeriodAttributes—syntax
	13.2 TRC: PeriodAttributes—examples

	14. TRC: WaveformAttributes
	14.1 TRC: WaveformAttributes—syntax
	14.2 TRC: WaveformAttributes—examples

	15. TRC: WaveformDescriptions
	15.1 TRC - WaveformDescriptions—syntax
	15.2 TRC: WaveformDescriptions—examples

	16. TRC: PatternAttributes
	16.1 TRC: PatternAttributes—syntax
	16.2 TRC: PatternAttributes—examples

	17. TRC: NameChecks block
	17.1 NameChecks block—syntax
	17.2 NameChecks—examples

	Annex A (informative) Glossary
	Annex B (informative) Fluid concepts in parameter specification
	Annex C (informative) Tester channel map
	Annex D (informative) Example of TRC for a simple tester model
	Annex E (informative) Example of TRC used to define waveforms and timing
	Annex F (informative) Example of TRC used for resource reporting
	Annex G (informative) Examples of tester targeting and tester loading
	Annex H (informative) Example of vector memory checking
	Annex I (informative) Waveform generator model
	Annex J (informative) File encryption
	Annex K (informative) Regular expression reference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-Condensed
 /AbadiMT-CondensedExtraBold
 /AbadiMT-CondensedLight
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Andy-Bold
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BaskOldFace
 /Bauhaus93
 /BeeskneesITC
 /BernardMT-Condensed
 /BickleyScript
 /BlackadderITC-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Chiller-Regular
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Edda
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /EngraversMT-Bold
 /Enviro-Regular
 /ErasITC-Demi
 /ErasITC-Light
 /EstrangeloEdessa
 /EurostileBold
 /EurostileRegular
 /FelixTitlingMT
 /FineHand
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldCondensed
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /HarlowSolid
 /Harrington
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KinoMT
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /MaiandraGD-DemiBold
 /MaiandraGD-Italic
 /MaiandraGD-Regular
 /Mangal-Regular
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /Nina
 /Nina-Bold
 /Nina-BoldItalic
 /Nina-Italic
 /OCR-AII
 /OCRB
 /OCRBMT
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parade
 /Parchment-Regular
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlacardMT-Condensed
 /Playbill
 /PoorRichard-Regular
 /Pristina-Regular
 /QuickType
 /QuickType-Bold
 /QuickTypeCondensed
 /QuickTypeCondensed-Bold
 /QuickTypeCondensed-Italic
 /QuickTypeII
 /QuickTypeII-Bold
 /QuickTypeIICondensed
 /QuickTypeIICondensed-Bold
 /QuickTypeIICondensed-Italic
 /QuickTypeII-Italic
 /QuickTypeIIMono
 /QuickTypeIIPi
 /QuickType-Italic
 /QuickTypeMono
 /QuickTypePi
 /Raavi
 /RageItalic
 /RefSpecialty
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RunicMT-Condensed
 /ScriptMTBold
 /Shruti
 /SnapITC-Regular
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRoman
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.58333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

