

Page 1

STIL Language Test Vector Format (Simplified)
The Credence D10 uses the STIL (pronounced ‘Style’) language to define the test vectors applied to

the device under test (DUT). The STIL files (also called Blocks, as the can be defined within the same

physical file) describe the test pins, voltage specification, timing specification and test pattern:

• Signals Block

o Defines the Pin Signals – NOTE: there can only be one definition for each pin.

• Timing Block and Waveform Table

o Defines the signal timing sets and waveform formatting

• DCLevels Block

o Defines the DC Signal Levels applied to and expected from the device under test

(VIL/VIH, VOL/VOH).

• Pattern Block

o Defines the Test Vectors, which are time-sliced on a fixed time-period (not event

driven). The data within each vector then specifies the action on individual pins

during that fixed time period.

These individual parameter sets are linked referenced by other STIL format blocks to define the

complete set of parameters needed to execute a set of test vectors

• Signals Group Block

o Groups together various pins, such as Busses and Control Signals

• PatternBurst Block

o Links one or more Pattern Blocks into a sequence of patterns

• PatternExec Block

o Ties together A Burst Block with the requisite DC levels and timing sets.

Test Vector Locations for IDD, VOL and VOH measurement.

In order to measure device pins in a given state (VOL/VOH/Tri-State) it is necessary to stop the test

pattern at fixed locations and use the ATE instrumentation to measure the appropriate parameter.

To facilitate this, locations in the test vectors where these measurements should be made will be

marked by a program Label and an accompanying explanatory text comment. (See example at end of

this document).

NOTE: For dynamic devices that require keep-alive clocks contact Micross Engineering.

Dean Cracknell

Oriel Court, Omega Park,

Alton, Hants, UK. GU34 2YT

Tel : +44 (0)1420 594180

Page 2

Signals Block

Syntax
Signals {

 (SigName (In | Out | InOut | Supply | Pseudo) (; |

 ({ (ScanIn | ScanOut) ;})))*

(WFCMap {

 (FROM_WFC -> TO_WFC(TO_WFC)+ ;)*

 (FROM_WFC1 FROM_WFC2 -> TO_WFC ;)*

 })

)*)*

}

SigName = String representing the signal name
In = Defines the signal as input
Out = Defines the signal as output
InOut = Defines the signal as bidirectional
Supply = Defines power or ground signals
Pseudo = Used when the signal is not a device pin
ScanIn = Defines the signal as scan input
ScanOut = Defines the signal as scan output

Example

Signals {

 "pc4" InOut;

 irq InOut;

 scan0 In { ScanIn; }

}

Page 3

SignalGroups Block

The SignalGroups block is used to create named references to zero or more signals groups. A
subset of the SignalGroups block is supported in Diamond Series as shown in the following example.

Syntax
SignalGroups {

 (GroupName = '(SigName | GroupName) (+ (SigName | GroupName))*' ; |

 (WFCMap {

 (FROM_WFC -> TO_WFC(TO_WFC)+ ;)*

 (FROM_WFC1 FROM_WFC2 -> TO_WFC ;)*

 })

)*)*

}

GroupName = String representing the signal group name.

SigName = String representing the signal name.

WFCMap = Block allows mapping WaveformCharacter values to other

WaveformCharacters.

FROM_WFC = WaveformCharacter to be mapped to another WaveformCharacter.

FROM_WFC1 = First WaveformCharacter to be mapped to another

WaveformCharacter.

FROM_WFC2 = Second WaveformCharacter to be mapped to another

WaveformCharacter.

TO_WFC = WaveformCharacter or list of WaveformCharacters to use as the

substitute WavefromCharacter.

Example
SignalGroups {

 "porta" = ` "pa7" + "pa6" + "pa5" + "pa4" + "pa3" + "pa2" + "pa1"

 + "pa0" ` ;

 "portb" = ` "pb7" + "pb6" + "pb5" + "pb4" + "pb3" + "pb2" + "pb1"

 + "pb0" ` ;

 all = `porta + portb';

 A = `pa0+pa1+pa2+pa3' {

 WFCMap {

 z->x; //single-WFC mapping

 01->x;//two-WFC mapping (requires presence of \j)

 } // end WFCMap

 } // end A

}

Page 4

Timing Block and WaveformTable Blocks

The Timing block defines the placement of the timing edges and the format of the cyclised
waveforms that is referenced by applying waveform characters to signals in the Vector statements.
Each vector occurs on a fixed periodic timeframe, and the placement of rising and falling edges within
that time period can be defined on a pin-by-pin or pin-group basis.

A Timing block can contain one or more WaveformTable blocks (Wfts), each of which comprises a
Period and a collection of Waveforms. Each waveform consists of a set of events, each with its edge
placement.

Syntax
Timing TimingName {

 (WaveformTable TableName {

 Period TimeExpr ;

 Waveforms {

 (SigName {

 (WFC)* {

 (TimeExpr (Event (| Event)*);)*

 })*

 })*

 }

 }

}

TimingName = String representing the name of the Timing block.

TableName = String representing the name of the WaveformTable block.

Period = Defines the cycle period.

SigName = String representing the signal name.

WFC = Defines the waveform character to use for pattern data. A waveform

character must be a single alphanumeric character, from the set of

characters:[0-9], [a-z], and [A-Z].

TimeExpr = ' (integer | float) (engineering_prefix) (unit) '

Event =

• D | ForceDown - Forces the VIL value

• U | ForceUp - Forces the VIH value

• Z | ForceOff - Turns the driver off when the driver mode is HiZ.

Forces VIHH when the driver mode is VIHH. Forces the Pin PMU voltage

when the Pin PMU is connectByPattern().

• N | ForceUnknown - Same as the U format

• L | CompareLow - Compares for a value less than VOL

• H | CompareHigh - Compares for a value greater than VOH

• X | CompareUnknown - Don't care

• T | CompareOff - Compares for a value between VOL and VOH

Example

Timing "Param_Time_Set" {

 WaveformTable "T1" {

 Period '100nS';

 Waveforms {

 // functional continuity timing...

 "Control_pins" { 0 { '45nS' D; }}

 "Control_pins" { 1 { '50nS' U; }}

 "Data_pins" { 0 { '10ns' D; '70nS' U; }}

 "Data_Pins" { 1 { '15nS' U; '75nS' D; }}

 "Clock_pins" { 1 { '15ns' U; '75nS' D; }}

 "Clock_pins" { 0 { '15ns' D; }}

 }

 }

}

Would give rise to the following waveforms:

1: Pin group “Control_pins” will go high at 50nS when the vector pattern is a “1” for each of the pins

in the group, if the previous vector was already high then no edge occurs. The

when there is a “0” in the pattern for that pin

occurs. This time format is known as Non

state until the next transition.

2: Pin group “Data_pins” will change state within each vector. This is a variation of Surround by

Compliment or XOR format and is useful for Address and Data buses to allow set

timings.

3: Pin group “Clock_pins” will produce pulses when the pattern is “1” and will remain low when the

pattern is “0” – this format is known as Return To Zero (RZ).

Would give rise to the following waveforms:

1: Pin group “Control_pins” will go high at 50nS when the vector pattern is a “1” for each of the pins

in the group, if the previous vector was already high then no edge occurs. The pin will go low at 45nS

when there is a “0” in the pattern for that pin, if the previous vector was already low then no edge

. This time format is known as Non-return To Zero (NRZ) as the pin will remain in the specified

Pin group “Data_pins” will change state within each vector. This is a variation of Surround by

and is useful for Address and Data buses to allow set-up and hold

Pin group “Clock_pins” will produce pulses when the pattern is “1” and will remain low when the

this format is known as Return To Zero (RZ).

1: Pin group “Control_pins” will go high at 50nS when the vector pattern is a “1” for each of the pins

pin will go low at 45nS

, if the previous vector was already low then no edge

as the pin will remain in the specified

Pin group “Data_pins” will change state within each vector. This is a variation of Surround by

and hold

Pin group “Clock_pins” will produce pulses when the pattern is “1” and will remain low when the

Page 6

DCLevels Block

NOTE: Micross will create this Block from customer supplied information

The DCLevels block defines the DC levels to be applied to signals for each test pattern.

The DCLevels block names the DC parameters and defines specific DC data for a set of signals.
Each statement in the DCLevels block specifies the characteristics for one DC parameter. Each DC
parameter may be specified only once for a specific signal, in a single DCLevels block. Signals in the
same block have to be unique; no overlap signal allowed. APIs can set the DCLevels by referencing
the signals in the DCLevels block.

Syntax
(DCLevels (DCLevelsName) { // DCLevels block

 (SignalName {

 (VIH (dc_expr)+;)

 (VIL (dc_expr)+;)

 (VIHH (dc_expr)+;)

 (VOH (dc_expr)+;)

 (VOL (dc_expr)+;)

 })*

})*

DCLevelsName = String representing the name of the DCLevels block.
SignalName = String representing the signal or signal group name.
VIH = Specifies the drive high voltage.
VIL = Specifies the drive low voltage.
VIHH = Specifies the alternate drive voltage.
VOH = Specifies the compare high voltage.
VOL = Specifies the compare low voltage.
dc_expr = ' (integer | float) (engineering_prefix) (unit) '

Example

DCLevels dc_func {

 ins {

 VIH 'vih1';

 VIL 'vil1';

 }

}

Page 7

Pattern Block

The Pattern block defines the pattern vector data.

Syntax
Pattern PatName {

 (WaveformTableDeclaration | FunctionalVector)*

}

PatName=ident

WaveformTableDeclaration = (W | WaveformTable) ident

FunctionalVector = (ParallelVector | LoopVector | MatchVector | Macro | Procedure)

Vector = (F | V) { SigName = (WFC)+ ; }

Condition = C { SigName = (WFC)+ ; }

WFC = (letter | digit | # | %)

}

Example

Pattern example {

 W _default_WFT_;

 LABEL: V { ALL = 00000000 00000000 00000000 00000000; }

 V { ALL = 11111111 11111111 11111111 11111111; }

 Loop 10 { // implemented as a multi-vector loop

 V { ALL = 11111111 11111111 11111111 11111111; }

 V { ALL = HHHHHHHH HHHHHHHH HHHHHHHH HHHHHHHH; }

 V { ALL = 00000000 00000000 00000000 00000000; }

 V { ALL = LLLLLLLL LLLLLLLL LLLLLLLL LLLLLLLL; }

 }

 Loop 5 { // implemented as a repeat vector

 V { ALL = 11111111 11111111 11111111 11111111; }

 }

 Stop;

}

Page 8

PatternBurst Block

NOTE: Micross will create this Block from customer supplied information

The PatternBurst block defines the sequences of patterns to be executed during a test.

Syntax
PatternBurst BurstName {

 PatList

 (PatName ;)*

}

BurstName = String representing the pattern burst name;

PatName = String representing the name of a Pattern block;

Example
PatternBurst "_burst_" {

 PatList {

 "first_pattern";

 }

}

Page 9

PatternExec Block

NOTE: Micross will create this Block from customer supplied information

The PatternExec block is the "glue" that defines all of the pieces needed in order to execute patterns
on a tester. It defines,

• the Category names to be used to resolve spec variables,

• the selector names to indicate which value (Min, Typ, Max, or Meas) of the spec variables to
apply,

• the DCLevels block to set before executing the PatternExec,

• the APGSteering block to use when executing the PatternExec,

• the Timing block under which to find the WaveformTable references,

• and the PatternBurst to use.

If the Timing or DCLevels block being referenced contains spec variables that have multiple
categories, then one or more Category statements shall be specified in the PatternExec block. If the
Timing or DCLevels block references spec variables containing multiple values (i.e., Min, Typ, or Max
values), the variables shall be specified in an unambiguous manner, either by resolving which value to
apply via a Selector block, or by qualifying the variable name in the reference (for example, `var.Min').
The named Timing block shall resolve all WaveformTable names that are referenced in all Pattern
blocks that are referenced.

Each item in the PatternExec block is optional. It can be used for binding the Spec Category and
Selector with Timing and DC Levels. If the pattern burst is included, it will run each pattern in the
pattern burst.

Syntax

PatternExec (PAT_EXEC_NAME) {

 (Category CATEGORY_NAME ;)*

 (Selector SELECTOR_NAME ;)*

 (APGSteering APG_STEERING_NAME;)

 (DCLevels (DC_LEVELS_NAME);)

 (Timing TIMING_NAME ;)

 (PatternBurst PAT_BURST_NAME ;)

}

CATEGORY_NAME = Selects the Category block name. The PatternExec block can have multiple categories,
but the variables in each category must be unique.
SELECTOR_NAME = Selects the Selector block name. The PatternExec block can have multiple selectors, but
the variables in each selector must be unique.
APG_STEERING_NAME = Selects the APGSteering block name that assigns the DUT pins to APG resources.
DC_LEVELS_NAME = Selects the DCLevels block. The PatternExec block can contain zero or one DCLevels
Clocks.
TIMING_NAME = Selects the Timing block. The PatternExec block can contain zero or one Timing blocks.
PAT_BURST_NAME = Selects the PatternBurst block to execute. The PatternExec block can contain zero or one
PatternBurst blocks.

Example

PatternExec "FuncExec" {

 DCLevels "DCLevels";

 Timing "Timing";

 PatternBurst "FuncBurst";

}

 Page

10

A Simple STIL Example
STIL 1.0;
Signals {

 DIR In;

 OE_ In;

 A0 In; A1 In; A2 In; A3 In;

 A4 In; A5 In; A6 In; A7 In;

 B0 Out; B1 Out; B2 Out; B3 Out;

 B4 Out; B5 Out; B6 Out; B7 Out;

}

SignalGroups {

 ABUS='A7 + A6 + A5 + A4 + A3 + A2 + A1 + A0';

 BBUS='B7 + B6 + B5 + B4 + B3 + B2 + B1 + B0';

 ALL ='DIR + OE_ + ABUS + BBUS';

}

Timing "basic_timing" {

 WaveformTable "one" {

 Period '500ns';

 Waveforms {

 DIR { 01 { '0ns' D/U; }}

 OE_ { 01 { '0ns' U; '200ns' D/U; '300ns' U; }}

 ABUS { 01 { '10ns' D/U; }}

 BBUS { HLZ { '0ns' Z; '0ns' X; '260ns' H/L/T; '280ns' X;}}

 }

 } // end WaveformTable one

} // end Timing "basic_timing"

PatternBurst "pat1_burst" {

 PatList { "pattern_1";

} // end PatternBurst "pat1_burst"

PatternExec {

 Timing "basic_timing";

 PatternBurst "pat1_burst";

} //end PatternExec

Pattern " pattern_1" {

 W "one";

LAB000: V { ALL=0000000000LLLLLLLL; } // Measure all VOL here

LAB001: V { ALL=0010000000HLLLLLLL; } // Measure B7 VOH here

 V { ALL=0001000000LHLLLLLL; }

 V { ALL=0000100000LLHLLLLL; }

 V { ALL=0000010000LLLHLLLL; }

 V { ALL=0000001000LLLLHLLL; }

 V { ALL=0000000100LLLLLHLL; }

 V { ALL=0000000010LLLLLLHL; }

LAB008: V { ALL=0000000001LLLLLLLH; } // Measure B0 VOH here

Stop;

} // end Pattern " pattern_1"

