<IEEE

IEEE Standard Test Interface
Language (STIL) for Digital Test
Vector Data—Core Test Language
(CTL)

IEEE Computer Society

Sponsored by the
Test Technology Standards Committee

IEEE
IEEE Std 1450.6™-2005

3 Park Avenue
New York, NY 10016-5997, USA

5 April 2006

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.6™-2005(R2011)

IEEE Standard Test Interface
Language (STIL) for Digital Test
Vector Data—Core Test Language
(CTL)

Sponsor

Test Technology Standards Committee
of the
IEEE Computer Society

Approved 17 November 2005
IEEE-SA Standards Board

Reaffirmed 16 June 2011
IEEE-SA Standards Board

Approved 29 December 2005
American National Standards Institute

Reaffirmed 26 July 2012
American National Standards Institute

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

Abstract: The Core Test Language (CTL) is a language created for a System-on-Chip flow (or
SoC flow), where a design created by one group is reused as a sub-design of a design created by
another group. In an SoC flow, the smaller design embedded in the larger design is commonly
called a core and the larger design is commonly called the SoC. The core is a design provided by
a core provider, and the task of incorporating the sub-design into the SoC is called Core System
Integration.

Keywords: Core Test Language (CTL), Standard Test Interface Language (STIL), System-on-
Chip (SoC), wrapped core, unwrapped core

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2006 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 5 April 2006. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

Print: ISBN 0-7381-4804-0 SH95373
PDF: ISBN 0-7381-4805-9 SS95373

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers
representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the
Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote
fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy
of any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific
purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents
are supplied “AS IS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase,
market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to change brought about through developments in the
state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least
every five years for revision or reaffirmation, or every ten years for stabilization. When a document is more than five
years old and has not been reaffirmed, or more than ten years old and has not been stabilized, it is reasonable to
conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are
cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other
person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon his or
her independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the
advice of a competent professional in determining the appropriateness of a given IEEE standard.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has previously received formal consideration.
A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual
shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be
relied upon as, a formal interpretation of the IEEE. At lectures, symposia, seminars, or educational courses, an
individual presenting information on IEEE standards shall make it clear that his or her views should be considered the
personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Recommendations to change the status of a stabilized standard should include a
rationale as to why a revision or withdrawal is required. Comments and recommendations on standards, and requests
for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854-4141

USA
Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute
of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center.
To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood

Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

Introduction

This introduction is not part of IEEE Std 1450.6-2005, IEEE Standard Test Interface Language (STIL) for Digital
Test Vector Data—Core Test Language (CTL).

CTL started as a language in the IEEE Std 1500™-2005 standardization activity for core test. This activity
provided a representation mechanism for test information that exchanges hands between a core provider and
the system integrator. Thus, the language had a charter to provide a mechanism for reuse of test patterns and
information that allows for successful design for test and automatic test pattern generator activities on the
SoC. As part of IEEE Std 1500-2005, CTL was designed to represent details about the IEEE 1500 wrapper.
As CTL and the wrapper technology matured, it became apparent that the two activities should be separated
into two standard documents. As a result of this decision, CTL, the language, became IEEE Std 1450.6
activity, and the information model for cores that uses CTL remained in IEEE Std 1500-2005.

Notice to users

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http:/
standards.ieee.org/reading/ieee/updates/errata/index.html. Users are encouraged to check this URL for
errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http:/standards.ieee.org/reading/ieee/interp/
index.html.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or
validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying
patents or patent applications for which a license may be required to implement an IEEE standard or for
conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Participants

The following is a list of participants in the CTL Working Group:

Rohit Kapur, Chair

Mike Collins Brion Keller Maurice Lousberg
Douglas Kay Paul Reuter

When the CTL Working Group approved this standard, it had the following short-term membership:
Bill Chown Yuhai Ma

iv Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention:

Ken-ichi Anzou
Luis Basto
Sudipta Bhawmik
Dwayne Burek
Chen-Huan Chiang
Keith Chow

Bill Chown
Antonio M. Cicu
Luis Cordova
Jason Doege

Geir Eide

Grady Giles

Alan Hales

Peter Harrod
Mitsuaki Ishikawa
Rohit Kapur

Jake Karrfalt
Douglas Kay

Brion Keller

Adam Ley

Dennis Lia
Maurice Lousberg
Yuhai Ma

Ryan Madron

Erik Jan Marinissen
Denis Martin
Gregory Maston
Yinghua Min
Mehdi Mohtashemi
James Monzel
Narayanan Murugesan

Benoit Nadeau-Dostie
Charles Ngethe

Jim O’Reilly
Adam Osseiran
Klaus Rapf

Paul Reuter

Mike Ricchetti
Gordon Robinson
Gil Shultz

Douglas E. Sprague
Tony Taylor

Tom Waayers
Gregg Wilder

T. W. Williams

Li Zhang

When the IEEE-SA Standards Board approved this standard on 17 November 2005, it had the following

membership:

Mark D. Bowman
Dennis B. Brophy
Joseph Bruder
Richard Cox

Bob Davis

Julian Forster*
Joanna N. Guenin
Mark S. Halpin
Raymond Hapeman

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Copyright © 2006 IEEE. All rights reserved.

Steve M. Mills, Chair

Richard H. Hulett, Vice Chair

Don Wright, Past Chair

Judith Gorman, Secretary

William B. Hopf
Lowell G. Johnson
Herman Koch

Joseph L. Koepfinger*
David J. Law

Daleep C. Mohla

Paul Nikolich

Satish K. Aggarwal, NRC Representative
Richard DeBlasio, DOE Representative
Alan H. Cookson, NIST Representative

Jennie M. Steinhagen
IEEFE Standards Project Editor

T. W. Olsen

Glenn Parsons
Ronald C. Petersen
Gary S. Robinson
Frank Stone
Malcolm V. Thaden
Richard L. Townsend
Joe D. Watson
Howard L. Wolfman

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

Contents

vi

OVETVIEW ...uvieieiieieeeiie et e ette ettt e tteeeteebeestbeebeesseeesbeessaesssaasseensseanseensaesssaenseeasseanseanssesnseesseasseenseennsannseens 1
| O B € 1<) s T 1 DO SUURSP 1
1.2 SOC FIOW 1.ttt ettt ettt ettt a st s et e ebe e be st et e beee et et et ene e st ebeebesaeeaentennens 2
R B 170 o 1 TSRS 4
Li4 PUIPOSE. .ueveeeiieiieeieestt e et et et et e e teeateestteesbeestbeesaeensaesnseensaessseenseeasseenseessseenseessseanseenseesssaeseenssns 4
1.5 Limitations of this Standardcc.eeeierieiiiieiiece et et neees 4
1.6 Structure of this StANAArdcccviiiiiiiieie ettt be e ebeeaeenenes 5
INOTIMNALIVE TETETEIICES ...eeuveeiieeiiieiieeteeeteeeteesteesteeteesteebeesteeebeesseessseesseesssessseessaessseesssasssessseesseenssenne 5
Definitions, acronyms, and abbreVIationsS...........cceeiieerieerieniiierieeteeieeete et steereestaesseesseeseseesseensnes 6
T B B 1<) 3315 o) o USSR 6
3.2 Acronyms and abDIEVIATIONSc..cccveeiieriieriieeiiiesieeteesteeeteeteesbeesteesseessseeseessseeseeseessseesseesseens 6
CTL orientation and capabiliti€s tutOTialcccueeriiiiiieriieiiierieeie et sre e 7
O B § Y2 (T4 L 1o 10 o B USSP 7
4.2 CTL for design CONTIGUIATIONS......ccciiieiieiieeieeiieeteeieesireeieesteesveeseesseesseesseessseessaessseenseesssenses 8
4.3 CTL for structural iNfOrmMationcccueeriieriieiiienieeieeseeeieeseesteereesreeteesteesbeesseesseeeseessaenes 16
4.4 CTL for test pattern iNFOrMALION.cccuieriierieiieerieerieeteeriee et eseeereesbeesbeereessaeeseesseessseenseees 21
4.5 Beyond the EXAMPIEScccueeeiieiieeieeiiie et eiteste et esee e e see st e aaeesreebeessaessseessseenseessesseesseenes 26
Extensions to IEEE Std 1450-1999 and IEEE Std 1450.1-2005cccoeeviiiiiienieeieeieeeeeiee e 27
5.1 STIL name spaces and Name reSOIULIONcceeeuieiiierienieeriieeieeieesteeseesire e e seeebeesaeeseenes 27
5.2 Optional statements of IEEE Std 1450-1999ooiiiiiieieieeeeeeecte ettt 27
5.3 Restricting the usage of SignalGroup and variable Namescccceeveveereerieeniienieeieeseeereenns 27
5.4 Additional 1€SETVEA WOTASeeevieriieeiieriiecieestteeie et te et ste e et eebeesaeesbeessaeenseebeesnsesnseenes 28
5.5 STIL statement—extensions to IEEE Std 1450-1999, Clause 8§coovvevieieiveieeieireeeeeeinns 28
5.6 Extensions to IEEE Std 1450-1999, 17.1 and 23.1.....ccooivuiiiiiiiiiieeee e eeaeee e 29
5.7 Extensions associated with the LockStep construct of Clause 13 of IEEE Std 1450.1-2005.... 32
DeSIZN RICTAICHY——COTES.. . iiiuiiiiiiiieeieettecte ettt ettt e et eeseeeabeestaessbeeseesssaenseesseesssessseenes 36
6.1 CoreType block and CoreInstance StateMENTcc.eevueerieeriierieeieeiieereeseeereeseeesveeseeesneenes 36
6.2 CoreType block SYNtax deSCTIPLIONSeevieriieeieeriierieeriterieerieeseesreesseesaeesseessseenseessnessseesseesns 36
6.3 CoreType block cOde EXAMPIEoccueeeiiiiiieiieeiieeie ettt et ebe e seeebeesteessbeeseesnneens 37
Cell expression (CEITET EXPI)...c.iiiiieiieiieeieeie ettt ettt see et eesbeeaeesseessbeessaeesbeessnensseenes 38
Environment block—extensions to IEEE Std 1450.1-2005, Clause 17coovvvveeiieiviveeeieiiiineeeeenns 39
T B € <) 1< ¢ | F U PURPSTRPRRPRRIt 39
8.2 Definition of FileReference KeYWOords..........ccveviiiiieiieniiiiiesieeie ettt e 39
8.3 Example of Environment block FileReference syntaxccccceecveevieeieecieenieesieeneenieeieenieenns 43
8.4 EXtension t0 NAMEMAPScccueeuierieeiieiiieiieerieesieeteestesteesereeseesseeesseesseessseesssesssessseesssessseenes 43
8.5 Extension to the inheritance of environment StatEMENtScccueerveerieerieerireereenieeieeseeeveenns 44
CTLIMOAE DIOCK. ...ccutiiiiiiiieiieeitesite ettt ettt e sttt e st e e teessaeesteesssaesseessseensaenseesnsaenssennsaesseensnensseenes 45

Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

0.1 GEINETAL.....eeeeiiiiieeeeee ettt e e e et e e e et e e s e a e e e e e e aa e e e e e e ateeeeeaatrreeeeanaanes 45

0.2 CTLIMOMAE SYNEAX ...veuiiiieiieiieeteeteeteeteeteetee e eteeteseteeesaeeeesaeenseeseenseeseenseeseeneeeseenseeneesesneenseanean 45

9.3 CTLMode block—Syntax deSCIIPLIONSccueeviruieieriieieeeeeie st ete st eete e eee e enee e e see e seeeneas 47

9.4 CTLMode block Syntax eXample..........cceecuerieririeiieieie ettt see e 53

10. CTLMode—Internal BIOCKccooiririiriiiiieiiineccccc ettt e 56
TO.1 GNEIAL.....iiiiiirietet ettt ettt ettt st et ettt ettt eb e b e e naene 56

10.2 INtEINAL SYNEAX. ...eviiuiiieeiietietiete et e sttt e et e ettt et e et e et e e st et e sseeneeeseesesseenteeseenseeseenseeneeaeenes 56

10.3 Internal block syntax deSCIIPLIONScceeruieuieriiieiieetieieet ettt sttt e e eneenes 60

10.4 Internal BlockSyntax eXamplesccoeieriiieriiieeeieieeie et ens 76

11. CTLMode—ScanInternal bIOCKc.coereriiiiiiieiiiiiiscccetete ettt 79
T1.1 GNEIAL...eiiiiiieieitet ettt ettt sttt ettt et eb b e a e 79

11.2 ScanInternal SYNTAXceeieririeiieieieeeee ettt et e e e b seeete st e se st et e seeneenaeees 79

11.3 Scanlnternal block syntax deSCIIPLIONS.........c.eeueeiuirieriieierieieste et 81

11.4 Scanlnternal block Syntax eXampleccovieiiiiirieiire e 81

12. CTLMode—Corelnternal bIOCKc.ooereriiiiiiieiiiiinccccetete et 83
12,1 GNEIAL...eiiiiiiititet ettt ettt sttt ettt et e seea e 83

12.2 CorelINternal SYNTAXcceiuieiiirieiietiete ettt ettt ettt s et seeeae et eteeseentesteeneeneeens 83

12.3 Corelnternal block syntax deSCIiPLiONS.........c.eeeeruirieriieieriieie sttt 84

12.4 Corelnternal block Syntax eXamples..........cceveiieiirieiiinieieeie et 84

13. CTLMode—Relation BIOCKcoccoiriiriiniiniiiiiiineneecctct ettt e 85
13,1 GNCIAL.....iiiiiirietet ettt ettt ettt ettt ettt ettt e na e 85

LB AT R o) 0) 4 1 2 . QSRR 85

13.3 Relation block Syntax deSCIIPLIONSc.eeriiruiruieiiriieieeie ettt ree sttt sttt eee et e e enee 85

13.4 Relation block SYNtax eXampPleccoeeiiiuieiiiieiiieeeee ettt 87

14. CTLMode—ScanRelation bIOCKcoeririiiiiiieiiiiiiccceteeeeeee ettt 89
14,1 GNEIAL.....iiiiiiiieetet ettt ettt ettt ettt e e a e 89

14.2 ScanRelation SYNTAXccuieieiieiert ettt ettt ettt sttt eae st et e s et e te e st et e eaeeneeeneenaeenes 89

14.3 ScanRelation block syntax deSCIIPtIONSc.eecverueruiereriieieriieiet et 89

15. CTLMode—EXternal BIOCKc.coceririiriiniiniiiiicieieneeecctceceetee ettt s 89
I5.1 GNEIAL....iiiiiiitietete ettt ettt sttt et ettt e e na e 89

15.2 External StatemMent SYNEAKcc.eecverieierieeieriesieeteste e ee et eeeseeesteseeeeesseeseseeenteeseenseeseenseeneenaeenes 90

15.3 External block syntax deSCIIPLIONSc.eeueeriirierieiieieitceie ettt st e e 90

15.4 External block syntax eXampPlec.ocueeiiirieiirieeee ettt e 93

16. CTLMode—PatternInformation blockcocvuerieiiiiieiininininincceec e 93
16.1 PatternInformation SYNTAX.........c.eceeieririere ettt tei et te et et see et et ete s e e bt eneesseeneenaeenee 93

16.2 PatternInformation block syntax deSCIiPtionscceeieriirierierierierieee e 96

16.3 PatternInformation block syntax eXampleccoooeeriiieriiienieeeee e 104

IIUAEX et et et st b e bbbt bbbt et nenee 109
Copyright © 2006 IEEE. All rights reserved. vii

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE Standard Test Interface
Language (STIL) for Digital Test
Vector Data—Core Test Language
(CTL)

1. Overview

1.1 General

The Core Test Language (CTL) is a language created for a System-on-Chip flow (or SoC flow), where a
design created by one group is reused as a sub-design of a design created by another group. In an SoC flow,
the smaller design embedded in the larger design is commonly called a core and the larger design is
commonly called the SoC. The core is a design provided by a core provider, and the task of incorporating the
sub-design into the SoC is called Core System Integration.

CTL is a language designed to be the transfer mechanism of test knowledge between a core provider and a
system integrator to allow for interoperability between the producer and the consumer of the information. It
facilitates the reuse of test patterns provided for a core for application from the SoC boundary. Although the
language is general (the limitations of CTL are listed in 1.5) and can be used in many different ways, this
standard is focused on the use of CTL for SoC designs. Thus, CTL allows for

a) Representation of design constructs and characteristics that are needed to be made visible by the
core provider.
b) Representation of test patterns that are to be reused for cores in an SoC test flow.
CTL provides the language for communication of test information. An adjacent IEEE standard activity

(IEEE Std 1500™-2005)" defines the information requirements of the core provider that are required to be
represented in CTL. As a result of this relationship with IEEE Std 1500-2005, CTL has some constructs that

IFor information on references, see Clause 2.

Copyright © 2006 IEEE. All rights reserved. 1

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

are there to support IEEE Std 1500-2005’s informational requirements for wrapped and unwrapped cores. In
an SoC flow (where cores are reused in SoCs), CTL represents all of the test information about the core such
that the core can be successfully embedded in the SoC from a test perspective. CTL is a language that
provides the information about the structures in the core that are to be reused at the next level of integration.
Test reuse is also about the reuse of test patterns. As a result, CTL allows for the description of reusable test
patterns (portable tests). CTL leverages existing standard representations. The CTL language is the union of
the syntax defined in IEEE Std 1450™-1999, IEEE Std 1450.1™-2005, IEEE Std 1450.2™-2002, and this
standard. CTL extends the definitions defined in IEEE Std 1450-1999 and IEEE Std 1450.1-2005 with
extensions and exceptions defined in this standard. The reader is assumed to have knowledge of these
standards, and their associated content is not repeated or explained in this standard.

CTL has the following characteristics to support the SoC test:

a) CTL can describe constructs to handle a wide variety of cores.
b) CTL does not limit the test methodologies of the core provider.
¢) CTL can describe IEEE Std 1500-2005 wrapped and unwrapped cores. (Refer to the associated
standard for details.)
1) Unwrapped cores can be described in CTL to aid in the creation of the wrapper.
2) Wrapped cores can be described in CTL to allow for the reuse of the wrapper in the
integrated SoC.
2) CTL describes the patterns of the wrapped or unwrapped core such that modifications can be
made to the core for application from the SoC boundary.

CTL handles this variety of needs by providing a test mode structure within which primitive concepts are
pieced together to describe the test information. Several sets of keywords are provided that form the
vocabulary of CTL. The keywords are put together to represent information that are sentences of test
information. CTL’s ability to handle different designs and their associated test methodologies comes from its
reliance on sequences. Predefined sequence types (EstablishMode and TerminateMode) are used to treat the
different design configurations (test modes) in a uniform way. Sequence information is leveraged from
IEEE Std 1450-1999 and IEEE Std 1450.1-2005 syntax, with the difference that the information is driven
from the CTL Environment and test modes.

1.2 SoC flow

As mentioned, an SoC flow is the process in which a sub-design (core) is embedded in a larger design (SoC).
The major steps of this flow are shown in Figure 1. Let us assume that CTL exists and it can describe
everything needed for the core. Figure 1 shows three major steps in the process of designing the testing
mechanism and the test patterns for embedded cores. The first step shows the “Core Design” work. This
work is performed in such a manner that the resultant core can be reused in multiple designs with NO change
required to either the core design or to the bulk of the test patterns information (data portion of the test
patterns) that are developed for testing the core.

The first section in the diagram shows the core design process where the “IP core model” is represented
(e.g., a Verilog or VHDL design). Along with the design, a set of “Core Test Patterns” in CTL syntax is
generated (syntax from IEEE Std 1450-1999, IEEE Std 1450.1-2005, IEEE Std 1450.2-2002, and this
standard). A complete CTL description encompasses test patterns and its associated constructs and a
description of the various test modes of the core. Typical cores support multiple configurations that serve
different purposes such as internal testing of the core and external testing of the logic outside the core. CTL
information is partitioned across these configurations (test modes). The entire description of CTL is centered
around the Environment (this is the top-level block of statements in the language), which is shown in
Figure 1. The information requirements for cores is defined by IEEE Std 1500-2005. The requirements
ensure that enough information is present to create the test for the finished SoC.

2 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005
4 Signals A\
| . Core Test |
| IP Core Environment Core Instances Patterns with |
Top Level of Info Data - Protocol
| ;‘:"C‘{;Il, (P) Scan Cells separated |
l]
~N \L ______ . _ _ _ -
CTL Description
/S,C_T_tD_' _______ #____ _______ h
o s estgn Integration Test Patterns

(System Integration) Instructions for reuse

I
|
|
| Wrapper Design
| Test Test Pattern
| icr?Srthce Access to Manipulation
| Cores
N /
‘ test patterns
/ N\

Core Test
from SoC

boundary

Figure 1—SoC flow showing the CTL use model

The second section of Figure 1 shows the System Integration process. In this process, the SoC integrator
makes use of the CTL description of the core design to create the tests for the SoC. This process could
involve multiple activities depending on the design and test methodologies in use. The following are some
activities that the system integrator may perform:

a) Wrapper Design: Wrapper technology represents isolation hardware at the boundary of cores for test

b)

purposes. The wrapper isolates the testing of the core logic from the testing of the user-defined logic
on the SoC. IEEE Std 1500-2005 defines such technology. Cores may or may not be provided with
wrappers. If the test methodology relies on wrapping cores, then the system integration step would
look for information in CTL of the core to determine whether a wrapper is provided with the core. If
the wrapper is not provided, the CTL information of the core would be used to determine the
wrapper cells and other details of the wrapper technology.

Test Access to Cores: The connections from the core boundaries to the top level of the SoC depends
on the different cores embedded in the SoC. The design of the associated design entities depends on
the scheduling of the tests of the different cores, which is determined by looking at the CTL that
comes with each core.

Test Pattern Manipulation: The patterns that come with the CTL of every core are written to the
boundary of the core. The process of converting these patterns to be applicable at the boundary of
the SoC is called test pattern migration or test data porting. The process uses the wrapper technology
and test access to cores as relevant to the SoC design. Patterns supplied in CTL have the data and
protocol (event sequencing) portion separated. The data represent the 1s and Os of the test patterns,
which represent the bulk of the information. The protocol represents the sequence of the test patterns
to apply the data. Test pattern migration is the process of modifiying the protocols of the test patterns

Copyright © 2006 IEEE. All rights reserved. 3

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

such that the test data are oriented to the SoC boundary. CTL information assists in test scheduling
tasks on the SoC.

The last section shows the process of testing the manufactured SoC. The core-level tests are combined with
the top-level logic tests to provide for complete testing of the SoC on an ATE. The creation of the top-level
patterns of the SoC (UDL test) was not shown in the system integration step of Figure 1, but this task
typically uses CTL information for external test or low leakage configurations of the cores on the SoC. If the
information in last section is packaged in new CTL, then the SoC can be a core for another level of the
design.

1.3 Scope

Unless the logic inside embedded cores can be merged with the surrounding user-defined logic (UDL), the
SoC test requires reuse of test data and test structures specific to individual cores (designs) when integrated
into larger systems. This standard defines language constructs sufficient to represent the context of a core
and of the integration of that core into a system, to facilitate reuse of test data previously developed for that
core. The SoC test also requires that the core be embedded in the SoC to allow for efficient testing of the
logic external to the core. To that effect, this standard defines constructs that represent the test structures
internal to the core for reuse in the creation of the tests for the logic outside the core. This provides
constructs that will allow for the wrapping operation of an unwrapped core and the necessary wrapper
specific information for a wrapped core. In particular, CTL shall support IEEE Std 1500-2005 for the
information needs for wrapped and unwrapped cores. Semantic rules will be defined for the language to
facilitate interoperability between the different entities (the core provider, the system integrator, and the
automation tools) involved in the creation of an SoC. This standard is limited to SoC testing with multiple
and/or hierarchical cores through digital interfaces.

All constructs defined in the CTL shall be consistent with IEEE Std 1450-1999 and extensions (STIL) to
support the complete description of the test for cores integrated into SoC environments. Although the
preferred syntax for the bulk of the test data is STIL, this language provides constructs for linking other test
data representations to incorporate legacy cores. The constructs in the language shall support a vast variety
of cores and different test methodologies with particular support for the IEEE 1500 standard for embedded
core testing. These constructs shall facilitate the transportation of test information from the core provider to
the system integrator and support test automation by providing a consistent and uniform definition of the
constructs such that the information provided by a core provider is understood in the same way by the
system integrator and the tools developed by EDA.

1.4 Purpose

To develop a language that will provide a sufficient description of a core to support reuse of test data
developed for that core after integration into SoC environments, and to enable the creation of test patterns
for the logic on the SoC external to the core.

1.5 Limitations of this standard

As the development of the language for complete functionality is a huge task, the first version of this
standard is limited in its functionality. CTL, as described in this standard, has limited or has no support for
the following areas:

a) Analog testing
b) Memory testing

¢) Diagnostics and debug applications
d) ATE interfacing of DFT information

4 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

All of these areas are considered important and should be addressed in future extensions of this language.

1.6 Structure of this standard

This standard is to be used with IEEE Std 1450-1999, IEEE Std 1450.1-2005, and IEEE Std 1450.2-2002.
The conventions established and defined in IEEE Std 1450-1999 are used in this standard and are included
verbatim below.

Many clauses in this document add additional constructs to existing clauses in IEEE Std 1450-1999,
IEEE Std 1450.1-2005, and IEEE Std 1450.2-2002 and are so identified in the title. Most constructs defined
in this standard are limited to the Environment block, which is defined by IEEE Std 1450.1-2005.

The following is a copy of the conventions as defined in IEEE Std 1450-1999 and followed by this
standards.

Different fonts are used as follows:
a) SMALL CAP TEXT is used to indicate user data.
b) courier text isused to indicate code examples.
In the syntax definitions
a) SMALL CAP TEXT is used to indicate user data.
b) bold text is used to indicate keywords.
¢) italic text is used to reference metatypes.
d) () indicates optional syntax that may be used zero or one time.
e) ()+ indicates syntax that may be used one or more times.
f) O* indicates optional syntax that may be used zero or more times.
g) <> indicates multiple choice arguments or syntax.
h) Defaults where appropriate are underlined in the syntax.

In the syntax explanations, the verb “shall” is used to indicate mandatory requirements. The meaning of a
mandatory requirement varies for different readers of the standard:

— To developers of tools that process CTL (readers), “shall” denotes a requirement that the standard
imposes. The resulting implementation is required to enforce this requirement and issue an error if
the requirement is not met by the input.

— To developers of CTL files (writers), “shall” denotes mandatory characteristics of the language. The
resulting output must conform to these characteristics.

— To the users of CTL, “shall” denotes mandatory characteristics of the language. Users may depend
on these characteristics for interpretation of the CTL source.

The language definition clauses contain statements that use the phrase “it is an error”. This phrases indicates
improperly defined CTL information.

2. Normative references

CTL encompases syntax defined in IEEE Std 1450-1999, IEEE Std 1450.1-2005, IEEE Std 1450.2-2002,
and this standard. The language extends syntax defined by IEEE Std 1450-1999, IEEE Std 1450.1-2005, and
IEEE Std 1450.2-2002. Exceptions, if any, to these standards are defined in this standard. The following
referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments or corrigenda) applies.

Copyright © 2006 IEEE. All rights reserved. 5

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

IEEE Std 1450™-1999, IEEE Standard Test Interface Language (STIL) for Digital Test Vectors.> 3

IEEE Std 1450.1™-2005, Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-
1999) for Semiconductor Design Environments.

IEEE Std 1450.2™-2002, IEEE Standard for Extensions to Standard Test Interface Language (STIL) for DC
Level Specification.

IEEE Std 1500™-2005, Testability Method for Embedded Core-based Integrated Circuits.

3. Definitions, acronyms, and abbreviations

3.1 Definitions

For the purposes of this standard, the following terms and definitions apply. As CTL is the union of the
syntax defined in four documents, the terminology defined in the other documents (IEEE Std 1450-1999,
IEEE Std 1450.1-2005, and IEEE Std 1450.2-2002) is applicable in this standard. The Authoritative
Dictionary of IEEE Standards Terms should be referenced for terms not defined in this clause.

3.1.4 black box: A condition where the netlist of the design refered to is not available. Commonly used in
association with a core, namely, a black box core.

3.1.5 core: Embedded hierarchy of the design. This hierarchy could be created by an imaginary boundary
that isolates a portion of the logic in a design.

3.1.6 test mode: It is a configuration of the design that is defined in CTL as a CTLMode. This type of
configuration in CTL is identified by the TestMode statement within the CTLMode block of statements.

3.1.7 white box: A condition where the netlist of the design refered to is available. Commonly used in
association with a core, namely, a white box core.

3.2 Acronyms and abbreviations

1450.0 IEEE Std 1450-1999

1450.1 IEEE Std 1450.1-2005 extension to STIL

1450.2 IEEE Std 1450.2-2002 extension to STIL

ATE automated test equipment

ATPG automatic test pattern generator

BIST built-in self-test

CTL Core Test Language (aggregate syntax of 1450.6, 1450.1, 1450.2, and 1450.0)

DFT design for test (it represents circuit modifications such as scan chains that are created for test)
IC integrated circuit

SoC System on Chip

STIL Standard Test Interface Language (combination of 1450.0, 1450.1, and 1450.2)

TAM test access mechanism used to connect to the (wrapped) cores being tested

UDL user-defined logic (a moniker for any logic that may surround an embedded core)

WFC WaveformCharacter

2IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.

6 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

4.CTL orientation and capabilities tutorial

4.1 Introduction

Design reuse methodologies have allowed for the partitioning of effort needed to create a complete design at
the expense of communication between the teams creating the design. Tasks when partitioned are performed
by teams that are in close proximity to each other. In such situations, the teams can get together with
frequent formal meetings, share common documentation, or discuss problems informally. This is a normal
business process for any company that has a reasonably sized project under way. This breaks down when the
design teams are separated in time and space. To avoid unreasonable communication problems, the process
needs to be formalized and the interface between the core providers and the integrators needs to be
standardized. This is where CTL as an industry-wide standard steps in. CTL is developed to address the
information transfer needs of the SoC test.

Through CTL, all test aspects of cores can be described such that a system integrator can integrate a core as
a black box into a SoC and perform all of the usual test tasks as though the core was a white box with test
patterns to be reused. As shown in Figure 2, CTL would describe all information about the core needed by
the system integrator. The language is designed to be manually written and created and/or consumed by test
automation tools.

SoC

(1T I T rIrlr]

black-box design, with
information provided
in CTL to allow for
testing of the SoC.

]
wrapper
(] Tam

—
L]
[
-

HREREREREANN

HpERERERERERERERE

Figure 2—CTL used to represent the test information of a core instead of a netlist

Figure 2 shows a usage of CTL where the information about the design that is to be embedded as a core is
represented in CTL. Using the CTL of the embedded design (the core of the SoC), a wrapper can be
constructed, and the appropriate TAM, which creates the pathway for the test data of the core, can be
determined based on the test constraints in the CTL of the core. The figure depicts the core represented in
CTL as a black box as the netlist is not provided for the core. A box around the black box represents a scan
wrapper implemented outside the core, and the arrows represent the access mechanism to the wrapper. Once
all structures are in place, the test patterns that are also a part of CTL can be retargeted to the boundary of the
SoC. CTL is the language to support all information that the core provider needs to give the system
integrator such that the integrator can successfully test the embedded core and any UDL around the core. All
language constructs defined in CTL would work with all types of digital cores, their different test
methodologies, and the different ways in which they are integrated in the design.

Copyright © 2006 IEEE. All rights reserved. 7

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

Information in CTL is partitioned by the modes of operation of the design being described. Each test mode
has its information as relevant for the design and communication needs. Not all DFT used in a design needs
to be described to the system integrator of the design.

In the examples, we show how aspects of the information that describes the test details of a design are
presented in CTL. This information is part of the content that passes between the core provider and the
system integrator in an SoC flow. The information includes

— Design configuration information
— Structural information
— Test pattern information

These pieces of information are critical to the information needs of the design for the successful testing of
the SoC. CTL provides a mechanism to represent test information for the test needs in an SoC flow. The
information model is not in the scope of this standard and is addressed in IEEE Std 1500-2005 with
complete examples. In this standard, the mechanics to represent information in CTL are described.

NOTE—CTL is part of the STIL series of standards, and the language encompasses the syntax defined by
IEEE Std 1450-1999, IEEE Std 1450.1-2005, and IEEE Std 1450.2-2002. The reader is assumed to be familiar with the
content of 1450.0, 1450.1, and 1450.2, and thus, they are not reintroduced here. Examples of IEEE Std 1450-1999,
IEEE Std 1450.1-2005, and IEEE Std 1450.2-2002 portion of the syntax are given in their corresponding documents.*

4.2 CTL for design configurations

When writing the language CTL, one is essentially describing test modes in the Environment block of
statements. Within the Environment, each test mode represents a design configuration described in
CTLMode blocks (CTLMode {}). Each test mode contains information relevant to it. When the information
gets bulky (such as test pattern information), the information is only referenced in the appropriate test mode
block (CTLMode {}) of the Environment. The referenced construct is defined outside the Environment.

Environment {
CTLMode mode_def {
DomainReferences {

// defines scope of info.

Reference to InformutionPieceA InformationPieceA {

Y

Figure 3—CTL information written outside the Environment and its relationship
to the Environment

Figure 3 depicts the informational link between InformationPieceA and the test configuration of the design
(CTLMode). InformationPieceA is a construct defined outside the Environment and is linked in to the test
mode through a statement in the Environment. This mechanism is used for test patterns. The patterns are
referenced in the Environment block of statements but defined outside the Environment. The following
example shows the reference mechanism as it pertains to patterns:

“Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

8 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Environment
CTLMode mymode {
PatternInformation {
// reference to pattern Pl as a pattern used to establish the
// test mode named mymode.
Pattern P1 { Purpose EstablishMode; Protocol Macro macro_name;}

}
}
}
Pattern P1 {
// definition of pattern P1l. All constructs used by Pl

// are required to be in the scope of mymode as defined by
// DomainReferences.

}

The construct being referenced and its supporting constructs should be within the scope of the test mode.
CTL uses the concept of local and global entities for grouped constructs defined outside the Environment.
Container blocks such as MacroDefs, Procedures, ScanStructures, Timing, Variables, and SignalGroups are
defined to allow for the definition of their associated entities. These container blocks can be named with a
DOMAIN_NAME to create domains. Domained entities are brought into the scope of the test mode in the
Environment block through a construct called DomainReferences. Containers with no domain names are
considered to be global pieces of information. Once within the scope of the test mode, the entities within the
containers can be referenced or used by referenced constructs as shown in Figure 3. The following example
shows the reference mechanism just described:

// Nameless container block for signals
Signals ({
// signals defined here (global for all modes)
}
// Nameless container block for Macros
MacroDefs
// global macros
}
// Named container block for Macros
MacroDefs A {
// domain A’s macros
}
// Named container block for Macros
MacroDefs B {
// domain B’s macros
}
Environment {
// global environment
CTLMode mymode {
DomainReferences (
MacroDefs A;
}
// Now macros defined in MacroDefs A can be referenced here as they
// are in the scope of mymode. See reference mechanism defined
// in the paragraphs before this example. Macros written in the
// nameless MacroDefs block are also in the scope of mymode.

Copyright © 2006 IEEE. All rights reserved. 9

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

This example shows a test mode named mymode identified by the CTLMode block within the Environment
block of statements. (This will be described in the following text in this subclause.) The information of
mymode uses the global Macros and the Macros in the MacroDefs domain 4.

As mentioned, information in CTL is organized around a test mode (configuration) of the core being
represented. Some of the information in each test mode pertains to the externally accessible signals of the
core. These signals, defined in the signals block of statements (1450.0), give a point of reference for test-
mode-related information. It should be noted that the Signals block is an unnamed block, and hence, its
information is global and already included in every test mode.

Designs that are described in CTL typically support multiple configurations or test modes.

Figure 4 shows a design supporting multiple modes of operation. The design has nine input signals and three
output signals. The design is implemented with two scan chains both of length 2. One scan chain goes across
the boundary of the design capturing values on signal a and launching values on signal b. The boundary
scan chain has a scan input BSI and a scan output BSO and is clocked by BCK. Its scan configuration is
achieved by putting a logic-0 on the scan enable BSE. The second scan chain is an internal scan chain with
scanin SI, scanout SO, scan-enable SE = logic-1, and clock CLK. The signals y and z are test mode signals
that define the configuration of the design. In this case, y=0, z=0 is the functional configuration of the
design; y=0, z=1 puts the design in a test mode where the boundary scan chain can be used to capture and
launch values for the purposes of testing the logic outside the design when the design is embedded in a larger
design. y=1, z=0 sets the design in a test mode where the logic internal to the design can be tested.

Inputs Design Outputs

a
y b
z shadedRegion
BCK c [0]
BSE ‘ . . L

BS if[0] if[1] c[1] BSO

[1] 1]

SI si L] 1 so SO

SE se
clk

CLK

Figure 4—A design for which CTL is written to describe its test-related information

In this subclause on design configurations, the goal is to only describe the configurations of the design. That
is, we are interested in only describing how to establish every test mode and not everything that we can
describe about the design. The complete CTL-code for the associated modes of Figure 4 is shown as follows.
Bold words highlight the keywords defined by the standards, which in this case are CTL (1450.6, 1450.0,
1450.1, and 1450.2) constructs. Comments and explanations are embedded in the example:

STIL 1.0 {

Design 2005;
CTL 2005;

10 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

// The information in the environment requires the recognition of the
// boundary of the design. This is described in the Signals block outside
// the environment. Since Signals is a nameless block the signals can
// be then referred to in the Environment. Signals in this example are
// either Inputs (In) or Outputs (Out). Details of Signals are defined
// in 1450.0. Each signal is assigned a default state to denote that if
// no state is specified for that signal on a specific pattern, the
// specified default state would be applied to that signal.
Signals {

a In { DefaultState Z;}

b Out;

v In { DefaultState Z;}

z In { DefaultState Z;}

SE In { DefaultState Z;}

BSE In { DefaultState Z;}

CLK In { DefaultState D;}

BCK In { DefaultState D;}

SI In { DefaultState Z;}

SO Out;

BSI In { DefaultState Z;}

BSO Out;
} // end Signals

// Values in CTL are waveform characters that are defined in the timing
// block as events (D, U, N, L, H, X) associated with timing within
// a clock period. The syntax specification of the Timing block can be
// found in 1450.0. Since the Timing block is a named block it needs to
// be explicitly brought into the scope of the test modes. This would
// be done through a statement in the DomainReferences. The timing
// block is needed to support the definition of the sequences that
// configure the design into the test mode. The design is configured
// into a test mode by a sequence of clock periods as defined by the
// Macros, and the values are waveform characters that are supplied by
// the patterns to the Macros.
Timing T1 {
WaveformTable W1 {
Period '100ns’;
Waveforms
‘a+y+z+SE+BSE+CLK+BCK+SI+BSI’ { 01x {‘Ons’ D/U/N;}}
‘b+S0+BSO’ { 01x {‘Ons’ L/H/X;}}
}
}

} // end Timing

// The MacroDefs block represents the protocol or sequence information
// in CTL. The following is an unnamed MacroDefs block; hence, its macros
// are globally available in every test mode. CTL restrictions on

// pattern syntax as defined in 1450.6 forces the Macros to refer to the
// waveforms within it. The syntax and semantics used are defined

// in 1450.0. These macros defined here is needed to support the

// definition of the mechanism used to establish the test modes. The test
// mode is to be established by patterns that call the macros in this

// example.

MacroDefs {

Copyright © 2006 IEEE. Al rights reserved. 11

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

// Macro setupseq takes in two parameters y and z and assigns them to
// the signals y and z. The following uses syntax from 1450.0
setupseq {

W Wi1;

v { y=#; z=#; }
}

} // end MacroDefs

// This is the primary block of information being written in CTL. The
// ordering rules of 1450.0 require language blocks to follow the rule
// that blocks must be defined before they are referenced (with some
// exceptions around pattern blocks). One named Environment block is
// expected to have information pertaining to the test needs of the

// design after inheritance of environments is resolved.

Environment design

// A nameless CTLMode block may be used to represent global

// information that is common to all named CTLMode blocks.

// In this example the Timing used in all the test modes is the same.
CTLMode {

// The named timing block is brought into the scope of the global
// or nameless CTLMode block of statements. Hence it is also brought
// into the scope of every other named CTLMode block of statements.
// In this example the timing block is brought into the scope of the
// test modes allowing for its information to be used by other
// constructs in the test mode. As a result of the following
// statement the Macro setupseq can use waveform table W1.
DomainReferences {

Timing T1;
}

} // end nameless CTLMode

// One of the configurations to be described is the normal operation
// of the design. This is achieved by setting y=0 and z=0. This is
// achieved in CTLMode through a Pattern that establishes the test
// mode. The pattern is defined outside the environment and referred
// to in the PatternInformation block of this test mode. The pattern
// 1is accordingly identified by an EstablishMode keyword. After the
// test mode is established, the signals y and z are to be held

// constant to maintain the configuration. This is defined in the

// Internal block.

CTLMode myN {

// Test mode is used to define the functional operation of the
// design, and the function is a non-test function.
TestMode Normal;

// The internal block of statements contains information on the
// signals of the design looking inward. This block contains

// information on the characteristics of the signals as they are
// used in the test mode (myN in this case).

Internal

12 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

// Signals y and z both are of type TestMode. That is they are
// to remain constant after the configuration is established
// until termination of the test mode. The establish mode
// pattern would have left these signals at a logic-0 state.
ty+z |
DataType TestMode {
// Both signals y and z are to be held to a Logic-0
ActiveState ForceDown;
}
} // end ‘y+z’
} // end Internal

// Container for Pattern Related Information
PatternInformation
// Look for a Pattern Pl outside the Environment. That Pattern
// 1s used to Establish this Normal test mode. The Pattern would
// be written with 1450.6's syntax that restricts patterns to
// have calls to a sequence (Macro or Procedure) and pass
// the necessary data to it. If it did not follow the CTL rules
// for Patterns, it would be identified as a Foreign pattern.
// Pattern Pl uses Macro setupseq. The complete execution of
// Pl takes 1 clock period.
Pattern P1 {
Purpose EstablishMode;
Protocol Macro setupseq;
CycleCount 1;
}
} // end PatternInformation
} // end CTLMode myN

// The test mode that makes the boundary scan chain of the design
// configured to be passively involved in the test of logic outside
// the embedded design. y=0, z=1.
CTLMode myE {

// The design is setup to be outward facing.

TestMode ExternalTest;

// Information for the ExternalTest test mode on the signals
Internal ({
// Signal y is expected to remain constant after the test mode
// is established until termination of the test mode.
// v is expected to remain at a logic-0. The patterns that
// establish this configuration would have set y to a logic-0.
v {
DataType TestMode {
ActiveState ForceDown;
}

}

// Signal z is expected to remain constant after the test mode
// 1is established and before the termination of the test mode.
// z is expected to remain at a logic-1. The patterns that
// establish this configuration would have set z to a logic-1.
Z

{

DataType TestMode {

Copyright © 2006 IEEE. Al rights reserved. 13

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

ActiveState ForceUp;

}
}

} // end Internal

// The container of Pattern information for the test mode.
PatternInformation
// Look for Pattern P2 defined outside this environment. That
// pattern follows the CTL rules and is labeled
// as a pattern that is to be used to get the design into the
// outward-facing test mode. Pattern P2 only uses Macro setupseq.
// The complete execution of P2 takes 1 clock period.
Pattern P2 {
Purpose EstablishMode;
Protocol Macro setupseq;
CycleCount 1;
}
} // end PatternInformation
} // end CTLMode myE

// The test mode that defines the configuration that is to be used
// to test the design. This test mode would typically also include
// test patterns. However, for this example, we do not require them
// to be defined. This configuration requires y=1 and z=0.
CTLMode myI {

// the test mode to test the internals of this design.

TestMode InternalTest;

// the container for information on signals.
Internal ({

// v is expected to remain constant logic-1 after the test mode
// has been established to maintain the configuration.

v {
DataType TestMode {
ActiveState ForceUp;
}

}

// z 1s expected to remain constant logic-0 after the test mode
// has been established to maintain the configuration.

z {
DataType TestMode {
ActiveState ForceDown;

}
}
} // end Internal

// the container for Pattern information
PatternInformation {

// Look for Pattern P3 defined outside this environment. That
// pattern follows the CTL rules and is labeled

// as a pattern that is to be used to get the design into the
// outward-facing test mode. Pattern P3 only uses Macro setupseq.

14 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

// The complete execution of P3 takes 1 clock period.
Pattern P3 {
Purpose EstablishMode;
Protocol Macro setupseq;
CycleCount 1;
}
} // end PatternInformation
}// end CTLMode myI
} // end Environment design

// Definition of Patterns P1l, P2, and P3. Note that the pattern follows
// the definition defined in this document. That is, Patterns must only
// call sequences (Protocols—Macros and Procedures). Patterns

// pass data to the sequences. Patterns must call only one type of

// sequence, perhaps multiple times, as limited by the syntax. The name
// of the sequence is defined by the Protocol statement in the invoking
// PatternBurst or the PatternInformation block of statements. In this
// example there is no invoking PatternBurst; hence, the Protocol

// statement must exist in the PatternInformation. In this example the
// Protocol invoked is a Macro called setupseq for all patterns.

// Note that these patterns are not included in any PatternExec or
// PatternBurst. This is legal CTL. The information did not need the
// PatternExec and PatternBurst constructs. In this example P1, P2, and
// P3 are used to define the patterns that are to be executed to
// establish the test mode.
Pattern Pl {
P { y=0; z=0;}
}

Pattern P2
P {y=0; z=1;}
}

Pattern P3 {
P { y=1; z=0;}
}

Let us step through the thinking process that led to writing the above CTL. We need to describe test modes
for the design. Thus, we need an Environment block of statements (Environment {}) with three CTLMode
blocks of statements one for every test mode. Each CTLMode block is labeled with the type of configuration
it falls under with a TestMode statement. Each test mode has an initialization sequence that sets y and z to
certain values. This would be written by creating a reference to an initialization pattern in the appropriate
CTLMode block and writing the patterns outside. The patterns rely on infrastructure such as Macros,
Timing, and Signals. After establishing the test mode, some signals need to remain constant. This is
indicated with the DataType-ActiveState statement. To write this statement, the Signals need to be defined in
the Signals block of statements. All constructs written outside the CTLMode blocks, if referred by this
block, should be in the scope of the CTLMode block of statements. This is done by the DomainReferences
statement. Common information across all modes can be collected in the nameless CTLMode block of
statements.

Now let us step through the example in the reverse direction and see if what is described says what we
expect it to say. Start with the Environment. The Environment has one common CTLMode block and three

CTLMode blocks for each test mode defined. Every test mode has some sequence defined to establish its
configuration. The test modes are established by executing patterns that are identified in their appropriate

Copyright © 2006 IEEE. Al rights reserved. 15

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

PatternInformation blocks. The configurations are maintained by holding signals y and z to their appropriate
values as specified by the ActiveStates of the TestMode data types.

Thus, in this example, the party that created the CTL and the party that interprets the CTL would have the
same information about the design.

4.3 CTL for structural information

We use the same design of the previous example to show how scan chains and a subdesign are represented in
CTL.

In this subclause, the two scan chains of the example design are described in CTL. One scan chain is a
boundary scan chain, and the other scan chain is an internal scan chain of the design. A subdesign (the
shaded portion of the design) as an embedded hierarchy is recognized, and the relationship between scan
cells and the hierarchy is maintained. The example describes the fact that the subdesign comes with a single
scan chain with two scan cells and its construction as part of the scan chains of the complete design.

Although the scan chains may be available in some modes and not others, in this example, the information is
made test mode independent:

STIL 1.0 {
Design 2005;
CTL 2005;

}

// The information requires the recognition of the
// boundary of the design. This is described in the Signals block outside
// the environment. This is the same as that defined in the previous
// example.
Signals {

a In { DefaultState Z;}

b Out;

y In { DefaultState Z;}

z In { DefaultState Z;}

SE In { DefaultState Z;}

BSE In { DefaultState Z;}

CLK In { DefaultState D;}

BCK In { DefaultState D;}

SI In { DefaultState Z; ScanIn 2; }

SO Out { ScanoOut 2; }

BSI In { DefaultState Z; ScanIn 2;}

BSO Out { ScanOut 2;}
} // end Signals

// A hierarchy is defined for the shaded area. This hierarchy is
// recognized to have some inputs and outputs and a scan chain. The
// scan chain is of length 2 with scan cells 1[0..1] (this expands
// to be a list of cells i[0], i[1]). The first cell in the list i[0] is
// closer to si and i[1] is closer to so. The syntax for CoreType is
// defined in this document. However, it reuses the syntax for Signals
// and ScanStructures from 1450.0 and 1450.1.
CoreType subDesign {
Signals {

16 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

si In;
so Out;
se In;
clk In;
}
ScanStructures {
ScanChain twoCellChain ({
ScanLength 2;
ScanIn si;
ScanOut so;
ScanCells i[0..1];
ScanEnable se;
ScanMasterClock clk;

}
}

} // end CoreType subDesign

A single instance of the design is defined. This instance is called
shadedRegion (see Figure 4). As a result, the signals

of shadedRegion are shadedRegion:si, shadedRegion:so, shadedRegion:se
and shadedRegion:clk. The scan cells of this hierarchy are hence
shadedRegion:i[0..1]. If a domain name was used for the scan
structures in the CoreType definition, the name of the scan cells
would include the domain-name from the scan structures to look like:
CORE_INSTANCE NAME:DOMAIN NAME: : SCAN CELL_ NAMES

CoreInstance subDesign ({

shadedRegion;

The scan chains of the design are defined in the ScanStructures. In
this example, one of the scan chains is constructed out of scan cells
of the embedded hierarchy. The syntax used here is defined in 1450.0
and 1450.1.

ScanStructures {

ScanChain bcl {
ScanIn BSI;
ScanOut BSO;
ScanLength 2;
ScanEnable ~BSE;
ScanCells c[0..1];
ScanMasterClock BCK;

!

ScanChain icl {
ScanIn SI;
ScanOut SO;
ScanLength 2;
ScanCells shadedRegion:i[0..1];
ScanEnable SE;
ScanMasterClock CLK;

}

} // end nameless ScanStructures

// Values in CTL are waveform characters that are defined in the timing
// block as events (D, U, N, L, H, X) associated with timing within

Copyright © 2006 IEEE. Al rights reserved. 17

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

// a clock period. Details of the Timing block should be obtained from
// 1450.0. Since the timing block is a named block it needs to be
// explicitly brought into the scope of the test modes. This would
// be done through a statement in the DomainReferences. The timing
// block is needed to support the definition of the sequences that
// configure the design into the test mode. The design is configured
// into a test mode by a sequence of clock periods as defined by the
// Macros and the values are waveform characters that are supplied by
// the patterns to the Macros.
Timing T1 {
WaveformTable W2 {
Period ‘'100ns’;
Waveforms {
‘a+y+z+SE+BSE+CLK+BCK+SI+BSI’ { 01x {‘Ons’ D/U/N;}}
‘CLK+BCK’ { P {‘Ons’ D; ‘50ns’ U; ‘60ns’ D;}}
‘b+S0+BSO’ { 01x {‘Ons’ L/H/X;}}
}
}

} // end Timing

// Some protocols take in parameters. These parameters can be provided
// as values on signals, signal groups, or variables. In this example
// the variables used are defined below. Note these variables are defined
// in a nameless Variables block. Thus, the variables are global
// across the information in every test mode. If the Variables had a
// domain name associated with it, then the DomainReferences block of
// statements would have to be used in the CTLMode({}.
Variables (

SignalVariable bsivals[1..0];

SignalvVariable bsovals[1l..0];

SignalVariable sivals[1..0];

SignalVariable sovals[1l..0];

}

// All protocols that need to be described are defined in the MacroDefs
// blocks. In this example there are four protocols that are written in
// an unnamed MacroDefs block (global to all test modes).
MacroDefs
// scanbsi takes in variables and applies it as a shift operation to
// BSI and BSO. The shift register gets bsivals[1l..0] and
// simultaneously bsovals[1l..0] are observed at BSO.
scanbsi {
W W2;
C {BSE=0; BCK=0; bsivals=#; bsovals=#;}
shift { Vv { BSI= \W bsivals[1l..0]; BSO=\W bsovals[1..0]; BCK=P;}}

// scansi is similar to scanbsi but defines the sequence through which
// values in variables sivals[1l..0] are applied to scan cells through
// SI, and values in variables sovals[1l..0] are observed from scan
// cells through signal SO.
scansi {

W W2;

C {SE=1; CLK=0; sivals=#; sovals=#;}

shift { Vv { SI=\W sivals[1..0]; SO= \W sovals[l..0]; CLK=P;}}

18 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

}

// MCaptureBCK is a sequence that pulses the BCK clock to capture
// values through the functional path (BSE=1).
MCaptureBCK {

W wW2;

v { BSE=1; BCK=P;}
}
// MObserveConnection is a sequence that allows for data to be
// captured and observed through the BSO signal.
MObserveConnection {

W wW2;

Macro MCaptureBCK;

Macro scanbsi;

}

} // end nameless MacroDefs

// The block of statements that contains the primary information in CTL.
// If one was reading this example, they should start from here.
Environment design

// A nameless CTLMode block of statements carries test mode-

// independent information.

CTLMode {

// The named domain for timing information needs to be brought into
// the scope of the information in this example. If this statement
// is missing, no information in the scope of this CTLMode block of
// statements should refer to waveforms in T1l. If this statement
// is missing in this example, an error would occur when the Macros
// of this CTLMode {} are to be interpreted.
DomainReferences {

Timing T1;

}

// A container for information on the signals of the design.
Internal (

// Information on signal “a” is to follow. Another block of signal
// “a” cannot occur in this CTLMode{}. Signal “a” can be part of
// another named group in this CTLMode{}. The same is true for all
// other named signals and signal-group names in this CTLMode({}.

// Values on signal a are captured in scan cell c[0]. The
// clock that captures values in the state element c[0] is BCK.
// Values are captured on the LeadingEdge of BCK, and c[0] takes
// on a value from the Connection when this event occurs. To
// observe values through the connection, one would have to
// execute the Macro MObserveConnection. MObserveConnection
// should be in the scope of information available in this
// CTLMode({}.
IsConnected In {

StateElement Scan c[0];

CaptureClock BCK ({

LeadingEdge; StateAfterEvent Connection;

Copyright © 2006 IEEE. Al rights reserved. 19

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

}

TestAccess Observe Macro MObserveConnection;

}

——

b { // information on b.

// This is similar to the connection described on signal a.
// In this case signal b is on the receiving end of the
// connection, and it receives values from scan cell c[1].
// The clock that affects the values in c[1l] is BCK. After
// the leading edge of BCK, c[l1] would go to an Unknown state.
// Values are put into c[1l] by executing the macro scanbsi that
// is in the scope of the current CTLMode{}.
IsConnected Out

StateElement Scan c[1];

LaunchClock BCK {

LeadingEdge; StateAfterEvent ExpectUnknown;

}

TestAccess Control Macro scanbsi;
}

}

BSE { // information on BSE
// BSE is the test control signal. Specifically it is a
// ScanEnable that enables the scan configurations with a
// logic-0.
DataType TestControl ScanEnable { ActiveState ForceDown; }
}
SE { // information on SE
// SE is a test control signal. Specifically it is a ScanEnable
// that enables the scan configuration with a logic-1.
DataType TestControl ScanEnable { ActiveState ForceUp; }
}
‘BCK+CLK’ { // information on BCK and CLK
// both BCK and CLK are test control signals. They are clocks
// used for Scan Operations and Capture operations. All
// sequences in this CTLMode {} assume that these clocks are
// at a logic-0 at the beginning of every protocol.
DataType TestControl CaptureClock ScanMasterClock
{ AssumedInitialState ForceDown; }

BSI { // information on BSI
// BSI is a scan input. Since no explicit connection is defined
// using the IsConnected statement, the connection from
// the BSI to the first scan cell can be obtained from the
// scan chain definition.
// BSI is connected internally in the design as a scan-in
// where the connection is defined in the Scan chains in the
// scope of this CTLMode {}. Looking at scan chain bcl, BSI is
// connected to scan cell c[0]. The connection is enabled by
// setting BSE to a logic-0.
// BSI is of the general type TestData and specifically receives
// scan data values. BSI is the scan input of the boundary scan
// chain.
DataType TestData ScanDataln { ScanDataType Boundary; }

20 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

}

BSO { // information on BSO
// Similar to BSI, BSO’s connection is defined by the scan
// chain. BSO is connected internally to the design to c[1]
// where BSO is at the receiving end of the connection. There
// 1s no gating logic between c[1l] and BSO as no Enabling
// condition exists for the connection. BSO is of type test
// data and is a scan-out for a boundary scan chain of the
// design.
DataType TestData ScanDataOut { ScanDataType Boundary; }
}
// Similar to BSI and BSO, the SI and SO are defined as scan
// signals that are used for internal scan chains of the design.
SI { DataType TestData ScanDataIn { ScanDataType Intermal; }}
SO { DataType TestData ScanDataOut { ScanDataType Internal; }}
} // end Internal
PatternInformation

// If one needs to operate scan chains in this configuration,
// scanbsi can be used to control and observe values in scan chain
// bcl and scansi can be used to control and observe values in
// scan chain icl.
Macro scanbsi
Purpose ControlObserve; ScanChain bcl;
}
Macro scansi {
Purpose ControlObserve; ScanChain icl;
}
} // end PatternInformation
} // end CTLMode
} // end Environment

Several things that needed to be described in this example were associated with the scan chains of the
design. The information is provided through several statements. Scan chains can be defined only in the scan
structures. Connections from the boundary of the design to the scan cells are defined through the
IsConnected statement in the environment. Various aspects about the signals and the connections are
embedded along with the connection information. From the information there should be no doubt about the
relationship between scan cells and the hierarchy called shadedRegion.

The reader should perform a similar exercise to that of the previous example and see that the constructs used

are the only mechanisms in place for the information that can be described. Reading the CTL should give the
reader a crisp view of the information that was described in the paragraph before the example.

4.4 CTL for test pattern information
This example uses the same design as the previous examples.
The intent of this example is to describe test patterns in CTL. The design is to be configured in its internal

test mode such that the test patterns can be applied for testing the manufactured product. The details of
getting into the internal test configuration are the same as described in the example that described test modes

Copyright © 2006 IEEE. Al rights reserved. 21

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

for the design. That is, signals y and z of the design are to be set to logic-1 and logic-0, respectively. The test
patterns are a collection of stimulus and responses that are applied on a cycle-by-cycle basis to the inputs
and outputs of the design. The design has 100 stuckat faults when every gate of the design is faulted. Of
these faults, 99 are detected by the tests. Just to show a feature of CTL that would not be highlighted
otherwise, the information requires the event during which the test patterns capture values through the
functional path of the design be highlighted in the information.

In the explanations of this example, statements will be made to highlight certain features of the test patterns
relating to the restrictions CTL puts on STIL syntax.

STIL 1.0 {
Design 2005;
CTL 2005;

}

// The information requires the recognition of the

// boundary of the design. This is described in the Signals block outside

// the environment. This is the same as that defined in the previous

// example.

Signals {
a In { DefaultState Z;}
b Out;
vy In { DefaultState Z;}
z In { DefaultState Z;}
SE In { DefaultState Z;}
BSE In { DefaultState Z;}
CLK In { DefaultState D;}
BCK In { DefaultState D;}
SI In { DefaultState Z; S
SO out { ScanOut 2; }
BSI In { DefaultState Z; ScanIn 2;}
BSO Out { ScanOut 2; }

} // end Signals

canIn 2;}

// Some signal groups are defined for the design for ease of use in
// writing the patterns.
SignalGroups

Ins[0..3]= ‘BSE+SE+SI+BSI’;

Clocks[0..1] = ‘BCK+CLK'’;
Enables[0..1]= ‘BSE+SE’;
Outs[0..1] = ‘SO+BSO’;

} // end SignalGroups

// Some variables are defined for the parameters of the Macros that are
// written for the test patterns.
Variables ({
SignalVariable aval; // to carry only a single value for signal a.
SignalVariable bval; // to carry only a single value for signal b.
SignalVariable sivals[1..0]; // to carry stimulus for the scan cells
SignalVariable sovals[l1..0]; // to carry response data for scan cells
} // end Variables

22 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

// Some default timing data that are referenced by Macros. This is the
// same as those used in the previous examples. For details refer to
// 1450.0 and 1450.1.

Timing T1 {

WaveformTable W2 {
Period ‘'100ns’;
Waveforms {
Clocks[0..1] {oP{‘Ons’ D/D; ‘60ns’ D/U; ‘65ns’ D/D;}}
Ins[0..3] { 01x {‘Ons’ D/U/N;}}
Outs[0..1] { 01x {‘Ons’ L/H/X;}}
} // end Waveforms
} // end WaveformTable W2
WaveformTable W1l {
Period ‘'100ns’;
Waveforms
‘a+y+z+SE+BSE+CLK+BCK+SI+BSI’ { 01x {‘Ons’ D/U/N;}}
‘b+80+BSO’ { 01x {‘Ons’ L/H/X;}}
} // end Waveforms
} // end WaveformTable W1l

} // end Timing T1

//

The Macros that are written to support the patterns. CTL syntax
disallows waveform information in patterns. CTL requires the

data portion of the tests to be in the patterns and the

protocols contain the sequencing information. With this restriction
the Macros would have to define the Waveform tables used. Two macros
are written in this example, one to support the test pattern used

to detect the faults and one to support the pattern (seq) that

is written to establish the internal test mode of the design
(setupseq) .

MacroDefs forInternalTest

// seq is a sequence that takes in the following parameters.

// aval, sivals[l..0], bval and sovals[1l..0]

// This sequence first sets up the scan configuration and

// shifts in aval into the boundary scan chain and sivals[1..0]
// into the internal chain of shadedRegion. Note this information
// does not require the definition of Scan Cells. Then a labeled
// statement exists where the clocks are being pulsed. Finally,
// the scan chains are configured to shift and the values in the
// wrapper chain and internal chain are observed.

seq {
W W2;
c {aval=#; sivals=#; bval=#; sovals=#;}
C {Enables[0..1]1=01; Clocks[0..1]1=00; Ins[2..3]=xx;}
Sshift (v {BSI= \W aval; SI= \W sivals[1..0]; Clocks[0..1]=PP;}}
mylabel: V { Enables[0..1]1=10; Clocks[0..1]=PP;}

Vv { Enables[0..1]=01; Clocks[0..1]1=00;}
Shift {V{BSO=\W bval; SO=\W sovals[1..0]; Clocks[0..1]1=PP;}}
} // end seq

// This macro is used to apply values to y and z.

setupseq {
W W1;
Copyright © 2006 IEEE. Al rights reserved. 23

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

Vv { y=#; z=#;}
} // end setupseg
} // end MacroDefs forInternalTest

// The order in which the Patterns will be applied as it relates to the
// patterns that is defined to establish the test mode. This is the
// schedule of the patterns.
PatternBurst pats {
// The following MacroDefs must be in the DomainReferences of the
// associated CTLMode block that invokes the pattern burst.
MacroDefs forInternalTest;
PatList {
// If a Protocol statement exists in the PatternInformation for P3
// and all pats the information must be consistent.
P3 {Protocol Macro setupseq; }
all pats {Protocol Macro seq;}

}

} // end PatternBurst pats

// The pattern exec that contains the test patterns for the design.
PatternExec topPat (

Timing T1;

PatternBurst pats;
} // end PatternExec topPat

// The primary block of information that is being written for this
// example. A test mode is defined to be of type internal test. The
// patterns that relate to the test mode are referred to in the test mode
// but the patterns are defined outside. Since CTL follows the same
// rules for “define before referencing” as STIL, the pattern-exec
// and Pattern-Burst blocks are written before the Environment block
// of statements. The patterns are labeled as Production patterns,
// and the fault coverage is specified in the environment. The Macro
// is identified to be used to apply non-overlapped test patterns
// in this test mode. The statement with a label is identified to
// be the time when values are Captured into the memory elements
// through the functional paths.
Environment design {
// Internal test mode of the design that has its patterns and
// establishes the test mode sequence. Details of y and z remaining
// constant for the validity of the test mode are not required
// in the information that needs to be specified. However, if it
// does need to be specified, the DataType syntax would have to
// be used from the first example.
CTLMode myI (
// this test mode allows for the internals of the design to be
// tested.
TestMode InternalTest;

// the named domains need to be brought into the scope of the
// information in this test mode.
DomainReferences {

Timing T1;

MacroDefs forInternalTest;

24 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

// All the patterns to be applied in the test mode are identified
// in the PatternInformation. There could have been many more

// patterns written outside, and only some of them are relevant
// to the test mode.

PatternInformation

// Of all the pattern execs, topPat contains the patterns that
// are to be used for production testing. Within PatternExec,
// of all the bursts that may exist, only pats contains all
// the test patterns. The fault coverage of the tests is
// 99% single-stuck at coverage of faults.
PatternExec topPat {
Purpose Production;
PatternBurst pats;
Fault {
Type StuckAt UnCollapsed;
FaultCount 100;
FaultsDetected 99;

// Macro seq is identified to be used in this test mode to
// apply test pattern sequences that are not overlapped. mylabel
// in seq is a Capture event that occurs during the clock period
// associated with the statement.
Macro seqg
// also could have used forInternalTest::seq
// Since there is no ambiguity in using the shorter name seq,
// both names resolve to the same Macro. seqg is the only macro
// with that name in all the named MacroDefs blocks active in
// the current test mode.
Purpose DoTest;
Identifiers {
EventType Capture {
Label myLabel { Complete; During;}

}

}
}

// Pattern P3 is used to establish the test mode. It uses macro
// setupseq. Note that setupseqg is unique in the active

// MacroDefs. If it was not unique, the macro name would have been
// forInternalTest::setupseq

Pattern P3 { Purpose EstablishMode; Protocol Macro setupsedq; }

// Pattern all pats applies scan patterns and uses macro seq.
Pattern all pats { Purpose Scan; Protocol Macro seq; |}
} // end PatternInformation
} // end CTLMode myI
} // end Environment design

// Definition of pattern P3. It supplies data to the Macro setupseq.

Copyright © 2006 IEEE. Al rights reserved. 25

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

Pattern P3 {
P {y=1; z=0;}

// Definition of pattern all pats. It supplies data through variables
// in this example. Note patterns only call protocols and supply the
// data to the protocols. CTL syntax does not allow for V statements
// in Patterns. In this example all pats is defined to use a Protocol
// that is defined as a Macro named seq.
Pattern all pats {

P {aval=1; sivals[1..0]1=10; bval=0; sovals[l..0]=11;}

P {aval=1; sivals[1..0]1=10; bval=0; sovals[l..0]=11;}

// many more calls to Macro seq (see Protocol statement for name).
} // end all pats

The example shows test patterns that are provided in CTL. Although no information was provided on Macro
setupseq in this example, it could have been referenced in the PatternInformation block as a sequence with a
ModeControl purpose and to be used by patterns that establish the test mode.

4.5 Beyond the examples

The examples describe a portion of the constructs in CTL that could be used to convey information to the
core user. The keywords in the examples are a limited subset of the keywords available in the language. CTL
can be used to describe digital information for many designs and different test methodologies. Combined
with the number of use models for the CTL information, it is impossible to describe every scenario. With the
examples described, the reader is expected to understand the basic mechanism behind writing CTL. With
that understanding and the definitions of the statements allowed, the reader should be able to describe test
information for digital ICs.

The reader should be aware that this standard has restricted STIL in certain ways by defining extensions to
1450.0 and 1450.1. As aresult, CTL patterns are different from patterns that are written using just the syntax
defined in IEEE Std 1450-1999, IEEE Std 1450.1-2005, and IEEE Std 1450.2-2002. The syntax and
restrictions on patterns defined in this standard are very important for the reusability of test patterns in SoC
flows where test patterns are mapped from the core boundary to the SoC boundary. The mechanism
supported by CTL allows for protocols to be changed or replaced without having access to or modifying the
bulk of the test pattern data, which lies in the Pattern blocks. The reader should also be sensitive to a basic
difference between STIL (1450.0, 1450.1, and 1450.2 syntax) and CTL (1450.6, 1450.0, 1450.1, and 1450.2
syntax) that exists:

— In STIL the Environment block is a user defined block that provides some more information about
the patterns. In CTL the Environment is the primary block of information, it utilizes constructs out-
side its environment to complete its information that is partitioned across test modes.

— CTL restricts the grouping of signals and variables to allow for explicitness and bit-indexing capabil-
ities when partial load and unload operations are performed on the scan chains.

— CTL restricts pattern constructs to separate the data and protocol portions of patterns for reusability
of tests.

— CTL understands the concept of hierarchy through core-instances.

During the design of CTL, care has been taken to define a single mechanism to describe any given construct.
For example, scan cells can only be defined in ScanStructures. Hierarchy can only be represented in

CoreTypes and Corelnstances. However, depending on the information to be described, the scan chains can
be written to show or not show the hierarchy. The choices will lie in the user flows being constructed.

26 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Similarly the informational needs may spread the information to be described in single or multiple CTL test
modes (CTLMode blocks). However, there is only one way to describe a DataType of a signal.

5. Extensions to IEEE Std 1450-1999 and IEEE Std 1450.1-2005

5.1 STIL name spaces and name resolution

The special characters “:”” and “::” as defined in 1450.1 are used to concatenate two user-defined names that
follow 6.8 of IEEE Std 1450-1999. With this addition, any entity within a domain can optionally be
identified across all constructs in CTL (inside or outside the Environment) as D::E, where D is the domain
name and E is the entity name. The prior mechanisms allowed by IEEE Std 1450-1999 for identifying the
entities without the “::” as defined in 6.16 of IEEE Std 1450-1999 remain when no ambiguity exists in the
identification of the entity. Similarly, with this addition, the “:” operator can be used to concatenate the core
instance name to the entity name (E or D::E) to identify entities of the core instance. The names in this case
take on the form C:E or C:D::E. In each case, C, D, and E are required to follow the naming conventions
defined in 6.8 of IEEE Std 1450-1999. The fully expanded name of an entity is required to be unique across
all entities of the same type.

Thus, this extension allows for a scan cell name cl that is defined in Corelnstance il to be used as part of the
scan chain definition of a ScanStructures outside the Core. This cell would be identified as il:cl when used
in a ScanStructure as defined by IEEE Std 1450-1999 or IEEE Std 1450.1-2005. This extension allows any

[T

signal groupname used in a pattern to be referenced along with its domain name with the “::” separator.

5.2 Optional statements of IEEE Std 1450-1999

IEEE Std 1450-1999 is not specific about the optional and required blocks. CTL’s usage of the constructs
requires that all constructs be optional. The statements as identified in Table 7 and Table 8 of
IEEE Std 1450-1999 are all optional in CTL. The statements are used when required to support the
informational needs of the CTL being written. When the statements are used the define before use ordering
as required by STIL still remains for these statements (also see 9.3 of IEEE Std 1450-1999).

Although all statements in CTL are optional, it is very difficult to write a typical CTL file without a Signals
block and the Environment block. Furthermore, test patterns that are targeted for execution require the
existance of the PatternExec statement and a PatternBurst statement. Thus, there is a requirement that if a
Pattern statement exists outside of the EstablishMode or TerminateMode patterns in the CTL mode being
described, then a PatternExec and PatternBurst must exist that invoke that Pattern.

5.3 Restricting the usage of SignalGroup and variable names

Values that are passed into Macros and Procedures could be SignalGroups or Variables. When the non-
bussed representation (without []) is used to provide scan data, the data are assumed to represent a complete
shift operation (full operation of the scan chain). When partial scan operations are performed, the syntax for
the parameters (signal-group or variable) is required to use the bussed naming convention in the protocols
(Macros and Procedures) to explicitly define the number of shift operations in the load—unload of the scan
chain.

Copyright © 2006 IEEE. Al rights reserved. 27

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

5.4 Additional reserved words
Table 1 lists all STIL reserved words defined by this standard and not defined in IEEE Std 1450-1999 or

IEEE Std 1450.1-2005. Subsequent clauses in this standard identify the use and context of each of these
additional reserved words.

Table 1—Additions to STIL reserved words

CTL, CoreType, Corelnstance
Protocol
Setup

5.5 STIL statement—extensions to IEEE Std 1450-1999, Clause 8
5.5.1 General

The STIL statement as defined in IEEE Std 1450-1999 identifies the primary version of IEEE Std 1450-1999
information contained in a STIL file and the presence of one or more standard Extension constructs.

All other constructs and restrictions for IEEE Std 1450-1999, Clause 8 are in effect here.

5.5.2 STIL syntax

STIL IEEE 1450 0 IDENTIFIER { €]
(EXT_NAME EXT_VERSION;)+)
} // end STIL

5.5.3 STIL syntax description

(1) STIL: A statement at the beginning of each STIL file.

IEEE_1450 O IDENTIFIER: Defined to be 1.0. The primary version of STIL, as identified by
IEEE Std 1450-1999.

(2) EXT_NAME: The specific name of the Extension. This syntax of this standard is identified by the name
CTL. Although the CTL concept and mechanisms include 1450.1, the associated ext_name for 1450.1

(namely Design) should be used to indicate use of syntax defined by 1450.1. Refer to IEEE Std 1450.1-
2005 for details.

EXT_VERSION: The primary version of an EXT_NAME. This version of the standard is identified by the
value 2005.

5.5.4 STIL syntax example
STIL 1.0 {

Design 2005;
CTL 2005;

28 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

5.6 Extensions to IEEE Std 1450-1999, 17.1 and 23.1
5.6.1 General

The pattern-statements allowed within the Pattern block are limited to procedure calls and macro calls
(defined in Procedures and MacroDefs) and a subset of STIL statements that do not impact the cycle-count,
the predictability of when the protocols are invoked by the pattern, and the ability to change the way the
patterns are applied without changing the data portion of the patterns. Thus, the following statements are
allowed from IEEE Std 1450-1999:

a) Call and Macro statements
b) Loop statement

¢) Goto statement

d) BreakPoint statement

The following statement is allowed from IEEE Std 1450.1-2005:
e) Xref statement
5.6.2 Pattern block syntax

To support the syntax in the patterns, a supporting Protocol statement is added outside the Pattern, in the
PatternBurst, and the corresponding location in the PatternInformation in cases where PatternBursts do not
exist. The following syntax is relevant to 1450.6. In the PatternBurst syntax, two new statements are added
to the existing syntax defined by 1450.0 and 1450.1. The Pattern syntax from 1450.0 or 1450.1 that does not
appear below is not allowed in CTL as it does not support the data-protocol separation mechanism:

// The following syntax of PatternBurst defines incremental statements
// to the existing statements defined by 1450.0 and 1450.1
PatternBurst PAT BURST NAME {

(Protocol <Macro MACRONAME (SETUP_MACRONAME) 3)

| Procedure PROCNAME (SETUP_PROCNAME)>;)
(<PatList | PatSet |
ParallelPatList (SyncStart | Independent | LockStep)> {
(PAT NAME OR BURST NAME {
(Protocol <Macro MACRONAME (SETUP_MACRONAME) 4
| Procedure PROCNAME (SETUP_PROCNAME)>;)

P+

The following syntax reflects the only syntax allowed in Patterns. Patterns are allowed to be defined either
with the P-syntax or with Macros and Procedures. A single Pattern cannot use both mechanisms:

Pattern PATTERN NAME

(Setup { (sigref_;cpr =value variable_expr;)* }) 6)
<((LABEL:) P))* | ©)
((LABEL:) P { (sigref _expr = value variable_expr;)*})*> @)

// Pattern-statements that are allowed from the ones defined in
// 1450.0 and 1450.1

((LABEL:) Loop LOOPCNT { (P-statements)* })*

((LABEL:) Goto LABELNAME;) *

((LABEL:) BreakPoint;)*

Copyright © 2006 IEEE. Al rights reserved. 29

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450

.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

((LABEL:) X TAG;)*

}
// OR

Pattern PATTERN NAME {

// Pattern-statements that are allowed from the ones defined in

// 1450.0 and 1450.1. For definitions of the statements,

// refer to the approprite standard where they are defined.

((LABEL:) Macro MACRONAME;)* ®)
((LABEL:) Macro MACRONAME { (sigref expr = value variable expr;)*})* ©)
((LABEL:) Call PROCNAME;)* (10)
((LABEL:) Call PROCNAME { (sigref expr = value variable _expr;)*})* (11)
((LABEL:) Loop LOOPCNT { (Macro-or-Procedure-calls)* })* (12)
((LABEL:) Goto LABELNAME;)* (13)
((LABEL:) BreakPoint;)* (14)
((LABEL:) X TAG;)* (15)

}

5.6.3 Pattern block—syntax descriptions

Two types of Patterns are allowed, as follows:

a)

b)

Patterns using the P-statement require the use of the Protocol statement to define the Macro or
Procedure being invoked. Patterns limited to using the P-statement allow for maximum test pattern
reusability. Patterns provided in this format can be synchronized with other patterns even when there
are dependencies between patterns. The protocols used by the patterns are retargetable and usable
with the ParallelPatList-LockStep construct. The data are to be specified by the patterns, and the
protocol is to be specified by the Macros and Procedures. Any sequencing within a single test
pattern unit (for example, an ATPG test pattern for a stuck-at fault) is to be in a single protocol. The
protocol can be subdivided into smaller protocols, with Macros or Procedures calling other Macros
and Procedures. As limited by the syntax, Patterns are allowed to call only a single protocol multiple
times and supply different values for the parameters that represent the data portion of the patterns.
This restriction prevents sequencing of the protocols in the patterns to occur, which assists in CTL’s
need to support pattern reuse without modifying the patterns or looking at details inside the patterns.
That is, outside of the setup sequence, a pattern cannot call a protocol that executes a sequence and
call another protocol to execute another sequence. For examples of this syntax, refer to 4.4.

Patterns are limited to calling Macros and Procedures. However, no restrictions are created for the
partitioning of the sequencing information across the Macros and Procedures. Pattern reuse relies on
changing the protocol invoked by the Patterns. Restricting patterns to call Macros and Procedures
allows for this capability. ParallelPatList-LockStep requires synchronizing patterns that cannot be
performed if the patterns do not follow the restrictions of Patterns provided with the P-statement. As
this method of representing patterns separates data and protocols, albeit limited, pattern reuse can
still be performed by replacing the protocols. In this format, without the ability to rewrite the
complete pattern data, all test pattern reuse tasks are limited to changing the sequencing activities
within each protocol. As this syntax represents restricted STIL, the example explanations in
IEEE Std 1450-1999 and IEEE Std 1450.1-2005 should be sufficient.

Test patterns represented with P-statements is the preferred method for maximum flexibility for test pattern

reuse.

Protocols in CTL are written as Macros and Procedures. Patterns using statements (5), (6), and (7) are
restricted to calling only a single protocol outside of the first invocation, which is the setup protocol.

30

Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Because of this restriction, the calls to Procedures and Macros in Patterns can be prespecified in the
PatternBurst syntax. Statement (3) and (4) identify the protocol used by the patterns that are being invoked.
The protocol could be either a Macro or a Procedure, and the appropriate name follows in the MACRONAME
or PROCNAME. The syntax [statements (3) and (4)] shown highlights the incremental constructs allowed in
CTL for the pattern bursts in addition to the ones defined in IEEE Std 1450-1999 and IEEE Std 1450.1-
2005. The Protocol statement is not allowed to be used for Patterns that do not have the P-statement. An
optional Setup statement is allowed in a Pattern. If this statement occurs, it is expected to be the first
statement within the Pattern. The setup statement is required to call the same type of protocols (Macro or
Procedure) as that used by the P-statements that follow. The Setup pattern calls a macro or procedure with a
name SETUP_ MACRONAME or SETUP_PROCENAME as defined by the Protocol statement for the Pattern. There
cannot be a Setup statement in a Pattern with no P statements to follow.

(3)—(4) Protocol: This keyword begins the statement that identifies the Macro or Procedure to be applied
from P-statements in the Patterns. There are two forms of the Protocol statement, one for Macros and one
for Procedures. For any given Pattern or PatternBurst, this statement shall be consistent with the Protocol
statement in the PatternInformation block of statements for the associated pattern or burst. This statement
shall be present only when the Patterns contain P-statements. A PatternBurst that invokes Patterns with
the P-statement is required to have the Protocol statement. It is an error to use this statement for Patterns
that do not require it.

If an associated MacroDefs or Procedures statement is used in the PatternBurst, then the Protocol
statement is expected to appear after the statement that identifies the block where the Macro or Procedure
is defined. Statement (3) is used when all Patterns to follow (in the PatList/PatSet/ParallelPatList) invoke
the same protocol. Statement (4) is used on a pattern-by-pattern statement to identify the name of the
protocol used by the patterns.

Macro MACRONAME (SETUP_MACRONAME): This part of the Protocol statement is used to identify the
macro name that is invoked by the patterns. The MACRONAME is expected to be a valid name of a
macro within the scope of the test mode that uses the PatternBurst with this statement. The optional
SETUP_MACRONAME identifies the name of the macro that is invoked by the optional Setup statement
in the Pattern. If a SETUP_ MACRONAME is defined in this statement, there shall be a corresponding
Setup statement in the Pattern.

Procedure PROCNAME (SETUP_PROCNAME): This part of the Protocol statement is used to identify the
procedure name that is invoked by the patterns. The PROCNAME is expected to be a valid name of a
procedure within the scope of the test mode that uses the PatternBurst with this statement. The
optional SETUP_PROCNAME identifies the name of the procedure that is invoked by the optional Setup
statement in the Pattern. If a SETUP PROCNAME is defined in this statement, there shall be a
corresponding Setup statement in the Pattern.

The Pattern syntax in one of its forms is primarily limited to multiple occurrences of the P-statement and an
optional Setup statement. This Pattern format requires the Protocol statement in the PatternBurst that
invokes the Pattern or the Protocol statement in the PatternInformation block. The statements are allowed to
be labeled with a LABEL, which is the same as that defined in IEEE Std 1450-1999. In addition, the Loop,
Goto, Breakpoint, and X statements are allowed.

(5) Setup { }: This statement can occur only as the first statement in a Pattern block. This invokes a
Protocol (Procedure/Macro) as defined by the Protocol statement in the associated PatternBurst or the
Protocol statement on the PatternInformation of the associated Pattern. The Protocol statement shall exist
in at least one of the two locations. If a PatternBurst exists that invokes Patterns with the Setup statement,
the Protocol statement is required in the PatternBurst. If it appears in the PatternInformation and the
PatternBurst invoking this pattern, then the information shall be consistent or an error condition exists.
The Setup statement cannot be embedded within a loop in the Pattern such that it is executed twice.

Copyright © 2006 IEEE. Al rights reserved. 31

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(6) P: This invokes a Protocol (Procedure/Macro) once with no parameters. The procedure or macro name
is defined by the Protocol statement in the associated PatternBurst or the Protocol statement on the
PatternInformation of the associated Pattern. The Protocol statement shall exist in at least one of the two
locations. If a PatternBurst exists that invokes Patterns with the P-statement, the Protocol statement is
required in the PatternBurst. If the Protocol statement appears in the PatternInformation and the
PatternBurst invoking this pattern, then the information shall be consistent or an error condition exists.

(7) P { }: This invokes a Protocol (Procedure/Macro) once with parameters. The procedure or macro name
is defined by the Protocol statement in the associated PatternBurst or the Protocol statement on the
PatternInformation of the associated Pattern. The Protocol statement shall exist in at least one of the two
locations. If a PatternBurst exists that invokes Patterns with the P-statement, the Protocol statement is
required in the PatternBurst. If the Protocol statement appears in the PatternInformation and the
PatternBurst invoking this pattern, then the information shall be consistent or an error condition exists.

In the second format, the Pattern syntax is primarily limited to Macro and Procedure calls. This format of the
Pattern syntax cannot be used in conjunction with the Protocol statement. The Macro and Procedure calls are
used to separate the data from the protocol information such that the protocol can be modified without
having access or having to modify the data in the Patterns. The data are provided to the Macros and
Procedures as parameters. The definition for these statements should be taken from the associated construct
in IEEE Std 1450-1999 and IEEE Std 1450.1-2005.

(8), (9), (10), (11) See IEEE Std 1450-1999 and IEEE Std 1450.1-2005.
In addition to the statements defined above, the following statements are allowed in the Patterns.

(12) The Loop statement is defined by IEEE Std 1450-1999. This statement is restricted by CTL to loop
on multiple Macros, Procedures, or multiple P-statements as allowed by the type of Pattern syntax. The
LOOPCNT is not allowed to impact the length of a shift-like operation (defined as a Shift or serialized
version of it) within the protocols invoked within the Loop. That is, there should be no relationship
between the LOOPCNT and the length of scan data.

(13) The Goto statement is defined by IEEE Std 1450-1999. This statement is not allowed to be used in
situations that would cause infinite loops or unpredictable cycle-counts.

(14) The BreakPoint statement is defined by IEEE Std 1450-1999.

(15) The X statement is defined in IEEE Std 1450.1-2005. This statement is used to tag statements similar
to the mechanism of the label allowed with every statement, with the difference that the tag need not be
unique. For details, refer to the associated standard document.

5.7 Extensions associated with the LockStep construct of Clause 13 of
IEEE Std 1450.1-2005

5.7.1 General

When signal resources are shared between cores across multiple patterns, the patterns need a
synchronization mechanism that is explicitly defined by a common protocol (Macro or Procedure). The
rules of LockStep defined in 1450.1 provide the generic framework for this synchronization and remain
consistent with the refinements defined in this standard. The refinements of LockStep are defined here. The
following are the additional requirements for the LockStep construct:

a) Only Patterns that use the P-statement syntax are allowed to be used with the LockStep construct.

b) All Macros or Procedures that are invoked by patterns under LockStep shall be active within the
scope of a single test mode.

32 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

c) All protocols of the patterns that are under LockStep are required to resolve to the same macro/
procedure that is identified as a LockStep macro/procedure. This may occur through an indirection
of Macro or Procedure calls.

d) When a pattern or set of patterns under LockStep has a different number of calls to the common
Macro or Procedure than the other pattern or set of patterns it is synchronized with, all (set of)
Patterns with fewer calls to the protocol are assumed to have automatic padding at the end that is
defined as calls to the common protocol without any values provided for the parameters.

5.7.2 Associated syntax constructs (extensions to 24.1 and 24.3 of IEEE Std 1450-1999)

Common Macros and Procedures that are used by patterns under LockStep are defined along with the other
protocols. These special common Macros and Procedures are identified by a LockStep keyword. The names
of the parameters are required to use their fully qualified name, which includes the domain name. The syntax
is as follows:

MacroDefs (MACRO DOMAIN NAME) {
(MACRO_NAME (LockStep) {
(PATTERN_STATEMENT)*
*
§
Procedures (PROCEDURE_DOMAIN NAME) {
(PROCEDURE_NAME (LockStep) {
(PATTERN_STATEMENT)*
*
§

The MACRO NAME and PROCEDURE_NAME defined with the LockStep keyword are in the same name space
as their parallel constructs without the keyword defined in MacroDefs and Procedures, respectively. The
PATTERN_STATEMENTS allowed and requirements are the same as those allowed in Macros and Procedures
as defined by IEEE Std 1450-1999, IEEE Std 1450.1-2005, and this standard. The following requirements
are to be used for Macros and Procedures defined with the LockStep keyword:

a) All names of entities in domained constructs such as variables, signal groups, timing, and nested
macros or procedures are used with the naming convention DOMAIN NAME::ENTITY NAME or
ENTITY_NAME when there is no DOMAIN_NAME. For example, the signal group “allsignals” defined
in the named SignalGroups block “mygroups” would be refered to as mygroups::allsignals. The
DOMAIN_NAME is mygroups, and the ENTITY NAME is allsignals.

b) Calls to protocols (Macro or Procedure) within these special LockStep protocols are limited to only
protocols that are identified with the LockStep keyword.

LockStep Macros and Procedures can be invoked by Macros, Procedures, or Pattern constructs in the same
way the Macro in the MacroDefs blocks is called and the Procedure in the Procedures blocks is called.

5.7.3 Description of the LockStep construct

CTL has been designed for the manipulation of protocols without modifying the test patterns or even having
the test patterns available. As a result, all synchronization information across multiple patterns needs to be
explicit in the protocol portion of the patterns. Explicitness is achieved through a common protocol.

5.7.4 Example of the LockStep construct

Lockstep is created to support the reusability of test patterns of the cores. In test pattern reuse, cores come

with their own patterns that are written to the boundary of the core. When the cores are embedded in an SoC,
these patterns are invalid in the existing form as they are specified to internal points of the SoC. System

Copyright © 2006 IEEE. Al rights reserved. 33

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

integration tasks reuse the test patterns at the embedded core boundary with a rewrite of the protocols but not
the bulk pattern data. Test patterns in CTL have the Pattern (data portion of the test) calling the Macro or
Procedure (sequence portion of the test). When the core is embedded in an SoC without any dependencies
on other cores, the retargeted patterns do not require any synchronization with other patterns and the
LockStep construct is not useful. However, if patterns from different cores have dependencies on each other,
then synchronization is required.

The intent of this example is to create a design that takes two existing cores with one scan chain each and to

integrate them at the chip level by creating a single scan chain (Figure 5). The CTL describes the patterns of
the resulting chip.

C12 is the SoC boundary

clk2
clkl corel \— core2
SI12 Sl I <ol 2 I <o SO12
SEI 1 sl abc) Xyz
SE2

Figure 5—Example design in which two cores are integrated by connecting their scan
chains to form a single larger scan chain

The two cores came with their own patterns that had no dependencies between them as they were written to
the context of an isolated design. However, the integration process has created dependencies between these
patterns. In this case, the dependency is of the sharing of the common scan-in and scan-out by daisy chaining
the scan chains of the cores. The integrated patterns would use the LockStep construct to resolve these
dependencies.

In the example that follows, core corel came with patterns P1, which would have called a Macro that was
written to the boundary of corel. Similarly, core core2 came with patterns P2, which would have called a
Macro that was written to the boundary of core2. In the SoC design (named C12), the system integrator has
connected the scan chains of the cores as shown Figure 5. The remapped patterns call the same Macro
(namely M12), and the resulting patterns that operate on the SoC boundary would be as follows:

STIL 1.0 {
Design 2005;
CTL 2005;
}
Signals ({
SI1l2 In; SO12 Out;
SE1 In; SE2 In; clkl In; clk2 In;
}
// Timing is not the focus of the example; details not shown.
Timing { WaveformTable WBoth ({
// timing details not shown
)

Variables corel {
SignalVariable scaninvals[5..0];

34 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

SignalvVariable scanoutvals[5..0];
}
Variables core2 {
SignalVariable scaninvals[3..0];
SignalVariable scanoutvals[3..0];
}
MacroDefs
M12 LockStep ({
W WBoth;
// Refer 1450.0 and 1450.1 for explanations for
// # and the C statement.
c { corel: :scaninvals=#; corel::scanoutvals=#;
core2::scaninvals=H#; core2::scanoutvals=#;
SE1l = 1; SE2 = 1;}
shift { v{ SI12 = \W core2::scaninvals[3..0]
\W corel::scaninvals[5..0];
S012 = \W core2::scanoutvals[3..0]
\W corel::scanoutvals[5..0];
clkl=P; clk2=P}}

}
}

PatternBurst Bl ({
ParallelPatList LockStep {
// Pl and P2 are redirected to call M12 instead of their

// respective macros that were written to the core boundary.
P1 {Variables corel; Protocol Macro M12;}
P2 {Variables core2; Protocol Macro Ml2;}
PatternExec el {
PatternBurst B1l;

Environment
CTLMode coretestsl2
TestMode InternalTest;
DomainReferences
Variables corel core2;

}

PatternInformation {
PatternExec el { Purpose Production; PatternBurst BL1;}

PatternBurst Bl { Purpose ChainContinuity; }

}
}

// Original patterns that came with the cores. They remain untouched
// here. However, in this example, they are valid from the boundary
// of the SocC.

Pattern Pl
P{ scaninvals[5..0]1=101010; scanoutvals[S..O]=LLHHLL;}

Pattern P2
P { scaninvals[3..0]=1111; scanoutvals[3..0]=LHLH; }

Copyright © 2006 IEEE. Al rights reserved. 35

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

6. Design hierarchy—cores

6.1 CoreType block and Corelnstance statement

The CoreType block refers to an internal level of hierarchy or a subdesign that is created by an imaginary
boundary in the design, which is refered to as a core. This construct shall be used in situations dealing with
hierarchical cores. This entity internal to the design has CTL on its boundary, and the Environment of the
CTL that is being integrated into the design is pointed to by the keyword CoreEnvironment. There may be
multiple instances of a subdesign; in which case, multiple core instance names are specified. There shall be
only one CoreType block for each core type used in a design.

(CoreType CORE_TYPE NAME { (1
(CoreEnvironment CORE _ENV_NAME;) 2)
(Corelnstance CORE TYPE NAME { 3)

(CORE_INSTANCE NAME;)+

})* // end Inherited CoreType- Instance definition

(Signals { 4
core_signal_definitions

}) // end Signals

(SignalGroups (DOMAIN NAME) { %)
core_signal_group definitions

})* // end SignalGroups

(ScanStructures (SCAN_STRUCT NAME) { 6)
core_scan_structure_definitions

})* // end ScanStructures

D*// end CoreType

(Corelnstance CORE TYPE NAME { @)
(CORE_INSTANCE NAME;)+

H*

6.2 CoreType block syntax descriptions

(1) CoreType: This statement begins the definition of the block that defines a level of hierarchy within the
design or a subdesign that is created by an imaginary boundary in the design. There can be multiple
instantiations of the named core type in the design as specified by the Corelnstance statement (7). This is the
only mechanism that is to be used to define a hierarchy in the design.

CORE_TYPE NAME: It identifies the core type definition with a name. This name shall be unique across all
core types of the design. The core type name shall follow the naming conventions for user-defined names
as defined by IEEE Std 1450-1999.

(2) CoreEnvironment CORE_ENV_NAME: Every reusable design entity is expected to be represented in
CTL. Through this statement, the history of the Environment that was used to integrate the core into the

design is maintained. CORE_ENV_NAME is the name of the Environment block in the CTL file that came with
the reused design that is represented by the current CoreType (1).

36 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

(3) Corelnstance CORE_TYPE NAME: This statement is used to define a core that is embedded inside
another core. This operation defines instances of the inherited core (CORE_TYPE NAME) in the current core
type as identified by the embedded CORE_INSTANCE NAMESs. The CORE_TYPE NAME is required to be a valid
CoreType within the current CTL.

CORE_INSTANCE_NAME: The instances (CORE_INSTANCE NAME) are defined for the embedded
Corelnstances to define several instances of the CORE_TYPE_NAME. The contents of these instances are
accessed by prefixing the names of the inherited information with CORE_INSTANCE_NAME followed by a
“”. The core_instance_name should be a valid user defined name that follows the naming convention
defined in IEEE Std 1450-1999.

(4) Signals: This block (analogous to the global Signals block of the top-level design) defines the signals of
this core type. The signals are available to the top level by referencing as core inst name:signal name. All
statements defined in IEEE Std 1450-1999 in the Signals block are allowed to be used on the CoreType
definition of the Signals. These signals define the hierarchical boundary of the embedded design.

(5) SignalGroups: Analogous to the SignalGroups for the top-level design, the signals of the CoreType
being described can be grouped. The signal-groups are available to the top level by referencing as
core_inst name:signal group name. If multiple signal-group domains exist, the names are specified as:
core_inst name:domain_name::signal group name.

(6) ScanStructures: This block defines the scan structures that are contained within this core type. The
scan structures definition is the same as that of the Scan Structures defined by IEEE Std 1450-1999 and
IEEE Std 1450.1-2005. The signal names used to define the scan chains are required to be part of the Signals
block defined within the CoreType block. The scan cells are available to the top level by referencing as:
CORE_INSTANCE_NAME:(DOMAIN NAME::)CHAINNAME or CORE_INSTANCE NAME:CELLNAME.

(7) Corelnstance CORE _TYPE NAME: This statement is a top-level statement that defines the instance
names of all cores of a given type. The CORE_TYPE NAME is required to be a valid CoreType within the
current CTL.

CORE_INSTANCE_NAME: A unique core instance name across all Corelnstances-CORE_TYPE NAME
blocks that follows the naming conventions defined by IEEE Std 1450-1999. This name represents a
hierarchy at the top level of the design for which the CTL is being written. As a result of this definition,
all entities defined in the associated CoreType (CORE_TYPE NAME) of this block of statements are
prefixed with the CORE_INSTANCE NAME followed by a “:”. Subcores of this core instance are uniquely
identified by the concatenation of the core instance names separated by “:”. The names are concatenated
in the order beginning with the highest hierarchical entity to the embedded entity.

6.3 CoreType block code example

This is a CoreType code example for an integrated chip that has two instances of core egcore embedded. The
two instances are named A/ and 42.

CoreType egcore ({
Signals { s[1..10] In; si core In; }
SignalGroups { g1[0..4] = ‘s[1..5]’'; g2[0..4] = ‘s[6..10]"; }
ScanStructures {
chainl {
ScanCells c[0..5];
}

}
}

Corelnstance egcore { Al; A2; }

Copyright © 2006 IEEE. Al rights reserved. 37

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

// The names of the signals on Al are Al:s[1l..10] and Al:si core.
// The names of the signals on A2 are A2:s[1..10] and A2:si core.

Environment { CTLMode ({

CoreInternal {
Al:s[1] { /* information on the signal */ }
Al:gl[1..4] { /* information on the signal */}
Al:si core { /* information on the signal */}
A2:s[1..10] { /* information on the signal */ }
A2:si core { /* information on the signal */}

}

ScanInternal {
Al:c[0..5] { /* information on the scan cells of Al */ }

}
b}

NOTE—No domain names exist in these definitions. If domain names existed, they would be optionally used to create
unique names that could take the form CorelnstanceName:DomainName::entityname

7. Cell expression (cellref_expr)

A cellref expris defined to be a similar construct to the sigref expr as defined by 6.14 of IEEE Std 1450-1999.
Instead of signals and signal-group names the cellref expr allows cells and cell-groups to be used. The cell
expressions define an ordered list of cells; they are either a single token, or an expression enclosed in single
quotes. Cell expression operators are plus (+), minus (-), ellipsis (..), and parenthesis. These operators are not
extendable. Expressions are evaluated left to right, with parenthesis used to override this order. Cells
referenced in cell expressions may occur only once in the subexpressions generated during evaluation of the
expression. The content of cell groups are to be evaluated assuming an implicit plus (+) operator between the
list of cells it represents.

Just like its counterpart, the cell expression shall not “remove” a cell (using a minus operator) that is not part
of an expression as currently defined, and an expression shall not “add” a signal (using the plus operator)
that is already part of an expression as currently defined.

The above represents a parallel construct of the sigref expr with an assumed plus operator between cell
names that are part of cell groups. Refer to examples of sigref expr in IEEE Std 1450-1999 for more explicit
use of the operators.

Example Syntax of cellref expr:

ScanStructures {
ScanChain grpl f{
ScanLength 10; ScanCells {aal0..9];}
1
ScanChain grp2 {
ScanLength 10; ScanCells {bb[0..9];}
!
ScanChain grp3 ({
ScanLength 30; ScanCells { grpl; grp2; ccl0..9];}

}

38 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

}

Environment { CTLMode foo { ScanInternal {
grp3 { // information on grp3 }
‘grp3-cc(1,3,5,7,9]" { // information on individual scan cells
// after removing cc[1], ccl[3], cc[5], ccl7], ccl[9] }
1

8. Environment block—extensions to IEEE Std 1450.1-2005,
Clause 17

8.1 General

The Environment block is a block in STIL for the purpose of defining data about the design. This data may
include raw attributes as defined in this standard, sequence information about the design configuration, or
pattern data.

In CTL, the Environment block is the top-level block that contains information regarding the design. When
information in the Environment requires STIL constructs, a reference is created in the Environment to the
STIL construct and the construct is defined outside of the Environment. For example, design entities are
named by reference in sigref expr’s and cellref expr’s. Pattern constructs are refered to by name in the
Environment. As such, the positioning of the Environment block will be after all of the referenced blocks to
satisfy the define before use requirement of STIL. It typically will be immediately before the Pattern blocks.

Although multiple Environment blocks can exist for a design, only one named environment block is
assumed to contain all necessary CTL information. In case no named environment block exists, then the
global (nameless) Environment block is to be used. Thus, multiple orthogonal-named Environment blocks
can be created for a design to describe completely different test methodologies with the understanding that
only one is to be used.

8.2 Definition of FileReference keywords

The FileReference statement as defined in 1450.1 is reproduced below for reference. In 1450.1, the Type and
Format statements are defined, but the definition of the keyword parameters are left to the individual
environment to define. Below are the keywords as defined for use in this CTL standard:

(FileReference “FILE PATH NAME”;)*
(FileReference “FILE PATH NAME” {
Type file_type ;
Format <pattern_file format | design file format | layout file format | fault list file format |
script_file format | doc_file format>;
Version “VERSION NUMBER” ;
})* // end FileReference

file_type =
< Pattern
| Design
| Layout
| FaultList
| Seript
| Documentation

Copyright © 2006 IEEE. Al rights reserved. 39

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

| User USER_DEFINED >

pattern_file format =
<STIL
| WGL
| Verilog
| VHDL
| VCD
| User USER DEFINED >

design_file format =
<CTL
| EDIF
| Verilog
| VHDL
| User USER DEFINED >

layout _file format =
< GDSII
| DEF
| LEF
| Oasis
| User USER DEFINED >

fault list_file format =
<DTIF
| User USER_DEFINED >

script_file format =
< AWK
| Perl
| SED
| Python
| Tel
| User USER DEFINED >

doc_file format =
<HTML
| PDF
| Postscript
| RTF
| Text
| User USER DEFINED >

FileReference “FILE PATH NAME”: The FileReference statement is used within an Environment block to
specify various other files associated information that is not already in the scope of the CTL through the
include statement. The content and application of the referenced files are specified by this statement. All
constructs referenced by the ForeignPatterns statement in CTL shall have a FileReference statement.
Refer to 1450.1 for details on the FILE PATH NAME.

Type file_type: Specifies the type of this file. The file type shall be one of the specified types, or else User
followed by the user type name.

40 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Pattern: Any of the pattern file formats as enumerated below in the pattern file formats. Pattern
files contain the information that defines the input logic values and expected logic values of the
device under test. Normally a detailed timing for these logic levels is included or a timing file is
referenced. Likewise, logic levels, that is, the actual physical values to be forced and sensed, are
included or included by reference to another file.

Design: Design files contain the behavioral, logical, and structural description of the device. A
design file shall define the behavior and/or logic of the device, or detail the structure of the device.
Various forms of the design are enumerated below in the design file format.

Layout: Any of the formats enumerated in the layout file format that describes the physical form
of the device as is implemented to conform to the behavior specified in the design file. This file, as
well as the design file, is needed to fabricate the final device. The layout is valuable in predicting
the actual timing behavior as well as the logical behavior of the device.

FaultList: A file documenting the faults by various fault criteria that are associated with the design.
Usually some kind of coverage metric is included that indicates what level of fault detection is
achieved by an associated test program.

Script: A file that is referenced in the CTL because it is useful for performing some automated
process in test generation or design. These are typically executable files that operate on one or more
of the other files in this list.

Documentation: Any file that contains information useful in explaining what the design does, how
to use the design, what was done to realize the physical implementation, or what needs to be done.
Formats for these files are documented below in doc_file format.

User USER_DEFINED: Any file that the user wishes to reference. (Normally such a file would not be
one of the standard formats and would not be processed by standard tools.)

Format file format: Specifies the format of this file type. The file format shall be one of the specified
formats for the associated type, or else User followed by the user type name.

pattern_file_format:

STIL: Standard Test Interface Language. This term generally refers to IEEE Std 1450-1999. This is
the first version of the language. STIL allows a way to completely specify logic levels, timings,
parametric tests, pattern order, and so on for a test program. Patterns in this format do not follow
the pattern restrictions specified in this standard.

WGL: An ascii test pattern description language placed into the public domain by TSSI (currently
under IMS, a wholly owned subsidiary of Credence). WGL is a text representation of the binary
database WDB.

Verilog: Although Verilog is a Hardware Description Language, there are ways to describe event
lists in Verilog. This is a way of specifying the purely logical and timing part of a test program.

VHDL: As with Verilog, event lists can be created in VHDL, which is an alternative, somewhat
more formal HDL.

VCD: Value Change Dump. This is a widely used file format to record simulation results and event

lists. It is also frequently used to generate the logical and timing parts of test programs. This file
format is produced by most Verilog simulators and is documented in the standard.

Copyright © 2006 IEEE. Al rights reserved. 41

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

design_file format:

CTL: The common name for the language that encompasses syntax from this standard,
IEEE Std 1450-1999, IEEE Std 1450.1-2005, and IEEE Std 1450.2-2002. This is a test-mode-
oriented language to describe all test-related information about a design.

EDIF: Electronic Data Interchange Format. A standard language used to describe hardware in the
form of Net lists. Other parts of the format describe physical layout. EDIF is widely used for
Printed Circuit Board design, and it is useful in device and semiconductor engineering.

Verilog: A hardware description language. (HDL) A language that describes hardware logical
behavior and the related timing. The language specifications are in [EEE Std 1364-2001.

VHDL: A hardware description language. Evolved as a second-generation language and has
greater formality and consistency than some of the earlier languages like Verilog. Language
specification is in IEEE Std 1076-2000.

layout_file format:

GDSII: The file from which photolithography masks are made for creating semiconductors. This is
the physical specification for the various layers to be created by photolithography.

DEF: Namely the Design Exchange Format in which the elements of the IC design relevant to
physical layout, including the netlist and design constraints.’

LEF: Namely the Library Exchange Format in which an IC process technology and associated cell
models are represented.6

Oasis: It is a 64 bit compact layout format replacing GDSIL
fault list file format:

DTIF: Digital Testing Interchange Format. The information content and the data formats for the
interchange of digital test program data between digital automated test program generators
(DATPGs) and automatic test equipment (ATE) for board-level printed circuit assemblies or
semiconductor chips are defined. This information can be broadly grouped into data that define the
following: UUT Model, Stimulus and Response, Fault Dictionary, and Probe. The specification is
IEEE Std 1445-1998.

script_file format:

AWK: A popular scripting tool available in many operating systems. Awk allows one to manipulate
text files by way of cryptic commands. It is very useful for formatting columns of data.

SED: Another tool used in available in many operating systems. The name “SED” comes from
Stream Editor. This is a scripted editor for text files. Very useful for doing substitutions and
changes.

Perl: A rational attempt to eliminate all separate scripting languages such as SED and AWK, in
which each has a unique syntax. Perl closely follows C language syntax and has many of the
capabilities of C. Implementations are available in the public domain.

SDEF is available from OpenEDA.org.
SLEF is available from OpenEDA.org.
7Standardized by, and available from, SEMI.org.

42 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Python: An interpreted, interactive, object-oriented programming language. It is often compared
with Tel, Perl, or Java. Python supports modules, classes, exceptions, very high level dynamic data
types, and dynamic typing. There are interfaces to system calls, libraries, and windowing systems.
It is usable as an extension language for applications that need a programmable interface.

Tel: Tcl is a scripting language something like Perl but extensible and somewhat cleaner. Many
extensions are available. Tk is an extension developed by the creator of Tcl and is used for creating
scripts that interact with users through windows. Tcl was meant to be portable, and TcVTk has been
ported to many different operating systems.

doc_file format:

HTML: Hyper Text Markup Language. The current language of the World Wide Web. A
standardized graphics language interpreted by Internet browsers. HTML is useful as a way of
communicating documents because almost every kind of host computer has an Internet browser
available in the public domain. It is very close to a universal documentation and graphics tool.

PDF: Portable Document File. A public domain PDF format reader is universally available for
almost any kind of host computer. It is much more complicated and more powerful than HTML and
is oriented toward the creation of document rather than Web page display as is the case for HTML.

Postscript: A graphics language that is used to drive many kinds of printers, and it is a display
language for some kinds of computer systems. There are public domain readers to display files on
many computer operating systems.

RTF: Rich Text Format. Another way of representing text documents that contain formatting
commands and graphics. It is produced and consumed by some word processing programs. It is
also produced and consumed by some page layout programs.

Text: Pure ASCII character files. There are minimal formatting features. Most files are characters
with only new line, new page, and indention characters. Normally, there is no provision for
graphics. These files are nearly universally readable and one can easily create code to parse text.

Version “VERSION NUMBER”;: A quoted string identifying the version of this file. The format and
information of the VERSION NUMBER is dependent on the file type and format and not defined here.

8.3 Example of Environment block FileReference syntax

Environment core example
FileReference "$xyz/pats/patfilel.wgl" {
Type Pattern;
Format WGL;
Version "4.3";

}

8.4 Extension to NameMaps

(NameMaps (MAP_NAME) {
(CoreType CORE_TYPE NAME {
(Corelnstance {(CORE _INSTANCE NAME “map_string”;)+})
(Signals { (SIGNALNAME “map_string”;)+})
(ScanCells { (CELLNAME “map_string”;)+ })

H*

Copyright © 2006 IEEE. All rights reserved.

43

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(Corelnstance { (CORE_INSTANCE_NAME “map_string”;)+ })

1)

Similar to the other namemaps constructs defined in 1450.1 the names of core-instances and entities within
it can be mapped to another name. The mapping definition is exactly the same as that defined in 1450.1 for
the other constructs. See the definition of map_string in 1450.1. The mapping of the separators as defined in
1450.1 remains valid.

8.5 Extension to the inheritance of environment statements

Only a single InheritEnvironment statement is allowed. InheritEnvironment rules also apply to all
CTLMode blocks defined in the Environment.

The nameless Environment block is automatically inherited by all other named Environment blocks.
Inheritance in CTL creates a chain of information flow between the unnamed blocks and the named
inherited blocks, with the unnamed block at the top of the chain. Inherited information is overridden in
blocks by redefinition of the same construct. Thus, a named CTLMode block of statements will override any
inherited CTLMode block of statements with the same name. A unnamed CTL block will redefine the
unnamed CTL block that it has obtained through inheritance. Resolution of information for any
Environment occurs in the following order:

a) Resolution of information inherited across Environments
b) Resolution of inherted information within an Environment

These two steps require that the first step only be performed when inherited information is already resolved.
Thus, in a chain of Environments that inherit information from each other where inherited information flows
down the chain, the information shall be resolved for the Environment at the top of the chain and be
successively evaluated for Environments that inherit information from it down the chain.

Information sharing or inheritance between CTLMode blocks is defined by the Inheritance rules defined
with the InheritCTLMode statement (see 9.3).

Inheritance across environments at the high level works as follows. Details of the inherited information is
described in the previous example:

Environment

CTLMode { /* information segment I */ }

CTLMode model { /* information segment II */ }

CTLMode mode2 { /* information segment III */ }
Environment myEnv {

CTLMode { /* information segment IV */ }

CTLMode model { /* information segment V */ }
Environment anotherEnv

CTLMode mode2 { /* information segment VI */ }

The two named Environements inherit information from the nameless Environment. Thus, two chains of
inherited information exist, as follows:

— Environment {} - Environment myEnv {}
— Environment {} - Environment anotherEnv {}

44 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

The resolution of information begins with the nameless Environment in both situations. The nameless
Environment does not inherit from any other Environment. The model and mode2 of the nameless
Environment inherit information from the nameless CTLMode block within the Environment. Then the
information is resolved for myEnv and anotherEnv. Both named Environments first inherit the blocks of
information and then resolve the blocks within their respective Environments.

Thus, the nameless environment-model’s information is constructed out of segments I and II. Information
of the nameless environment-mode2 is constructed out of segments I and IIl. Information of myEnv-
nameless CTLMode block overides the nameless CTLMode block being inherited. Information of
myEnv-model is constructed with segments IV and V. myEnv has a mode2 that is constructed out of
segments | and III. Finally, anotherEnv has two named modes. anotherEnv-model is constructed out of
segments I and II. anotherEnv-mode?2 is constructed out of segments I and VI. Although the information is
split across three environment blocks, when named environments exist, the nameless environment block is
not to be used explicitly other than to determine the information in the other environment blocks. Each of
the two named environments is considered to be complete representations of the information. That is,
information from myEnv and anotherEnv should not be combined (refer to 9.3).

9. CTLMode block

9.1 General

The CTLMode block typically defines a configuration of the design, which is also called a test mode. If the
block is unnamed, then it is the global block containing information common to all CTLMode blocks within
the Environment. Typically, a file will have a global block and then one named block for each test mode,
which would reflect different configurations of the design such as internal-test and external-test.

9.2 CTLMode syntax

test mode enum =

< Bypass

| Controller

| Debug

| ExternalTest

| ForInheritOnly

| InternalTest

| Isolate

| Normal

| PowerOff

| PowerOn

| PreLoad

| Quiet

| Repair

| Sample

| Transparent

| User USER _DEFINED >
exec_enum =

< Characterization

| Diagnostic

| Production

| Verification

| User USER _DEFINED >
pattern_or_burst_enum =

Copyright © 2006 IEEE. Al rights reserved. 45

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1450.6-2005

< AtSpeed

| ChainContinuity

| CompatibilityInformation
| Endurance

| EstablishMode

| IDDQ

| LogicBIST

| MemoryBIST

| Padding

| Parametric

| Retention

| Scan

| TerminateMode

| User USER DEFINED >

Environment (ENV_NAME) {

(CTLMode (CTLMODE_NAME) {

(Corelnternal {})

(DomainReferences (CORE_INSTANCE NAME)* {
(Category (CATEGORY_ NAME)+;)
(DCLevels (DC_LEVELS NAME)+;)
(DCSets (DC_SETS_NAMES)+;)
(MacroDefs (MACRO_DEF_NAME)+ ;)
(Procedures (PROCEDURE_NAME)+ ;)
(Selector (SELECTOR_NAME)+;)
(SignalGroups (SIGNALGROUPS_NAME)+ ;)
(ScanStructures (SCAN_STRUCT NAME)+ ;)
(Timing (TIMING_NAME)+ ;)
(Variables (VARIABLES_NAME)+;)

})* // end DomainReferences

(External { })

(Family (NAME)+ ;)

(Focus (Top) (Corelnstance (CORE_INSTANCE NAME)+) {
(PatternTypes (pattern_or_burst_enum)+ ;)
(CTLMode CORE_INSTANCE_NAME CTLMODE NAME;)*
(TestMode (test_mode_enum)+ ;)
(Usage (exec_enum)+ ;)

})* // end Focus

(InheritCTLMode CTLMODE_NAME;)

(Internal { })

(PatternInformation { })

(Relation { })

(Scanlnternal { })

(ScanRelation { })

(TestMode (test_mode_enum)+ ;)

(TestMode (test_mode_enum)+ {
AlternateTestMode (CTLMODE _NAME)+ ;

}) // end of TestMode

(TestModeForWrapper WRAPPER TEST MODE TEST MODE_CODE;)

(Vendor (NAME)+ ;)

(Compliancy < IEEE1500 EXT_VERSION <Wrapped | Unwrapped>

| None | User USER_DEFINED > ;)
})* // end CTLMode

} // end Environment

46

IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(1
2
&)
“)

)
(6)
(7
®)
)
(10)
(11)

(12)
(13)
(14
15)
(16)
)
(18)

(19)
(20)

@n
(22)

Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

9.3 CTLMode block—syntax descriptions

(1) Environment ENV_NAME: This is a STIL statement within which CTL statements are embedded.
CTLMode is a construct (within the Environment block defined by 1450.1) that builds on existing STIL
structures. All CTLMode blocks within an environment are applicable to a design being described. For
details on the environment block, refer to Clause 8 or IEEE Std 1450.1-2005. The CTLMode block defined
in this clause coexists with the statements defined in 1450.1 for the environment. Environment blocks may
be named (ENV_NAME) according to its definition in 1450.1. Many environments containing CTL
information can be defined with the understanding that only one of these named environments contains the
complete information. In the absence of a named environment that contain CTLMode blocks, the unnamed
environment is to be considered.

(2) CTLMode CTLMODE NAME: This statement begins a block that contains all of the information needed
to describe a configuration of the design for the purpose of testing. Each CTLMode block can be assigned a
user-defined name (CTLMODE NAME) to identify the block. CTLMODE NAME is required to follow the
naming rules for user-defined names as defined by IEEE Std 1450-1999. There can be only one CTLMode
block without a name in an Environment.

The nameless CTLMode block, called the global CTLMode block, contains information that is common to
all named CTLMode blocks. If a global CTLMode block is created, all of the information other than the
PatternInformation block is automatically inherited into all other named CTLMode blocks. The information
is overridden by local definitions of the same constructs in the named CTLMode blocks receiving this
information. The inherited information on signals, signalgroups, cellnames, or cellgroups is overridden only
when the same statement is redefined on the associated entity. If a chain of inherited CTLMode blocks exist,
the global CTLMode block is available only once to any CTLMode block of the chain as the block of
information at the head of the inheritance chain. Although pattern information is not inherited, it can be used
to define information that spans test modes. For example, the fault coverage of patterns that encompasses the
tests of different modes can be given in the pattern information of the global CTLMode block. More details
are available in the InheritCTLMode statement definition.

The following rules apply across all statements used to describe information for a test mode (which
essentially means the complete CTL language):

a) Design structures: All design structures defined in CTL should have a one-to-one correspondence
with the associated entities in the design being described. Terminals of the design are defined in
Signals, scan cells of the design are defined in ScanStructures, and hierarchies of the design are
defined with Corelnstance-CoreTypes. These design entities are referenced in sigref expr and
cellref exprs in the Environment.

b) Conflicting definitions: Local definitions of terms override globals or inherited terms in case of
conflicts of the same keyword.

c) Multiple use of the same keyword with associated parameters: Unless specified otherwise, this
defines a logical OR relationship between the types defined for the keyword.

d) Missing information: Unless specified in the definitions, if a keyword or block is missing, it should
be assumed that the information was not required or the function that the keyword is describing does
not exist.

e) Symbolic names: This represents a unique name across all CTLs. The symbol name follows the
naming conventions for user-defined names (IEEE Std 1450-1999). That is, if multiple references
exist to a symbolic name in CTL, the references are to the same entity. Symbolic names are used in
locations of the syntax that are identified as SYMBOLNAME. Non-scan cells and connections to
common entities use SYMBOLNAME’S.

f) Names in domains: Names in two different domains could have a conflict. That is, the entity name in
a domain could be defined differently than the same entity name in a different domain. When such
situations arise, the domain name should be used in CTL to resolve the conflict. All names in
domains shall be used as concatenation of the domain name and the name of the entity separated by

Copyright © 2006 IEEE. Al rights reserved. 47

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

a double colon (::). The domain or the entity name can be double quoted or unquoted. Thus, the
composite name shall be of the form “D”::”’E”, “D”::E, D::”’E”, D::E . In the case of global
(nameless domain) blocks in CTL, the entities are identified with the entity name without any
concatenation of the domain name with the entity name. When statements are sequential in nature
(pattern data), the extended name can be avoided by defining the scope of the domain first before the
entities are named. Similarly, unique entity names across all domains of its type can be optionally
used without being qualified by the domain name it is defined within.

g) Names in core instances: All names in core instances shall be used as concatenation of the core
instance name and the name of the entity separated by a colon (). The core instance name or the
entity name can be double quoted or unquoted. Thus, the composite name shall be of the form
“I””E”, “T":E, I.”E”, I:E. Core instance names can be hierarchical names. The name of a core
instance of a core in the hierarchy would be referred to with a hierarchical concatenation of the
names of the instances it is embedded in beginning with the highest level in the hierarchy. A colon
(:) is used to separate the names in the hierarchy. Several entities defined in a core are Signals,
SignalGroups, and ScanStructures. All of the entities follow the naming conventions globally across
the CTL. When domain names are also used for entities associated with cores, then the complete
name would take on the form I:D::E, where I refers to the core-instance name, D refers to the
domain name, and E refers to the entity name.

h) Order: CTL information is to be formatted with the same rules specified by STIL. Forward
references are allowed to patterns and those as a result of the AlternateTestMode statement.

1) USER _DEFINED: CTL allows for extendability through user-defined names. The user-defined name
cannot conflict with the existing keywords used in CTL and should be consistent with the
conventions set by IEEE Std 1450-1999. In almost all locations of the syntax that allows user-
defined names, the name appears after a keyword namely User.

CTLMODE_NAME: A user-defined name that is consistent with the naming conventions of IEEE Std 1450-
1999. This name is assumed to be unique across all names of CTLMode blocks defined in an environment it
is specified in.

(3) Corelnternal: This statement identifies the beginning of the block in which the description of test
information between the boundaries of embedded cores of the design is represented. Within this block,
signals and signal-groups of cores are assigned keywords to describe test related information. Refer to
“Corelnternal Syntax” for details.

(4) DomainReferences: This block identifies the domains that define the scope of information used in the
current CTLMode block. Unnamed domains are always included for the CTLMode blocks. The identified
block contents are defined in 1450.0, 1450.1, 1450.2, and this standard. The various domains that can be
included in a CTLMode block are as follows:

— Category

— DCLevels

— DCSets

— MacroDefs

— Procedures

— Selector

— SignalGroups

— ScanStructures

— Timing

— Variables
Without domain references, any information in a named domain cannot be considered as part of the
information of the current CTLMode block being defined. This rule holds for referenced entities in the scope

of the current CTLMode block. For example, a Pattern referenced in the PatternInformation cannot use a
Macro, or the Macro it invokes should not use a Waveform that is not in the scope of the CTLMode block.

48 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Domains brought into the scope of the test mode can have entities with the same name. These entities are
uniquely referenced in the test mode information by using the complete name that includes the domain name
and the entity name [refer to item f) in this subclause]. When names do not clash, the domain name can be
omitted. Information in patterns is sequential in nature, and the domain name can be omitted when the
domain being used is identified before the entity name.

(5) External: This statement identifies the beginning of the block in which the description of the
recommended test environment outside the design is specified. Within the External block, the signals and
signal groups are assigned keywords to describe test-related information that the system integrator would
consume for embedding the design into a larger design. Refer to Clause 15 for details.

(6) Family: This keyword associates the CTLMode block of information to a library (or set) of similar
designs and their configurations.

NAME: It is a user-definable name that is consistent with the naming conventions of 1450.0.

(7) Focus: This keyword indicates information about the current configuration (mode) that is reflected in
the details within the current CTLMode block. That is, there shall exist at least one instance of the
information described in the focus statement in the remainder of the information in the scope of the current
test mode. The Focus block is primarily used to indicate the configurations of subentities of the design that is
being described. The TestMode statement indicates which cores are configured in internal test mode,
external test mode, and so on. The PatternType statement indicates what type of patterns of the core are
applied in the current mode. If no statement is used in the Focus block, then no focus can be interpreted for
the associated CTL test mode (CTLMode block).

The parts of the design being accessed or stressed in the current configuration (i.e., the “focus”) are
specified by parameters on the Focus statement. Parts of the design not being stressed can be identified as
to their inactive state (i.e., Isolate and Bypass):
a) Top: This identifies the user-defined logic of the design outside of any cores that are integrated in
the design.
b) Corelnstance CORE INSTANCE NAME: It identifies the instances of the cores that are incorporated
in the design. This name shall be a valid core instance of the design.

(8) PatternTypes PATTERN OR _BURST ENUM: This statement is used within the Focus block to define the
types of patterns that are applied in the current configuration for the corresponding sub-block of the design
(Top or CORE_INSTANCE NAME). The PATTERN_OR_BURST ENUM is defined when pattern information is
defined. The enumerated type that appears in this statement shall be consistant with information within the
current mode. There shall exist at least one pattern or pattern burst of the identified type in the test mode as
identified by the Purpose statement.

(9) CTLMode CORE_INSTANCE NAME CTLMODE_NAME: This statement is used within the Focus block to
name the CTLMode block in the original, non-integrated core’s CTL definition that establishes the mode.
The statement identifies the core_instance and the name of the CTLMode block of the core that is defined.
The CTLMODE NAME shall be a valid name in the environment identified for the core instance. The test
mode in this block shall be consistent with the test mode in this statement (statement 10). The use of this link
is primarily for debug of this current test mode and its setup. It provides an ability to go back to the original
test information that comes with the core.

(10) TestMode test mode_enum: This statement is used within the Focus block to specify the test mode that
applies to the identified entity (Top or CORE_INSTANCE NAME). This statement is primarily used for cores
whose configuration does not change during the test mode. If a core switches modes such that one of its
modes is an InternalTest test mode, then the TestMode InternalTest shall be used.

Copyright © 2006 IEEE. Al rights reserved. 49

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(11) Usage exec_enum: This statement is used within the Focus block to define the application of the
patterns within the current CTLMode block. There shall exist at least one PatternExec in the current test
mode identified with the same exec_enum as appears in this statement:

a) Production: A configuration of the design that is created for production test.

b) Diagnostic: A configuration of the design that is created for diagnostics of a subset of the design.

c) Characterization: A configuration of the design that is created for characterization of the design.

d) Verification: A configuration of the design that is created for Verification of the design.

e) User USER_DEFINED: This represents a user-defined name that follows the guidelines specified by

IEEE Std 1450-1999.

(12) InheritCTLMode CTLMODE NAME: Through this construct, a CTLMode block can reuse information
defined in another CTLMode block. Inheritance is the direct way of specifying such reuse. By default, the
information in the unnamed CTLMode block is inherited by a named CTLMode block. The information
redefined locally in the named CTLMode block overrides the information that is available through the un-
named CTLMode block. Through this statement, a chain of CTLMode blocks is constructed with the lowest
priority information coming from the global block (unnamed CTLMode block), which is at the top of the
chain. PatternInformation is never inherited. The CTLMODE NAME shall be a valid name for a CTLMode
block of statements in the scope of the current Environment.

There are two types of blocks with statements in CTLMode: blocks not associated with information on
design entities (statements not on sigref expr or cellref expr) and blocks that are associated with
information on design entities.

Some blocks like the Focus block or the DomainReferences block have statements that are not defined on
sigref _expr’s or cellref expr’s. These blocks are inherited in one piece. Any local definition of the complete
block overrides all inherited information in the same block that was inherited. Inherited information is not
overridden for blocks that are not redefined locally. PatternInformation is the only block of this type where
the information cannot be inherited.

The Internal block, Scanlnternal block and Corelnternal block have statements that apply attributes to
sigref expr’s and cellref expr’s. Inheritance occurs on a statement-by-statement basis for information on
any particular type of named entity. For example, if a DataType statement and an IsConnected statement
are defined in a CTLMode block that is inherited, a local definition of the DataType on the same signal/
signalgroup/cellname/cellgroup/core-signal/core-signalgroup as that of the inherited information will
override the inherited information. The other inherited statements on the signal that are not locally defined
continue to be active and are not overridden. Thus, in this example, the IsConnected statement is not
overridden locally. Resolution occurs to the named entity where attributes propagate down to the
individual references in that group. That is, if a signal is part of a named signal group, then the named
signal group’s attributes are relevant to the situation when the named signal group is used. The individual
signals get a union of the attributes from information on the signal, and all information on the signal
groups that the signal is part of. Inheritance rules treat the named signal groups as separate entities than
the signals that form the group. The same is the true for other named groups (cells and core-signals).
Groups created on the fly through the use of the “+” or “~” operator in the blocks of the environment are
not considered named groups. Furthermore, any indexing to break a signal group into its subentities makes
the entire set of entities in the expression resolve to the individual signals that make up the expression.
Refer to the examples in 9.4.

(13) Internal: This statement identifies the beginning of a block in which the internal characteristics of the
design, between the boundary of the design to which CTL is being written and the internal points where the
connection is not blocked by scan cells or core-instances, are specified. Within an Internal block, every
signal or signal group can be assigned keywords to describe the test characteristics of the design. Refer to
Clause 10 for details.

(14) PatternInformation: This statement identifies the beginning of the block that defines information
related to patterns (data and protocols). Within the PatternInformation block pattern, constructs such as

50 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

PatternExec, PatternBurst, Pattern, Procedures, and Macros are assigned keywords to specify the function
they play in the test mode being described. Refer to Clause 16 for details.

(15)Relation: This statement begins the block in which relationships between signals and groups of signals
are defined. Refer to Clause 13 for details.

(16) ScanlInternal: This statement identifies the beginning of a block in which the internal characteristics of
the design, bounded by internal scan cells of the design, are specified. Within a ScanInternal block, every
scan signal associated with a cell on the scan chain can be assigned keywords to describe the test
characteristics of the design. Refer to Clause 11 for details.

(17) ScanRelation: This statement identifies the beginning of a block in which the relationships between
scan-cells or scan-cell-groups are defined. Refer to 14.2 for details.

(18) TestMode: A CTLMode block of information can be assigned a test mode that identifies the type of
configuration of the design. The TestMode statement shall always be used except in the case of a global
CTLMode block that is to be inherited only. The modes available are as follows:

a) Normal: The normal test mode type is used to define the configuration of the design in which it
performs its functional behavior. For this configuration, CTL supports only the test relevant
information. In most cases, the function of the design has very little to do with test, and not much
test information can be provided for the configuration. Sometimes the function of the design is to
assist in test of other design entities, for example, a test controller design. If the functional test mode
of a design is test, the test mode cannot be classified as a Normal mode.

b) Controller: Some designs functions are test. Controller designs provide test stimulus to other
designs and/or capturing response of other designs as their function. Designs that are only linear
feedback shift registers are typically test-only functions. The test mode that defines the aspect of the
design whose function is to actively assist in testing other designs external to it is identified by the
Controller keyword.

¢) Transparent: Describes configurations of the design that allow for a subset of the functional inputs
of the design to be linked with a subset of functional outputs of the design such that a one-to-one
relationship (combinational or sequential path) between the two subsets is created. This
configuration allows for test paths to be created through the design to allow for testing logic external
to the design.

d) Bypass: Describes configurations of the design that allow for a subset of the test inputs of the design
to be linked with a subset of test outputs of the design such that a one-to-one relationship
(combinational or sequential path) between the two subsets is created. This configuration allows for
efficient methods of testing logic outside the design by shortening the lengths of the scan chains
through the design.

e) Quiet: A configuration of the design that puts it in a state that minimizes the leakage current of the
design. Thus, this test mode allows for current testing of logic outside the design in an embedded
environment.

f) PowerOn: A configuration of the design that is achieved when the device is turned ON.

g) PowerOff: A configuration of the design that puts it in a state that minimizes power consumption.

h) Sample: A configuration of the design that allows the values of a subset of the inputs and/or outputs
of the design to be sampled.

i) InternalTest: A configuration of the design that allows for internal logic of the design to be tested.
Test patterns for the design would only exist in this mode.

j) ExternalTest: A configuration of the design that enables the testing of the logic external to the
design. This configuration of the design allows for capture and launch capabilities for values outside
the design to allow for shadow logic testing of the embedded design. The configuration is an
outward-facing view of the design. This configuration assists the testing of entities external to the
design with a passive involvement as opposed to the Control test mode, which has an active
involvement.

Copyright © 2006 IEEE. Al rights reserved. 51

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

k) Isolate: A configuration of the design that sets the inputs and the outputs of the design in a test mode
that isolates the design from activity outside the design.

1) PreLoad: A configuration of the design that allows for the initialization of internal states or
memories within the design.

m) ForInheritOnly: Information in CTLMode that does not constitute a complete test mode, but it is
made available through the inheritance mechanism defined in CTL for the construction of other
CTLMode blocks.

n) User USER_DEFINED: This represents a user-defined name that follows the guidelines specified by
IEEE Std 1450-1999. This name is a test mode type that could augment the information available
through the existing test mode types by specifying multiple enumeration types.

(19) AlternateTestMode CTLMODE NAME: This statement identifies other CTLMode blocks of statements
within the scope of the current environment that can be used as an alternative (in place of) for the current test
mode. The CTLMODE NAME shall be a valid name of a CTLMode block of statements in the scope of the
current environment. This statement allows for the description of IEEE 1500 test modes that perform the
same function through different interfaces (serial/parallel). This reference between modes is exempt from
the ordering restriction of blocks. That is, CTLModes referenced by this statement need not be defined
before the CTLMode in which this statement is used.

(20) TestModeForWrapper: Whereas the TestMode statement establishes the generic test mode, which
applies to either a bare core or a wrapped core, this statement defines the specific identifier that is used to put
the wrapped core into its test mode. The TestModeForWrapper statement shall be consistent with the
Wrapper statements within Internal and External blocks and the TestMode statement. The reason that there
are two separate statements is that the Wrapper internal and external connections will typically be placed in
the global CTLMode block, and the TestModeForWrapper will typically be in a named CTLMode block
because it is test mode specific.

WRAPPER _TEST MODE: Whereas the TEST MODE for a given CTLMode block defines the generic test
mode (InternalTest, ExternalTest), the WRAPPER TEST MODE defines the specific identifier as defined by
the wrapper standard document. This 1500 wrapper is defined in IEEE Std 1500-2005.

TEST _MODE_CODE: is a string of 1,0,X characters (with no spaces) that defines the code that must be
written to the control register of the wrapper (e.g., the WIR in IEEE Std 1500-2005) to establish the mode.
1 is to denote a logic-1 or a ForceUp condition, 0 is to denote a logic-0 or a ForceDown condition, and X
is to denote a “don’t care” condition in which the value does not matter. The values correspond to the cells
of the corresponding instruction register such that the first value applies to the cell closest to the scan-out
and the last value corresponds to the cell closest to the scan-in.

(21) Vendor: This keyword associates the CTLMode block of information with a list of vendors.
NAME: It is a user-definable name that is consistent with the naming conventions of IEEE Std 1450-1999.

(22) Compliancy: This statement indicates that the hardware structures on the periphery of the design
defined by standards or user-implementations have been used. This keyword is a global statement that a
wrapper exists in the design being described. The Internal block’s Wrapper statements on individual signals
describes the exact use of the wrapper referred to here.

a) IEEE1500 EXT VERSION <Wrapped | Unwrapped>: It is used to signify compliance of the
sigref expr to the hardware structure defined by IEEE Std 1500-2005. The compliancy rules are
defined in the associated standard document. The EXT VERSION is the version of the standard as
identified by IEEE Std 1500-2005. This number could contain a major and an optional minor
revision number separated by a period. For example, 1.0 would be a valid EXT VERSION.
IEEE Std 1500-2005 has two levels of compliancy. The Unwrapped compliancy defines the core
providers deliverable in CTL with minimal requirements on the logic design of the core. The
Wrapped compliancy defines the core providers deliverable, which include a wrapper design and

52 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

information provided in CTL. The details of the requirements are to be obtained from
IEEE Std 1500-2005.
b) None: It is used to signify that no wrapper technology is associated with the design being described.
¢) User USER_DEFINED: It is used to identify the use of a wrapper technology that is defined by another
standard or a nonstandardized wrapper. Partial wrappers or IEEE 1500 variant wrappers that cannot
be classified as Wrapped or Unwrapped would fall in this category.

9.4 CTLMode block syntax example

Depending on the information that needs to be described, different CTLMode statements will be used. It is
impossible to describe all possibilities in examples. In this subclause, a high-level example is constructed
that needs three configurations of the design to be described. These configurations are called model, mode2,
and mode3. Thus, three CTLMode blocks of information are created. Assume that these are configurations
of the design for internal testing, external testing, and a safe configuration, respectively. The TestMode
statement is used to specify this information. In model, it is also assumed that some information is to be
described on the signals of the design (Internal {}), some information on the patterns that are to be executed
(PatternInformation {}), and some connectivity between scan chains of the design (ScanInternal {}) and
some information on internal cores (Corelnternal {}) of the design are described. Similarly, mode2 and
mode3 have different information that needs to be described, and the associated blocks are constructed.

Environment {
CTLMode model {
TestMode InternalTest;
Focus {
PatternTypes Scan;
Usage Production;
}
Internal {}
CoreInternal {}
ScanInternal {}
PatternInformation {}
}
CTLMode mode2 {
TestMode ExternalTest;
Internal {}
External {}
PatternInformation {}
}

CTLMode mode3
TestMode Isolate;
Internal {}
PatternInformation ({}

}
}

The example also shows the use of the Focus statement. During the internal testing of the design being
described in CTL, which is done in the configuration model, only scan patterns are applied and the patterns
are to be used for production testing of the implemented design.

Inheritance in CTL allows for reduction of repetition of information, which is the same in different test
modes. Through the InheritCTLMode, statement information in one CTLMode block is made available in

the other CTLMode block. The inherited information can be overridden in the local block. The nameless
CTLMode block has information that is common to all test modes.

Copyright © 2006 IEEE. Al rights reserved. 53

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

Signals { a In; b In; c In; }
SignalGroups { allsig[0..2] = ‘a+b+c’;}
Environment {
// nameless block contains information common to all test modes.
CTLMode {
Relation {}
Internal ({
// In this common test mode, signal “a” has a DataType that is the
// union of the DataTypes defined in a{} and allsigl[0..2]{}.
// “a” also has the IsConnected statements as defined in af{}
// associated with it. allsig[0..2] or allsig[0] only has the
// datatypes as defined in the allsig[0..2]{}. The same mechanism
// works for the information on “b” and “c”
a { /* DataType and IsConnected statements.*/ }
b { /* DataType and InputProperty statements. */ }
c { /* DataType statement.*/ }
allsig[0..2] { /* DataType statement a, b, c associated
when allsigl[0..2] is referred to. */ }
}
CoreInternal {}
ScanInternal {}
PatternInformation{} //never inherited, test-mode independent info.

// mode2 gets the Relation statements from the nameless block.

// PatternInformation is defined locally.

// Internal and External block inheritance is on a named entity basis.
// Internal block has the following information:

// a: DataType (from mode2), IsConnected(from CTLMode{})

// DataType information is union of a{} and allsig

// b: DataType (from CTLMode{}), InputProperty(from CTLMode({})
// DataType information is union of b{} and allsig

// c: DataType (from CTLMode{})

// DataType information is a union of c{} and allsig.

// allsig[0..2]: DataType (from mode2)

// BAll CorelInternal and ScanInternal of CTLMode{} are inherited.
// External block information is defined locally, nothing inherited.
// PatternInformation is defined locally and is never inherited.
CTLMode mode2 {
TestMode ExternalTest;
Internal {
a { /* DataType statement */ }
allsig { /* DataType statement */ }
}
External {}
PatternInformation {}

// A chain of inherited information exists with the nameless block in
// the beginning of the chain and mode3 at the end of the chain.

// Information flows down the chain beginning with the nameless block.
// Information in a test mode later in the chain overrides information
// being inherited down the chain. The following information exists
// in mode3.

// Relation (from CTLMode({})

54 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

// PatternInformation (from mode3, never inherited)
// Corelnternal, ScanInternal (from CTLMode{})

// External (all information from mode2)

// Internal:

// a: DataType (from mode2), IsConnected(from CTLMode{})
// DataType information is the union of a{} and

// mode3-allsig[0..2]{}

// b: DataType (from CTLMode{}), InputProperty (from mode3)
// DataType information is the union of b{} and

// mode3-allsig[0..2]{}

// c: DataType (from CTLMode{}), InputProperty (from mode3)
// DataType information is a union of c{} and

// mode3-allsig[0..2]{}

// allsig[0..2]: DataType (from mode3)

CTLMode mode3
InheritCTLMode mode2;
TestMode Isolate;
Internal ({
allsig[0..2] { /* DataType statement */ }
‘b+c’ { /* InputProperty statement */ }

}

PatternInformation {}

The resolution of information on information on sigref expr’s and cellref expr’s can be seen in the example
given earlier on inheritance of statements across modes. How a sigref” expr/cellref expr is to be interpreted
is described as follows:

Signals {a In; b In; c In; }
SignalGroups { allsigl[0..2] = ‘a+b+c’;}
Environment { CTLMode { Internal {

a { /* Info I */}

b { /* Info II */ }

c { /* Info III */ }

allsig { /* Info IV */}

11}

// Result: a (I, IV); b (II, IV); ¢ (III, IV); allsig (IV)

Environment { CTLMode { Internal {
a { /* Info 1 */ }
‘allsig - a’ { /* Info V */}

11
// Result: a (I); b (V); ¢ (V); allsig ()
// ‘allsig - a’ is the same as ‘b + ¢’ is the same as ‘allsig[l..2]’

Copyright © 2006 IEEE. Al rights reserved. 55

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

10. CTLMode—Internal block

10.1 General

The Internal block defines attributes of all input/output signals of the core and the connections of the signals
to internal parts of the core (scan cells, other cores, other signals). The intent of this information is to provide
all information needed to incorporate the core into a larger design and to provide the necessary test
application interface to the core such that a set of CTL patterns that are provided with the core (and which
apply and observe values at the core primary input/output signals) can be applied.

10.2 Internal syntax

data_type enum =
< Asynchronous
| Synchronous
| In
| Out
| InOut
| Constant
| TestMode
| Unused
| UnusedDuringTest
| Functional
| TestControl (testcontrol_subtype_enum)*
| TestData (testdata_subtype enum)*
| User USER _DEFINED >

testcontrol_subtype_enum =
< CaptureClock
| CoreSelect
| ClockEnable
| InOutControl
| Oscillator
| OutDisable
| OutEnable
| MasterClock
| MemoryRead
| MemoryWrite
| SlaveClock
| Reset
| ScanEnable
| ScanMasterClock
| ScanSlaveClock
| TestAlgorithm
| TestInterrupt
| TestPortSelect
| TestRun
| TestWrapperControl >

testdata_subtype_enum =
< MemoryAddress

56 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

(Row
| Column)*
| MemoryData
| Indicator
(TestDone
| TestFail
| TestInvalid)*
| Regular
| ScanDataln
| ScanDataOut>

cell enum =
<<(WC_S | WH_S) <D|F>#| WH_C [WH_CI> (_C<<I|O|B><I|O|U>|N>)(_U<D|F>)(_O)(<_G0|_G1>)
| User USER_DEFINED >

ScanDataType _enum =
< AddressGenerator
| Boundary
| Bypass
| Counter
| DataGenerator
| Identification
| Instruction
| Internal
| ResponseCompactor
| User USER DEFINED >

Environment { CTLMode (CTLMODE_NAME) {
Internal {)

(sigref _expr {)

(DataType (data_type_enum)+ ;) 3)
(DataType (data_type_enum)+ {
(ActiveState 4)
< ForceDown
| ForceUp
| ForceOff
| ForceValid
| ExpectLow
| ExpectHigh
| ExpectOff
| ExpectValid > (Weak);)
(DataRateForProtocol <Average|Maximum> INTEGER;) %)
(AssumedInitialState (6)
< ForceDown
| ForceUp
| ForceOff
| ForceValid
| ExpectLow
| ExpectHigh
| ExpectOff

Copyright © 2006 IEEE. Al rights reserved. 57

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

| ExpectValid > (Weak) ;)
(ScanDataType (ScanDataType enum)+ ;)
(ValueRange INTEGER INTEGER (CORE_INSTANCE_NAME)+;)*
(UnusedRange INTEGER INTEGER;)*
})* // end DataType

(DisableState
< ExpectOff
| ExpectLow
| ExpectHigh
| ExpectValid
> (Weak) ;)

(DriveRequirements {
(TimingNonSensitive;)
(TimingSensitive {
(Period < Min | Max > time_expr;,)*
(Pulse < High | Low > < Min | Max > time_expr;)*
(Precision time_expr;)
(EarliestTime time _expr,)
(LatestTime time_expr;)
(Reference sigref expr {
(SelfEdge < Leading | Trailing | LeadingTrailing > (INTEGER);)
(ReferenceEdge < Leading | Trailing | LeadingTrailing > (INTEGER);)
(Hold time_expr;)
(Setup time_expr,)
(Period real _expr;)
(Precision time_expr;)
})* // end Reference
(Waveform;)
}) // end TimingSensitive
}) // end DriveRequirements

(ElectricalProperty
< Digital
| Analog
| Power
| Ground
> (ELECTRICAL_PROPERTY_ID) ;)

(InputProperty
(<Edge
| GlitchFree
| PullDown
| PullUp
| ScanStable
| ScanUnstable
| SynchFF
| SynchLatch
| Transitions (INTEGER)
| Window
| User USER_DEFINED
>)ts)

(7
®)
)

(10)

(11)

(12)

(13)

58 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

(IsConnected <In|Out> (<Direct | Indirect>) {
(CoreSignal (sigref expr) ;)
(IsGatedBy <LogicAnd | LogicOr | LogicXor> logic_expr {
(LOGICSIGNAME {
Type < Signal | StateElement Scan | StateElement NonScan | CoreSignal >;
Name <SIGNAME | CELLNAME >;
} Y+ // end logicsigname
})* // end IsGatedBy
(IsGatedBy < Macro | Procedure > NAME ;)*
(TestAccess (<
Control
| Observe
| User USER_DEFINED >)+
< Macro | Procedure > NAME;)*
(< LaunchClock | CaptureClock | Reset > SIGNAME {
(<LeadingEdge | TrailingEdge> (LevelSensitive);)
(<Direct | Indirect>;)
(StateAfterEvent <
Connection
| ExpectLow
| ExpectHigh
| ExpectUnknown
| ExpectValid
| Hold
| Invert
| ShiftState
| User USER_DEFINED > ;)
1* // end LaunchClock
(Signal (sigref expr) ;)
(StateElement <Scan | NonScan> (cellref expr) ;)
(Transform {
(WaveformTable (WFT_NAME)+;)
(Invert ;)
(WFCMap FROM_WFC -> TO_WFC;)*
(DelayCycles INTEGER;)
* // end Transform

(Wrapper <IEEE1500 | None | User USER_DEFINED > (CellID cell _enum) ;)

})* // end IsConnected

(IsDisabledBy <In|Out> Logic logic_expr {
(LOGICSIGNAME {
Type < Signal | StateElement Scan | StateElement NonScan | CoreSignal >;
Name <SIGNAME | CELLNAME > ;
Dt
})* // end IsDisabledBy
(IsDisabledBy <In|Out> < Macro | Procedure > NAME ;)*

(<LaunchClock | CaptureClock > SIGNAME {
(<LeadingEdge | TrailingEdge> (LevelSensitive);)
1* // end LaunchClock

(OutputProperty

Copyright © 2006 IEEE. All rights reserved.

(14
(15)
(16)

(17)

(18)
(19)
(20)

@n

(22)

(23)

24

(25)

(26)

@7

(28)

59

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(<Edge

| PullDown

| PullUp

| ScanStable

| ScanUnstable

| SynchFF

| SynchLatch

| ThreeState

| TwoState0Z

| TwoStatelZ

| Transition INTEGER
| Window

| User USER_DEFINED >)+ ;)

(StrobeRequirements { (29)
(TimingNonSensitive;)
(TimingSensitive {
(Precision time_expr;)
(EarliestTimeValid time_expr;)
(LatestTimeValid time_expr,)
(EarliestChange time_expr;)
(Reference sigref expr {
(SelfEdge < Leading | Trailing | LeadingTrailing > INTEGER;)
(ReferenceEdge < Leading | Trailing | LeadingTrailing > INTEGER;)
(EarliestTimeValid time_expr;)
(LatestTimeValid time_expr,)
(EarliestChange fime_expr;)
(Precision time_expr;)
})* // end Reference
(Waveform;)
}) // end TimingSensitive
}) // end StrobeRequirements

(ScanStyle < MultiplexedData | MultiplexedClock > (LevelSensitive) ;) (30)

(Wrapper <IEEE1500 | None | User USER_DEFINED > (PinID USER_DEFINED PIN ID);) (31)
W+ /] end sigref expr
} // end Internal
}} // end Environment, CTLMode

10.3 Internal block syntax descriptions

(1) Internal: This statement begins the internal block within a CTLMode block. The internal block
contains statements that describe the internals of the design (inwards from the Signals), which is to be
considered as a statement of facts about the test aspects of the design.

(2) sigref expr: This is a signal or group of signals or an expression combining the first two entities. In the
internal block, statements assign properties to the signals or signal groups that are part of the sigref expr.
Multiple instantiations of the same sigref expr in a single internal block is not allowed. Resolution of
information is down to individual signals that get the union of information from the blocks of information on
the signal and the blocks on named signal groups in which the signal is part of. For example, in the same
block of statements, one can see information on signal mysignal and information on signal group

60 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

allsignals/0..10], which includes mysignal. mysignal gets the combined information from the two blocks of
information. sigref expr’s, which break any signal group into its subentities by using the “-” or bit-indexing
capability ([]), make the sigref expr resolve to the individual signals that make up the resulting sigref expr.
Refer to the definition and examples of the InheritCTLMode statement for more details on interpreting
sigref _expr’s and association of information to the entities in the sigref expr (9.2). The exact definition of
sigref_expr should be taken from IEEE Std 1450-1999 and its extension in this standard. The CTL provider
shall ensure that signal information statements are consistent with each other when information is provided
on a signal and when the signal is also part of a named signal group in the same block.

(3) DataType: This statement is used to define the behavior of the signals on which the DataType keyword
is defined. The information in DataType shall be consistent with the way the signal is used in the test mode.
Several statements such as the ActiveState are associated with the DataType. The values specified by these
statements are expected to be consistent with the use of the associated signals. A mismatch between the
information in this statement and reality is an error condition that may not be detected until the tests are
being mapped to tester hardware. Multiple behaviors can be specified for any signal or set of signals
(sigref _expr). All identified behaviors are simultaneously displayed by the signals when part of the same
statement. If no DataType keyword is defined for a signal, the default of Unused shall be assumed. Multiple
data types can be used to describe a signal. Some keywords are specializations of other generic keywords.
For example, ScanDataln is a specialization of TestData. If a subcategory keyword is used, the generic
category is required to be specified. Multiple subcategory keywords can be used for the same generic
category, as follows:

a) Asynchronous: A signal is asynchronous if its timing is not cyclized to a period.

b) Synchronous: A signal is synchronous when its timing is cyclized to a period.

c¢) Im: It indicates that the signal is being used only as an input. An error condition arises if this
keyword is used for signals that are defined as Out.

d) Out: It indicates that a signal is being used only as in output. An error condition arises if this
keyword is used for signals defined as In.

e) InOut: It indicates that a signal is being used as input and output of the design. An error condition
arises when the signal is defined as an In or Out.

f) Constant: An input or output signal that is constant during the CTLMode, including the establish
mode and the terminate test mode phase. If the signal is not at the value specified before the
beginning of the EstablishMode sequence, the signal is expected to be set within the first clock cycle
of the EstablishMode sequence. The stability of this signal is critical for the validity of the test data
in the test mode when this attribute is used for an input signal. If test data exist for the test mode, it is
assumed to be consistent with this definition.

g) TestMode: This keyword is used to describe signals that are constant once the test mode is
established until the beginning of the terminate test mode sequence. When specified on an input
signal, the stability of this signal is critical for the validity of the test data in the mode. Output
signals that remain stable after the test mode has been established until the beginning of the
terminate test mode sequence can also be identified by this keyword. If test patterns exist for the
CTLMode, it is assumed the test patterns treat the associated signal as per this definition.

h) Unused: A signal that is not used. Such signals are typically disconnected from the internal logic of
the design in the current configuration of the design. These signals are not used by the establish test
mode sequences and the terminate test mode sequences in addition to the operations performed in
the test mode. This keyword is also used to identify redundant inputs/outputs that may be active in
other configurations.

i) UnusedDuringTest: A signal that is not used for testing the core or the surrounding logic. This
signal is unused only during the part of the test mode after the establish test mode sequence and
before the terminate test mode sequence.

j) Functional: A signal that does not have a test function.

k) TestControl: A signal that controls some configuration of a test mode that typically needs to be
switched infrequently during a test. Examples of such signals include enabling or disabling signals.
Clocks also fall in this category. Tests in the test mode are expected to be using the associated

Copyright © 2006 IEEE. Al rights reserved. 61

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

signals consistent with this definition. If tests do not exist in the test mode, then the description to be
assumed by this statement is the intent of use by the tests.

1) TestData: Signals that are applied a stimulus by the test patterns such that the signal cannot be
classified as TestMode or TestControl signals. The characteristic represents a fact when test data
exist for the test mode, and it represents intent when the test data do not exist for the test mode.

m) User USER_DEFINED: A user-defined data type for extendability of CTL. One should not use this
data type for describing signal characteristics already covered by other data types. The user-defined
name is expected to follow the naming rules for names as defined by IEEE Std 1450-1999.

n) CaptureClock: A signal used as a clock for the design for test operations to capture values in
memory elements through the non-scan paths. Note: This signal might not be considered a clock
when using a different configuration (mode) of operation.

0) CoreSelect: A special type of control signal that determines whether the design is active and/or
should participate in the patterns being applied.

p) ClockEnable: A signal that controls the gating of another signal that is identified to be a clock.

q) InOutControl: A signal that provides control to select the direction of one or more bidirectional
signals.

r) Oscillator: A free running clock signal is identified as an Oscillator.

s) OutDisable: A signal of the design that controls the disabling of some set of outputs of the design
such that the output is isolated from the internal logic of the design.

t) OutEnable: A signal of the design that enables a set of outputs of the design to be driven by values
from the logic internal to the design.

u) MasterClock: A signal of the design that clocks non-scan data into single memory elements or into
the master latch of a dual memory element.

v) MemoryRead: A signal that controls the Read input of a memory.

w) MemoryWrite: A signal that controls the Write input of a memory.

x) SlaveClock: A signal of the design that clocks non-scan data into a slave latch of a dual memory
element.

y) Reset: A signal that changes the state of certain memory elements of the design to a predefined state.
Set, Reset, and Clear signals of designs are all Reset signals in CTL.

z) ScanEnable: A signal that is not a test mode signal or a clock or a scan-in or scan-out of the design
that controls the configuration of the scan chain.

aa) ScanMasterClock: A signal of the design that clocks scan data into single memory elements or into
the master latch of a dual memory element.

ab) ScanSlaveClock: A signal of the design that clocks scan data into a slave latch of a dual memory
element.

ac) TestAlgorithm: A signal that selects which test algorithm will be applied. This keyword is most
appropriate for memory test methods where algorithmic patterns are applied.

ad) TestInterrupt: A signal that interrupts the operation of some test. For example, it could be a signal
that interrupts the running of a built-in test algorithm.

ae) TestPortSelect: A signal that selects which of several possible test ports will be used. These ports
are the same ports as that used in the Relation block of statements. Memories typically have multiple
ports that may be activated with test port select signals.

af) TestRun: A signal that is used to trigger the execution of tests.

ag) TestWrapperControl: A signal that is used to control the operation of a test wrapper.

ah) MemoryAddress: The signal that is connected to the address signals of a memory. MemoryAddress
can be further identified as Row and Column address.

ai) Row: The subset of the memory address that selects the topological row of the memory.

aj) Column: The subset of the memory address that selects the topological column of the memory.

ak) MemoryData: A signal that is connected to the data signals of a memory.

al) Indicator: Indicator is a special type of TestData signal that indicates the occurrence of a special
event. TestFail and TestDone are special types of indicator signals.

am) TestDone: A signal that is used to indicate the completion of a test activity. In most examples, this
would indicate the completion of some kind of BIST activity.

62 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

an) TestFail: A signal that is used to indicate that a failure occurred during a test activity. In most
examples, this would be related to some kind of BIST activity.

ao) TestInvalid: A signal that can indicate that the current test results are invalid and that the test should
be reapplied.

ap) Regular: This keyword describes the regularity in the test data that is applied to the signal. Regular
test data are predictable. For example, it could be pseudo-random in nature or algorithmic.

aq) ScanDataln: Signals that have or are intended to have test data that are serialized to load values into
scan chains.

ar) ScanDataOut: Signals that have or are intended to have test data that are serialized to unload values
from scan chains.

(4) ActiveState: This statement is used to specify the active value for a signal that is consistent with the
data type of the signal. For example, if a signal is identified as a ScanEnable, then an ActiveState of ForceUp
would mean that the scan chain enabled by the signal is in scan configuration when the signal is a logic “1”.
Force* states are used for inputs to describe drive values, and Expect™® states are used for outputs to describe
expected values. The keyword can be replaced by the associated symbol for the same meaning. For example,
ForceDown and D used for the ActiveState would have the same meaning:

a) ForceDown (D): Logic 0.

b) ForceUp (U): Logic 1.

¢) ForceOff (Z): High impedance state.

d) ForceValid (N): Logic 1 or Logic 0.

e) ExpectLow (R): Logic 0.

f) ExpectHigh (G): Logic 1.

g) ExpectOff (Q): High impedance state.

h) ExpectValid : Logic 0 or Logic 1.

Weak: This signifies a low strength for the value being driven. Weak values can be overridden by
strong values applied to the same signal from another source.

The ActiveState statement may be meaningless with certain data types. Although the syntax allows this, the
use of the combinations are meaningless. For example, clocks do not have active states, and the synchronous
keyword does not have an active state. Similarly, MemoryAddress and MemoryData also do not have any
meaning for an ActiveState.

(5) DataRateForProtocol: This statement is used to specify the expected activity on the associated signal
or signal group during the application of the test protocols in the current CTLMode block. The data rate is
specifiable as the maximum number of events on the signal outside of the scan data for the protocols in the
test mode. All protocols need not have the same number of values applied to signals. The average number of
events on the signal outside of the scan data is also specifiable. No information on the data rate can be
interpreted when information is not provided by this statement:
a) Maximum INTEGER: The expected maximum number of times a signal changes value per protocol
for the patterns that are applied in the current configuration of the design.
b) Average INTEGER: The average number of times a signal changes value per protocol for the patterns
that are applied in the current configuration of the design.

(6) AssumedInitialState: This statement is used to specify the expected state for a signal at the start of
every test protocol of the test mode. Specifically, this is the state expected to appear on a signal at the end of
execution of every protocol. For example, if a signal is identified as a clock signal, then an
AssumedInitialState of ForceDown would mean that the stable state of the clock in the current test mode is a
logic-0. This clock-OFF state is assumed by the protocols of the test mode. The keyword can be replaced by
the associated symbol for the same meaning. For example, ForceDown and D used for the
AssumedlnitialState would have the same meaning:

a) ForceDown (D): Logic 0.

b) ForceUp (U): Logic 1.

Copyright © 2006 IEEE. Al rights reserved. 63

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

¢) ForceOff (Z): High impedance state.
d) ForceValid (N): Logic 1 or Logic 0.
e) ExpectLow (R): Logic 0.

f) ExpectHigh (G): Logic 1.

g) ExpectOff (Q): High impedance state.
h) ExpectValid : Logic 0 or Logic 1.

Weak: This signifies a low strength for the value being driven. Weak values can be overridden by
strong values applied to the same signal from another source.

(7) ScanDataType: This statement is used to describe the type of scan data that is associated with the
signal. The signal is required to be defined as a scan terminal (ScanDataln or ScanDataOut) in the current
mode. The data appearing on the signal is an unordered list of the following type of scan values:

a) Internal: Scan chains internal to the design.

b) Boundary: Scan chains at the boundary of the design.

c) Instruction: The scan chain that operates the instruction register that configures the design in
different modes based on its state.

d) DataGenerator: The scan chain that accesses the state machine used to supply test patterns to the
design in test methods that generate the stimulus internal to the design.

e) ResponseCompactor: The scan chain that accesses the state machine used to compact the response
of test patterns that are applied to the design.

f) Counter: The scan chain that accesses a counter in the design used to monitor the number of tests
being applied to the design.

g) AddressGenerator: The scan chain that accesses a state machine that supplies test patterns to the
address inputs of a memory internal to the design.

h) Bypass: The scan chain that bypasses the scan chains of the design.

i) Identification: The scannable register that holds a unique code for the device that is an identifier for
it.

j) User USER_DEFINED: A user-defined scan data type for extendability of CTL. It is not allowed to use
this capability to describe scan chains types already covered by other keywords allowed in this
statement. The user-defined name cannot be used to redefine any of the existing ScanDataType
keywords. The USER_DEFINED name shall follow the definitions for user-defined names as defined
by IEEE Std 1450-1999.

When this statement is used in conjuction with cellref expr’s as part of Scanlnternal, the information relates
to the type of data in the associated scan cell. The cells identified in the cellref expr are required to be partly
defined as scan cells in scan chains active in the test mode. As no scan terminal exists in this use of the
statement, there is no associated requirement of the DataType for the statement.

(8) ValueRange INTEGER INTEGER CORE_INSTANCE NAME: This statement defines the allowed data value
range for a group of signals. This is typically used when the signal group is a bus, such as an address or data
bus. The left-most signal in the associated sigref expr is the MSB, and the right-most signal is LSB. The
integers that follow describe the decimal equivalent of the valid addresses as they correspond to the MSB-
LSB order of the signals. The first integer represents the lower end of the range, and the second integer
represents the higher end of the range. Multiple value ranges are specifiable to cover segmented ranges. The
ranges specified by the multiple statements are required to be non-overlapping ranges. When a (or multiple)
core instance name (CORE_INSTANCE_NAME) is used, the values taken on by the signals as defined by the
ValueRange are to be associated with the core instance. For example, if the ValuesRange is specified for
CoreSelect type of inputs, the values taken on by the signals defined by this statement identify which core is
being selected if the CORE_INSTANCE NAME is given.

(9) UnusedRange INTEGER INTEGER: This statement allows the definition of unused addresses in the
allowed data value range specified by the ValueRange for a group of signals. This is typically used when the
signal group is a bus, such as an address or data bus. By default, the left-most signal is the MSB and the
right-most signal is LSB. The integers that follow describe the decimal equivalent of the valid addresses as

64 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

they correspond to the MSB-LSB order of the signals. The first integer represents the lower end of the range,
and the second integer represents the higher end of the range. Multiple value ranges are specifiable to cover
segmented ranges. The ranges specified by the multiple statements are required to be non-overlapping
ranges.

(10) DisableState: This statement is coupled to the IsDisabledBy statement. This construct describes the
value that would appear on the disabled signal that is referred to in the current scope of this statement. The
following values are supported:

a) ExpectHigh (G): Logic 1. G can be used in place of the term ExpectHigh.

b) ExpectLow (R): Logic 0. R can be used in place of the term ExpectLow.

c) ExpectValid: Logic 1 or Logic 0.

d) ExpectOff (Q): High impedance state. Q can be used in place of the term ExpectOff.

Weak: This signifies a low strength for the value being driven. Weak values can be overridden by
strong values applied to the same signal from another source.

(11) DriveRequirements: This statement is used to specify the required timing for input signals of the
design. Through this statement, the flexibility of changing the timing of signals is described. The waveforms
available in the test mode represent a valid example of the timings allowed on the signals of the design. If
the DriveRequirements are not specified for a signal, TimingNonSensitive is to be assumed as the default
condition:

a) TimingNonSensitive: This keyword expresses the fact that the signal has flexible timing
requirements that allow for the waveform edge(s) for the associated signals to be moved further
apart from preceding or succeeding signal edges without fear of pattern or protocol failures.

b) TimingSensitive: This keyword expresses the fact that the signal has specific timing requirements
that the waveform edge(s) of the associated signals cannot be arbitrarily changed without affecting
the validity of the patterns and protocols in the scope of this statement.

1) Period: This statement denotes either requirement for a minimum (Min) or maximum
(Max) clock period for the associated signal. This keyword is directly associated with
periodic clock signals. Multiple statements of Period can be used to describe minimum and
maximum constraints.

2) Pulse: This statement denotes either the minimum (Min) or the maximum (Max) values for
pulses on the signals. The information is describable for the low (Low) and high (High)
states of the signal over multiple statements to ensure proper duty cycles.

3) Precision: Through this statement the precision/resolution of the timings is specified. The
time_expr represents a value that represents a plus and a minus of the timing information. All
timing specified of the associated signal in the scope of this statement is expected to have the
precision defined here.

4) EarliestTime: This statement describes the earliest time within a test cycle (period) that the
signal may transition. The time is relative to the start of the test cycle.

5) LatestTime: This statement describes the latest time within a test cycle (period) that the
signal may transition. The time is relative to the end of the test cycle.

6) Reference sigref expr: This statement defines specific signals in a sigref expr for which the
associated signals of the Internal statement have a timing relationship that falls under the
category of TimingSensitive.

SelfEdge <Leading Trailing|LeadingTrailing> INTEGER: This statement
denotes which edges of the associated signals for this Internal statement have a
timing sensitivity to the signals listed in the Reference statement. Leading,
Trailing, or LeadingTrailing edges can be specified to identify the type of
reference edge. If no integer is specified, all edges of the specified type are
assumed to have the timing requirements. Every waveform defined for the signal
has a state at the beginning of the period. The leading edge is defined as the edge

Copyright © 2006 IEEE. Al rights reserved. 65

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

that takes the signal from the starting state at the beginning of the period to the
other logic level. Trailing edges are the opposite transitions to the leading edges.
By specifying an integer, individual edges can be identified for the timing
relationship. The integer refers to the nth edge of the identified type that is
relative to the beginning of the test cycle (period). LeadingTrailing is used to
identify the condition represented by either a Leading or a Trailing edge. If the
SelfEdge statement is not specified, all events of the signal in its waveforms are
to be assumed as the default.

ReferenceEdge <Leading|Trailing|LeadingTrailing> INTEGER: This statement
identifies which edges of the Reference signals waveforms are the reference
edges for the timing sensitivity. The interpretation of Leading, Trailing, and
LeadingTrailing are similar to that defined for the SelfEdge statement. Similarly,
the integer defines the nth edge of the identified type that is relative to the
beginning of the test cycle (period). If a reference edge is not defined, all events
of the signal in its waveforms are to be assumed as the default.

Hold: Specifies the hold time (through a time_expr) between the edges of the
signal identified by the SelfEdge and the ReferenceEdge statement. The hold
time represents a condition where the SelfEdge occurs after the ReferenceEdge.

Setup: Specifies the setup time (through a time expr) between the edges of the
signal identified by the SelfEdge and the ReferenceEdge statement. The setup
time represents a condition where the SelfEdge occurs before the ReferenceEdge.

Period: Specifies the relationship (through a real expr) between the period of the
signal(s) on which the statement is defined as it relates to the period of the
reference signal(s) in this statement. The real number specified in the real expr
multiplied by the period of the reference signal is required to be a valid value in
the Period — Min/Max range specified for the signal.

Precision: This statement is analogous to the Precision of individual edges
defined within the DriveRequirements block of statements. The precision defined
by this statement denotes the precision/resolution of the timings between edges.

7) Waveform: This statement defines the condition that the timing of the signals is to be
determined by the WaveformTables in the scope of the current statement (test mode). The
timing cannot be changed outside of that specified by the waveforms.

(12) ElectricalProperty: This statement describes the electrical characteristics of the signal or set of signals
in its scope. If not specified, the signal is assumed to be Digital:

a) Digital: Values that are interpreted to be discrete levels.

b) Analog: Values that are interpreted as contiguous values.

c) Power: Power level.

d) Ground: Ground level.

ELECTRICAL PROPERTY ID: This represents a name that allows for separating the different signals with
the same ElectricalProperty into subcategories. The name used should be a valid name under the rules
specified by 1450.0.

(13) InputProperty: Several characteristics can be defined on the associated input signal or group of signals
through this statement. If not specified, no input property can be assumed:

66 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

a) Edge: This characteristic is used to describe the way a clock is used in the design. The clock with
this keyword denotes the fact that the clock feeds a set of edge-triggered memory elements in the
design.

b) Window: This characteristic is used to describe the way a clock is used in the design. The clock with
this keyword denotes the fact that the clock feeds a set of level sensitive memory elements in the
design.

¢) GlitchFree: This keyword is used to describe that glitches or spikes must be prevented on the signal
to ensure the expected behavior (for example, an asynchronous reset signal may need to be
identified with this keyword).

d) Transitions INTEGER: This keyword is used to describe the need for critical transitions (required by
the test data) at the associated signal. With an integer value, the number of critical transitions can be
specified. If an integer is not specified with this keyword, the default value to be assumed is 1. The
integer can take on values greater than or equal to 0. If the keyword Transition is not specified, then
the default number of transitions is 0.

e) PullUp: This describes the existence of a PullUp device on a tristateable signal.

f) PullDown: This describes the existence of a PullDown device on a tristateable signal.

g) SynchLatch: This describes the existence of a latch in the design connected to the associated signal
that is used to synchronize the timing of the signal.

h) SynchFF: This describes the existence of a flip-flop in the design connected to the associated signal
that is used to synchronize the timing of the signal.

i) ScanStable: This denotes the fact that the signals of the design are held to a certain value during
scan. On an input of the design, it specifies the need for the stable condition when the scan is
performed external to the design in an embedded environment. On an output, it specifies the fact that
the output is stable during the scan operation internal to the design.

J) ScanUnstable: This statement is analogous to the ScanStable in its definition with the focus of
describing the instability of the associated signals during a scan operation. This keyword denotes the
fact that the signals are changing values during scan.

k) User USER DEFINED: A userdefined input property for extendability of CTL. It is not allowed to use
this capability for describing signal characteristics already covered by other input properties. The
user-defined name cannot be used to redefine any existing input property keywords. The
user_defined name shall follow the definitions for user defined names as defined by IEEE Std 1450-
1999.

(14)IsConnected: This block of statements describes connectivity information about signals. Connections
are defined between two endpoints that must exist. That is, an IsConnected statement cannot be used without
an endpoint description within the block. For a Direct type of connection, a value at the end of the
connection is sensitized to reach the other end of the connection when the Gating Condition of the
connection resolves to a logic-1 for a LogicAnd gating, resolves to a logic-0 for a LogicOr gating, and is
always sensitized for a LogicXor gating. The IsConnected statement is an explicit definition of the
connectivity between two points. If the IsConnected Statement is not used, and the signal is a ScanDataln or
ScanDataOut type of a signal, then implicit connections from the signals to the scan cells can be determined
from the scan structures active in the test mode. The Enabling condition defined in the scan chain definition
provides the necessary information for the gating condition of the connection. The syntax allows for the
definition of an explicit [sConnected statement for the special case of the scan connection. The information
available through this statement falls under the following categories:

A connection between the signal of the design and an internal scan cell, another signal of the design, an
internal signal of the design that is defined in a CoreType block. If no connection point is defined within
the connection block, an implicit connection is assumed to be present if the sigref expr is a scan input or
scan output. The implicit connection is defined in the scan structures statement. In and Out are used to
describe the direction of the connection relative to the signal on which the information is being specified.
“In” is used to describe a connection where the sigref expr on which the IsConnected statement is used is
an input signal (source of the connection), and “Out” is used to describe a connection where it is an
output (sink of the connection). Multiple simultaneous connections are specified through multiple

Copyright © 2006 IEEE. Al rights reserved. 67

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

instantiations of the IsConnected statement within the block for the signal being referenced. If no
IsConnected statement exists, no internal connection is to be assumed for the associated signal.

Direct: The default condition when not specified defines the two ends of the connection to be linked by a
sensitized path where a value when applied at the input side of the connection would appear at the output
side of the connection. The value can go through a transformation.

Indirect: Defines the existence of a nonsensitized combinational path between the two ends of the
connection being described.

(15) CoreSignal sigref expr: The connection of the sigref expr in the scope of the statement is connected to
internal signals defined by the CoreType block. The core_name and the signals referred to by this statement
should exist in the scope of the current CTLMode block. The format of the names in sigref expr is expected
to be corename:(domainname::)signame. The following possibilities exist for the definition of the
connection between the signals in the sigref expr and the cells in the cellname_list:

a) One-to-one correspondence: The number of signals in the sigref expr are the same as the number of
core-signals. In this case the first signal is defined to be connected to the first core-signal, the second
signal is defined to be connected to the second core-signal, and so on.

b) One-to-many correspondence: In this case, one signal is defined in the sigref expr and more than
one core-signal. In this case, the signal is assumed to be connected to all core-signals.

c) Many-to-one correspondence: In this case, many signals are defined and only core-signal is defined.
In this case, all signals are defined to be connected to the core-signal.

(16)IsGatedBy <LogicAnd | LogicOr | LogicXor> /ogic expr: Through this statement the gating
condition for the connection in the scope of this statement is specified. Through a LogicAnd, LogicOr, and
LogicXor, the gating condition of the connection can be described to be an AND gate, an OR gate, and an
Exclusive-Or gate, respectively. The gating logic (which does not include the path that is described by the
connection) that controls the gating condition is described through the logic_expr. The logic expression with
locally defined LOGICSIGNAMES are used to define the boolean relationship between the gating signals
defined within the IsGatedBy block. For example, a logic expression could be defined as “A&B|~C”, where
A, B, and C are symbols whose binding is defined within the [sGatedBy block. The gating signals could be
signals, scan signals of the design, non-scan symbolic named entities, or signals of core instances. Positive
logic is used to define the gating condition. Information that does not allow for the complete evaluation of
the gating logic expression is an error condition.

logic_expr: The logic expression is used to define the boolean relationship between symbolic logic signal
names. For example, a logic expression could be defined as A&B|~C, where A, B, and C are symbols
whose binding is defined within the IsGatedBy block. For details of the operators allowed in logic_expr,
refer to the specifications in IEEE Std 1450.1-2005. The logic_expr is a quoted expression using single
quotes.

LOGICSIGNAME: A locally defined name for use in the logic expression. The logicsigname should follow
the naming rules for names defined in IEEE Std 1450-1999. The logicsigname begins a block that can
contain the following statements:

Type: This statement is used to define the referenced element and shall be one of the following:

a) Signal: A valid signal of the design as defined in the Signals block of statements.

b) StateElement Scan: A valid scan cell name as defined in the Scan Structures block. The scan cell
could be associated with a core instance. Scan cells are state elements that are part of a scan chain
defined in a Scan Structure block of statements.

¢) StateElement NonScan: A state element of the design that is identifiable with a unique name that
can be used in a cellref expr. The name cannot be the same as a scan cell name in any mode.

d) CoreSignal: A valid signal of a core instance.

68 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Name: The name of the element as appropriate to the Type. That is, a signal will be named in the Signals
or SignalGroups block, a StateElement Scan will be named in the ScanStructures block, and a CoreSignal
will be defined in the CoreType block. NonScan StateElement is identified using a SYMBOLNAME. A
symbolic name is a means of communicating a global point in the environment of the design that is to be
considered unique across all designs in the environment. The SYMBOLNAME should follow the user-
defined naming conventions for signals defined by IEEE Std 1450-1999.

IsGatedBy <Macro | Procedure> NAME: The enabling condition of a connection can be specified as the
result of the execution of a macro or procedure with this statement. As a result of the execution of the
sequence, the two ends of the connection are sensitized. A macro or procedure is an arbitrary sequence of
events defined at externally accessible points of the design. The macro or procedure should be part of a
MacroDefs or Procedures block that is in the scope of the current CTLMode block.

(17) TestAccess <Control | Observe | User USER DEFINED>: This statement defines the mechanism to
access the memory element internal to the design for the connection. A Control sequence of events allows
for values to be made available in the associated state element and at one terminal of the connection. An
Observe sequence of events allows for values to be accessible from the terminal of the connection to a
measurable point of the design. Both Control and Observe may contain subsequences that involve activities
such as Capture, Shift, or Transfer. Definitions of these events are provided in the PatternInformation block
of statements. A user-defined keyword for the test access type of sequence is provided through the User
user_defined keyword. It is not allowed to use this capability to describe the Control or Observe sequence of
events as they are already covered by other keywords allowed in this statement. The user-defined name
cannot be used to redefine Control or Observe keywords. The USER DEFINED name shall follow the
definitions for user-defined names as defined by IEEE Std 1450-1999.

<Macro | Procedure> NAME: The Macro or Procedure that provides the test access of type Control,
Observe, or Control Observe is identified. The name specified should be a valid name defined within the
scope of the current statement.

(18) LaunchClock | CaptureClock| Reset: This statement identifies the Launch/Capture clock or reset
signal relative to the connection established (SIGNAME). The LaunchClock is used to define information
about the clocking of the source side of the connection, and CaptureClock is used to define information
about the clocking of the sink side of the connection. Thus, an In type connection uses CaptureClock to
define the clocking of the entity at the end of the connection internal to the signals in sigref” expr on which
this statement appears (clocking at the receiving end of the connection). An Out type connection uses the
LaunchClock to define the clocking of the entity at the end of the connection internal to the signals in
sigref expr on which this statement appears (clocking at the source end of the connection). Using
LaunchClock/CaptureClock for the source or sink that is not a memory element defines the ability to
connect a memory element that satisfies that property. The clocking condition associates with the value as
defined by the DataType-AssumedlnitialState of the output/input signal (SIGNAME) in the scope of this
statement. The Reset keyword is used to identify the reset signal (SIGNAME) associated with the memory
element internal to the connection. When sepecified on an In type of connection, the reset signal affects the
memory element at the sink of the connection. When specified on an Out type of connection, the reset signal
affects the memory element at the source of the connection. If not specified, no information can be
interpreted about the sensitivity of the entity at the end of the connection to clocks or resets of the design.
The type of clocking or reset event that affects the value is describe by the following keywords:

(19) LeadingEdge: The event of the signal that takes the signal from the AssumedInitialState to the opposite
state.

TrailingEdge: The event of the signal that takes the signal from the opposite state of the
AssumedlnitialState to the AssumedInitialState.

Copyright © 2006 IEEE. Al rights reserved. 69

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

LevelSensitive: The event that refers to the constant level of the signal at the state after the type of edge
(LeadingEdge, TrailingEdge) occurs. The associated memory element could change values during this
identified state.

(20) Direct: The clock signal is a direct connection from a primary input signal.
Indirect: The clock signal is connected via logic from a primary input signal.

(21) StateAfterEvent: It defines what happens to the state of the memory element that is internal to the
design with respect to the connection. The information provided by this statement reflects the result of
changing values on clocks. The next state of the associated memory element could be one of the following:

a) Connection: The value that is available through the connection established by IsConnected is
captured in the memory element.

b) ExpectLow: A logic-0.

c) ExpectHigh: A logic-1.

d) ExpectUnknown: A logic-X.

e) ExpectValid: A logic-0 or a logic-1.

f) Hold: Previous state of the memory element.

g) Invert: The inversion of the previous state of the memory element.

h) ShiftState: The value in the scan cell previous to the current memory element (which is part of a
scan chain) in the shift order.

i) User USER_DEFINED: A user-defined next state for extendability of CTL. It is not allowed to use this
capability to describe next states already covered by other keywords allowed in this statement. The
user-defined name cannot be used to redefine any existing StateAfterEvent keywords. The
USER_DEFINED name shall follow the definitions for user defined names as defined by
IEEE Std 1450-1999.

(22) Signal sigref” expr: The connection of the sigref” expr in the scope of the statement is connected to other
signals of the design that are defined in this statement. Let us call the sigref expr in the scope of this
statement the outer sigref expr and the sigref expr defined using this statement the inner_sigref expr. For
an In type of connection, the outer sigref expr represents the source signals of the connection and the
inner_sigref expr represents the sink signals of the connection. For an Out type of connection, the
inner_sigref expr represents the source signals and the outer sigref expr represnts the sink signals. The
following possibilities exist for the definition of the connection between the outer sigref expr and the
inner_sigref expr:

a) One-to-one correspondence: The number of signals in the outer sigref expr are the same as the
number of signals in the inner_sigref expr. In this case, the first signal of the outer sigref expr is
defined to be connected to the first signal of the inner sigref expr, the second signal of the
outer_sigref expr is defined to be connected to the second signal of the inner sigref expr, and so
on.

b) One-to-many correspondence: In this case, one signal is defined in the outer sigref expr and more
than one signal is defined in the inner_sigref expr. In this case, the signal in the outer_sigref expr is
assumed to be connected to all signals in the inner_sigref expr.

a) Many-to-one correspondence: In this case, many signals are defined in the outer sigref expr and
only one signal is defined in the inner _sigref expr. In this case, all signals of the outer_sigref expr
are defined to be connected to the single signal identified in the inner _sigref expr.

(23) StateElement < Scan | NonScan > CELLNAME_LIST: The connection of the sigref” expr in the scope of
the statement is connected to a scan chain that is defined in the ScanStructures block that is in the scope of
the current CTLMode block when Scan is used. The following possibilities exist for the definition of the
connection between the signals in the sigref expr and the cells in the cellname_list:

a) One-to-one correspondence: The number of signals in the sigref expr are the same as the number of
cells in the cellname_list. In this case, the first signal is defined to be connected to the first cell in the
cellname_list, the second signal is defined to be connected to the second cell in the cellname_list,
and so on.

70 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

b) One-to-many correspondence: In this case, one signal is defined in the sigref expr and more than
one cell is defined in the cellname_list. In this case, the signal is assumed to be connected to all cells
in the cellname_list.

¢) Many-to-one correspondence: In this case, many signals are defined and only one scan cell is
defined in the cellname_list. In this case, all the signals defined to be connected to the cell identified
in the cellname_list.

When NonScan is used, no cell name is expected. If a cellname is used for a NonScan cell, then the cell
name cannot appear as a scan cell in any test mode.

(24) Transform: The logic relationship between the source and the sink of the connection is defined by the
Transform statement. The transform represents the change to the waveform of the signal as it is propagated
from the source to the sink of the connection that is establish. When the associated connection is gated, the
transformation is defined for the following cases:

LogicAnd gating: The gating logic resolves to a Logic-1 to allow for the connection to be sensitized.

LogicOr gating: The gating logic is at a Logic-0 to allow for the connection to be sensitized.

LogicXor gating: Although any gating condition allows for the connection to be sensitized, the

transformation is defined to the case where the gating logic resolves to a logic-0.

If Transform is missing or an empty transform block is defined, a direct non-inverted relationship is assumed
between the two ends of the connection. The transform is to be interpreted for all connections defined in the
current block.

WaveformTable: Define the waveform table that contains the WFCs to be transformed. This waveform
table shall be in the scope of the current CTLMode block.

Invert: The connection reflects an inversion in the logic values represented by simple waveform
characters between the two points that are connected. If this keyword is missing, no information can be
interpreted. Although the inversion is clear for the LogicAnd and LogicOr gating condition of a
connection, the LogicXor case needs to be defined. In the case of a LogicXor gating of the connection, the
inversion is defined for the condition when the gating signal is at a logic-0. That is, no inversion is
accounted for by the gating signals logic value in the definition of the Invert statement.

WFCMap FROM_WFC -> TO_WFC: Through this statement, the mapping of waveform characters between
the two points of the connection are given. The FROM_WFC reflects the waveform character of the signals
in the sigref expr on which the IsConnected statement is defined. The TO WFC reflects the waveform
character of the signals identified for the connection within the IsConnected block. If the signals at the
end of the connection do not have their own waveform characters defined, the TO_ WFC is to be resolved
from the waveform characters that are defined for signals in sigref” expr, which is the same mechanism for
the FROM_WFC’s. A separate WFCMap statemenet should be used for each WFC that needs to be mapped.

DelayCycles INTEGER: The number of clock periods elapsed in the connection for a value at one end of
the connection to appear at the other end of the connection. By default a single clock period is to be
assumed.

(25) Wrapper: The wrapper keyword is used to describe standardized information about scan wrappers
around designs that are used to isolate embedded designs from their environment for the purposes of test. On
a per connection on the sigref expr basis, the use of IEEE Std 1500-2005, another user-defined wrapper
technology, or no wrapper technology can be specified. When the CellID refers to a scan wrapper cell, it is
required that the connection be to a scan cell. When the CellID refers to combinational logic, then the
associated connection is defined to pass through the logic defined in the wrapper-cellID. This statement
should be consistent with the Wrapper statement if it is present in the top level of the CTLMode block. This
statement should also be consistent with any Wrapper statement on the wrapper statement on scan cells that
are defined in the Scanlnternal block of statements. This Wrapper statement differs from the one on
sigref expr’s outside the IsConnected block in that this statement is used to identify wrapper cells as
opposed to wrapper control signals:

Copyright © 2006 IEEE. Al rights reserved. 71

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

IEEE1500: It is used to signify compliance of the sigref expr to the hardware structure defined by
IEEE Std 1500-2005.

None: It is used to signify that the sigref expr is not associated with any of the wrapper technology that
comes with the design. This is the default condition for the Wrapper statement.

User USER DEFINED: It is used to identify the use of a wrapper technology that is defined by another
standard or a nonstandardized wrapper.

Wrapper technology defines certain special named implementations of cells or reserves the use of some
signals. These are identifiable through the following keywords:

CellID: This keyword allows for the identification of a cell that is taken in context of the type of wrapper
identified. Keywords exist to identify the special implementations of IEEE 1500 wrapper cells. The
specific definitions of the cell names are defined with the wrapper technology of IEEE Std 1500-2005.

CELL_ENUM: <(WC_S | WH_S) <D|F># | WH_C |WH_CI>
(_C<<I|OB><I|0JU>N>)(_U<DJF>)(_0)(<_G0|_G1>)
WC _S : Identifies the beginning of the shift path description of the wrapper cell.

WH_S: This defines harness logic constructed out of sequential elements but is not a wrapper cell as
described by special rules in IEEE Std 1500-2005.

WH_C: It describes harnessing logic constructed out of combinational logic. For details on
harnessing logic, refer to IEEE Std 1500-2005.

WH_CI: It describes harnessing logic constructed out of combinational logic where the data between
the input and the output of the logic are inverted. For details on harnessing logic, refer to
IEEE Std 1500-2005.

_C: It identifies the beginning of the capture mechanism description of the wrapper cell.
_U: Identifies the beginning of the update mechanism description of the cell.
_O: Identifies the cell as being an observe only cell.

_GO: Identifies the cell as one that provides a logic-0 value for the safe operation of the design to
which the output of the cell is connected.

_G1: Identifies the cell as one that provides a logic-1 value for the safe operation of the design to
which the output of the cell is connected.

D: The registers being described are only used for test purposes and are not part of the functional
logic of the design. When used with WC_S, it describes a dedicated shift path register. When used
with U, it describes a dedicated update register.

F: The registers are functional registers that are reused for test operations. When used with WC_S, it
describes a shared shift path register. When used with U, it describes a shared update register.

I: When preceded by C, it indicates that the captured value for the cell is coming from the
functional input of the wrapper cell. When preceded by I, O, or B, it indicates that the value is
being captured into the first register of the shift path (the one closest to the input of the wrapper
cell).

72 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

O: When preceded by C, it indicates that the captured value for the cell is coming from the
functional output of the wrapper cell. When preceded by I, O, or B, it indicates that the value is
being captured into the last register of the shift path (the one closest to the scan out of the
wrapper cell).

B: Indicates that the captured value is coming from either the functional input or the functional
output of the wrapper cell. This is the equivalent of the combined I and O functions.

U: Indicates that the value is captured into the update register of the wrapper cell.

N: Indicates that the wrapper cell does not support the capture operation. For example, this would be
the case for a control-only wrapper cell.

#: Indicates a positive decimal number that represents the number of state elements in the cell that is
part of the shift path.

(26) IsDisabledBy <In|Out> Logic logic_expr: This statement is used to describe the disabling condition
for the signals in the scope of this statement. The statement allows for disabling to be defined for Input (In)
or Output (Out) signals of the design. If IsDisabledBy is not specified on a signal, it should be assumed that
the signal cannot be disabled in the current configuration. The disabling signals are specified using positive
logic as a logic expression using symbolic names in the verilog syntax.

logic_expr: The logic expression is used to define the boolean relationship between the disabling signals
defined within the IsDisabledBy block. For example, a logic expression could be defined as (A & B | ~C),
where A, B, and C are symbols whose binding is defined within the IsDisabledBy block. The disabling
signals could be signals or scan signals of the design. Positive logic is used to define the disabling
condition, which means the disabling condition occurs whenever the logic expression evaluates to logic-1.
Information that does not allow for the complete evaluation of the disabling logic expression is an error
condition.

LOGICSIGNAME: A locally defined name for use in the logic expression. The logicsigname begins a block
that can contain the following statements:

Type: This statement is used define the referenced element and shall be one of the following:

a) Signal: A valid signal of the design as defined in the Signals block of statements.

b) StateElement Scan: A valid scan cell name as defined in the Scan Structures block. The scan cell
could be associated with a core instance. Scan cells are state elements that are part of a scan chain
defined in a Scan Structure block of statements.

¢) StateElement NonScan: A state element of the design that is identifiable with a unique symbol
name. The state element cannot be a scan cell name in any mode.

d) CoreSignal: A valid signal of a core instance.

Name: The name of the element as appropriate to the Type; i.c., a signal will be named in the Signals or
SignalGroups block, a StateElement will be named in the ScanStructures block, and a CoreSignal is
defined in the CoreType block.

IsDisabledBy <In|Out> <Macro|Procedure> NAME: The disabling condition of a connection can be
specified as the execution of a macro or procedure with this statement. A macro or procedure is an
arbitrary sequence of events defined at externally accessible points of the design. The macro/procedure
referred to by name should be part of a MacroDefs/Procedures block that is in the scope of the current
CTLMode block. The same is true for a procedure. The In and Out reflect the direction of the signal of
the design for which the disabling mechanism is specified.

(27) LaunchClock|CaptureClock: This block definition is essentially the same as the one defined in the
IsConnected block. Whereas the one above is placed within an “IsConnected” block, this one allows for a
disassociated launch/capture block to be specified. A disassociated Launch/Capture block can be used for

Copyright © 2006 IEEE. Al rights reserved. 73

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

scan chain clocks where the connection is defined in the ScanStructures block or when the details of a
connection are not important for the information. This statement has limited syntax to that of the
corresponding statement in the IsConnected block.

(28) OutputProperty: Several characteristics can be defined on the associated output signal or group of
signals through this statement. If not specified, no output property can be assumed.

a)

b)

¢)

e)

g)

h)

)

k)

D

Edge: This characteristic is used to describe the way the associated signal or group of signals can be
sampled for values. Edge is used for sampling that is based on a value available at a particular point
in the period.

Window: This characteristic is used to describe the way the associated signal or group of signals can
be sampled for values. StrobeWindow is used for sampling that is based on a value available during
an interval in the period.

PullUp: This describes the existence of a PullUp device on a tristateable signal.

PullDown: This describes the existence of a PullDown device on a tristateable signal.

ThreeState: This describes the ability of the signal to take on three logic values, namely, logic-1,
logic-0, and logic-Z.

TwoState0Z: This describes the ability of the signal to take on two logic values, namely, logic-0 and
logic-Z.

TwoStatelZ: This describes the ability of the signal to take on two logic values, namely, logic-1 and
logic-Z.

SynchLatch: This describes the existence of a latch in the design that is used to synchronize the
timing of the signal.

SynchFF: This describes the existence of a flip-flop in the design that is used to synchronize the
timing of the signal.

ScanStable: This describes the activity level (stable) of the associated signal during the scan
operations internal to the design being described.

ScanUnstable: This describes the activity level (unstable) of the associated signal during the scan
operations internal to the design being described. A commonly used description is that the outputs
are wiggling during the scan operations of the design.

Transition INTEGER: This statement defines the ability to launch transitions from internal memory
elements of the design that would be available through an IsConnected statement. By default it
should be assumed that no critical transition can be launched from the associated outputs in
sigref expr.

User USER_DEFINED: A user-defined output property for extendability of CTL. It is not allowed to
use this capability for describing signal characteristics already covered by other output properties.
The user-defined name cannot be used to redefine any existing output property keywords. The
user_defined name shall follow the definitions for user-defined names as defined by
IEEE Std 1450-1999.

(29) StrobeRequirements: This statement is used to specify the required timing accuracy for a measure of
events on signals (outputs) of the design. If the strobe accuracy is not specified, non-critical timing is to be
assumed as the default condition. This statement mirrors the DriveRequirements statement with the similar
semantics for the syntax:

a)

b)

74

TimingNonSensitive: This keyword expresses the fact that the signal can be strobed at any time

during the clock period without affecting the validity of the test data associated with the signal.

TimingSensitive: This keyword expresses the fact that the signal has specific timing requirements

for measuring values on the signal. Measure events in the waveform(s) of the associated signals

cannot be arbitrarily changed without affecting the validity of the patterns and protocols in the scope

of this statement:

1) Precision: Through this statement the precision/resolution of the timings is specified. The

time_expr represents an value that represents a plus and minus of the timing information.
All strobe timing events specified for the associated signal in the scope of this statement is
expected to have the precision defined here.

Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

2) EarliestTimeValid: This statement describes the earliest time within a test cycle (period)
that the signal becomes valid. The time is relative to the start of the test cycle.

3) LatestTimeValid: This statement describes the latest time within a test cycle (period) that
the signal remains valid. The time is relative to the end of the test cycle.

4) EarliestChange: This statement describes the earliest time within a test cycle (period) that
the signal is expected to change.

5) Reference sigref expr: This statement defines specific signals in a sigref expr for which the
associated signals of the statement have a timing relationship which falls under the category
of TimingSensitive:

SelfEdge <Leading|Trailing|LeadingTrailing> INTEGER: This statement
denotes which edges of the associated signals on which this statement is defined
have a timing sensitivity to the signals in the Reference statement. Leading,
Trailing, or LeadingTrailing edges are identifiable to specify the type of
reference edge. If no integer is specified, all edges of the specified type are
assumed to have the timing requirements. Every waveform defined for the signal
has a state at the beginning of the period. The leading edge is defined as the edge
that takes the signal from the starting state at the beginning of the period to the
other logic level. Trailing edges are the opposite transitions to the leading edges.
Through an integer, individual edges can be identified for the timing relationship.
The integer refers to the nth edge of the identified type that is relative to the
beginning of the test cycle (period). LeadingTrailing is used to identify the
condition represented by Leading or Trailing. If the SelfEdge statement is not
specified, all events of the signal in its waveforms are to be assumed as the
default.

ReferenceEdge <Leading|Trailing|LeadingTrailing> INTEGER: This statement
identifies which edges of the Reference signals waveforms are the reference
edges for the timing sensitivity. The interpretation of Leading, Trailing, and
LeadingTrailing are similar to that defined for the SelfEdge statement. Similarly
the integer defines the nth edge of the identified type that is relative to the
beginning of the test cycle (period). If a reference edge is not defined, all events
of the signal in its waveforms are to be assumed as the default.

EarliestTimeValid: Specifies the time after which the signal is valid (through a
time_expr) between the edges of the signal identified by the SelfEdge and the
ReferenceEdge statement. The EarliestTimeValid time represents a condition
where the SelfEdge occurs after the ReferenceEdge. A negative number
represents a value where the SelfEdge occurs before the ReferenceEdge.

LatestTimeValid: Specifies the end of the time window of the signal being valid
through a time expr. The time represets an interval between the edges of the
signal identified by the SelfEdge and the ReferenceEdge statement. The
LatestTimeValid represents a condition where the SelfEdge occurs after the
ReferenceEdge. Thus, a negative number for the time expr would specify the
condition that the SelfEdge’s LatestTimeValid occurs before the ReferenceEdge.

EarliestChange: Specifies the earliest time the signal is expected to change
relative to the ReferenceEdge. A positive number represents the event where the
SelfEdge occurs after the ReferenceEdge.

Precision: This statement is analogous to the Precision of individual edges
defined within the DriveRequirements block of statements. The precision defined
by this statement denotes the precision/resolution of the timings between edges.

Copyright © 2006 IEEE. Al rights reserved. 75

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

2) Waveform: This statement defines the condition that the timing of the signals is to be
determined by the WaveformTables in the scope of the current statement (test mode). The
timing cannot be changed outside of that specified by the waveforms.

(30)ScanStyle: This statement is used to specify the scan style for each scan-in or scan-out signal. The
information from this statement can be useful to a core integrator when it may become necessary to catenate
scan-chains.

MultiplexedClock: This indicates that the scan chain operates with the clock determining the source of
the data being applied during the scan operation.

MultiplexedData: This indicates that the scan chain operates with a non-clock test control signal and
determines the source of the data during the scan operation.

LevelSensitive: A race-free shift operation that relies on a single active clock signal at any given time.
Any two latches that have a sensitized path between them operate with clocks that can never overlap
regardless of the timing of the signals involved.

(31) Wrapper: The wrapper keyword is used to describe standardized information about scan wrappers
around designs that are used to isolate embedded designs from their environment for the purposes of test. On
a per sigref expr basis, the use of IEEE Std 1500-2005, another user-defined wrapper technology, or no
wrapper technology can be specified. This statement should be consistent with the Wrapper statement if it is
present in the top level of the CTLMode block. This Wrapper statement differs from the one within the
IsConnected block in that this statement is used to identify wrapper control signals as opposed to wrapper
cells.

IEEE1500: It is used to signify compliance of the sigref expr to the hardware structure defined by
IEEE Std 1500-2005.

None: It is used to signify that the sigref expr is not associated with any of the wrapper technology that
comes with the design. This is the default condition for the Wrapper statement.

User USER DEFINED: It is used to identify the use of a wrapper technology that is defined by another
standard or a nonstandardized wrapper.

PinID: This keyword allows for the identification of a special signal in context of the type of wrapper
identified. These signals are defined along with the wrapper technology in the associated standards. For
example, some PinIDs for IEEE Std 1500-2005 are ShiftWR and SelectWIR. This keyword should not be
used in conjunction with the None selection of the Wrapper.

10.4 Internal BlockSyntax examples

The Internal block of statements contains all of the information about the design from the signals inwards.
As designs can vary dramatically, the information in this subclause is rich in keywords to encompass all test
information possible for the designs. User-defined keywords allows for unanticipated needs. All keywords
cannot and should not be used for a single design. In the following example, a sample usage of some
statements is shown. Based on this, the reader should easily interpret the usage of keywords that are allowed
by the syntax but not shown in the example.

A single design with signals scan_in[0..7], scan_out[0..7], clk, clk2, scan_enable, functional ins[0..15] and
functional outs[0..20] is being described.

Environment
CTLMode internal model ({

76 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

TestMode InternalTest;
Internal ({
// scan_in[0..7] are scan in signals for eight internal scan chains. These scan-ins are also
// functional inputs of the design. Furthermore, the test data require an extra stimulus outside of
// the scan data as specified by the DataRateForProtocol.
scan_in[0..7] {
DataType Functional TestData ScanDataln {
ScanDataType Internal;
DataRateForProtocol Maximum 1;

}
}

// scan_out[0..7] are scan out signals for eight internal scan chains. These are test-only signals
scan_out[0..7] {
DataType TestData ScanDataOut {
ScanDataType Internal;
}

}

// clk is a functional and a test clock that is assumed to be at a logic-0 at the beginning of every
// protocol in the test mode being described. Because of the functional attribute, the clock can be
// used to capture values in test sequences. The ScanMasterClock attribute also describes clk to

// be used during scan operations.
clk
DataType Functional TestControl ScanMasterClock {
AssumedInitialState ForceDown;
}

}

// clk2 is a dedicated test clock. An example of this could be the clock of a control block.

// clk2 is expected to be glitch-free and stable during scan operations external to the design.
clk2 {
DataType TestControl {
AssumedInitialState ForceDown;
}

InputProperty ScanStable;

}

/I ' The scan enable signal is defined to enable the scan chain configurations with a logic-1.
scan_enable
DataType TestControl ScanEnable {
ActiveState ForceUp;
}

}

// Functional inputs and outputs of the design that receive test data (broad side stimulus).
‘functional ins[0..15]+functional outs[0..20]’ {
DataType Functional TestData;

}

} // end Internal block
} // end CTLMode internal model
} // end environment block

Copyright © 2006 IEEE. Al rights reserved. 77

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

// The following examples show the restrictions on sigref expr’s as
// defined by this standard.

// sigref expr: Multiple instantiation of the same sigref expr in a
// single internal block is not allowed. A signal can be part of

// multiple sigref expr when it participates in named signal groups

// The following snippet of an example is not allowed in the CTL
Environment { CTLMode { Internal {

clk { /* information on clk */ }

‘clk+clk2’ { /* information on clk and clk2 */ }

HH

// clk has multiple block definitions.

// The following snippet of an example is allowed in the CTL
SignalGroups { clocks[0..1]='clk+clk2’;}
Environment { CTLMode { Internal ({
clk { /* information on clk */ }
clocks [0..1] { /* information on clk and clk2 relevant to the use
of the signals through the groupname.*/ }

P

// clk and clocks have only one block associated with each.

// sigref expr’s that break any signal group into its subentities

// by using the “-” or bit-indexing capability ([]) make the sigref expr
// resolve to the individual signals that make up the resulting

// sigref expr.

// The following snippet of an example is allowed in the CTL
Environment { CTLMode { Internal ({
clocks[0..1] { /* information on clk and clk2 */ }
‘clocks-clocks[1]’ { /* information on clk */ }
b
// ‘clocks-clocks[1l]’ resolves to clk as the group is bit-indexed. Thus,
// clocks and clk have only one block of information each.

Consider the example of two input signals, signall and signal2, which have the following timing
relationship:

a) signall has can rise a minimum of 5 ns before a rising transition on signal2.
b) signall can fall after a minimum of 3 ns after a rising transition of signal2.

The following describes this timining relationship, which is shown in Figure 6:
Signals { signall In; signal2 In;}

Environment { CTLMode mymode { Internal {
signall {

78 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL)

DriveRequirements
TimingSensitive {
Reference signal2 {
ReferenceEdge Leading;
SelfEdge Leading;
Setup ‘bns’;
}
Reference signal2 {
ReferenceEdge Leading;
SelfEdge Trailing;

IEEE
Std 1450.6-2005

Hold ‘'3ns’;
}
}
}
}
11}
signall A
g min 5ns /’(
N 4min 3ns
N /
AN
\ /

signal2

Figure 6—Example of a timing relationship

11. CTLMode—Scanlinternal block

11.1 General

This block of statements is used to describe information on scan cells that are defined in ScanStructures or
Corelnstance-ScanStructures. The syntax refers to the data type enum and the ScanDataType enum

defined in 10.2.

11.2 Scaninternal syntax
Environment { CTLMode (CTLMODE NAME) {
ScanlInternal {
(cellref expr {

(DataType (data_type_enum)+ ;)
(DataType (data_type_enum)+ {

Copyright © 2006 IEEE. All rights reserved.

(1
2
3)

79

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(ActiveState 4)

< ForceDown

| ForceUp

| ForceOff

| ForceValid

| ExpectLow

| ExpectHigh

| ExpectOff

| ExpectValid

>3)
(ScanDataType (ScanDataType enum)+ ;) ®)
(ValueRange INTEGER INTEGER (CORE_INSTANCE_NAME)+;)* (6)
(UnusedRange INTEGER INTEGER;)* @)

})*// end DataType

(IsConnected < In|Out > { (3)
(CoreSignal sigref expr ;) ©)
(StateElement <Scan | NonScan> (cellref expr) ;) (10)
(IsGatedBy <LogicAnd | LogicOr | LogicXor> logic_expr { (11)

(LOGICSIGNAME {
Type < Signal | StateElement Scan | StateElement NonScan | CoreSignal >;
Name <SIGNAME | CELLNAME | SYMBOLNAME>;
} Y+ // end logicsigname
})* // end IsGatedBy
(IsGatedBy < Macro | Procedure > NAME ;)*

(< LaunchClock | CaptureClock | Reset > SIGNAME { (12)
(<LeadingEdge | TrailingEdge> (LevelSensitive);)
(<Direct | Indirect>;)
(StateAfterEvent <
Connection
| ExpectLow
| ExpectHigh
| ExpectUnknown
| ExpectValid
| Hold
| Invert
| ShiftState
| User USER_DEFINED > ;)
1* // end LaunchClock

(ScanDataType (ScanDataType_enum)+); (13)

(TestAccess < (14)
(Control
| Observe
| User USER_DEFINED)+ >
< Macro | Procedure > NAME;)*

(Transform { (15)
(WaveformTable (WFT_NAME)+;)

(Invert ;)
(WFCMap FROM_WFC -> TO_WFC;)*

80 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

(DelayCycles INTEGER;)
})* // end Transform

})* // end IsConnected
(Wrapper <IEEE1500 | None | User USER_DEFINED > (CellID cell _enum) ;) (16)
} Y+ // end cellref expr
} // end Scaninternal
}} // end Environment, CTLMode

11.3 Scaninternal block syntax descriptions

(1) Scanlnternal: This statement begins the named Scanlnternal block within a CTLMode block. The
Scanlnternal block contains statements that describe the internals of the design between the scan chains of
the design and the logic away from the signals of the design. There shall be only one ScanInternal block that
defines all connections to all scan chains.

(2) cellref expr: This is a cell name or group of cell names. In the ScanInternal block, statements are
assigned to the cells part of the cellref expr. All rules of the information in cellref expr’s are parallel to that
of sigref expr’s. Multiple instantiation of the same cellref” expr in the Scanlnternal block is not allowed. A
cell name or group name can appear only once in the cellref expr’s of a single block. A cell can be part of
multiple cellref expr when the cell is part of named groups, and the information linked to the cellref expr
should only be interpreted when the named entity of the cellref” expr is used. Any bit-indexing or use of the
“-” operator to break a named cell group makes the entire cellref expr resolve to the individual cells. All cell
names shall be unique across all scan chains and fall in the same name space as scan chain names. Thus, a
cellref expr can contain cell names, cell group names, and scan chain names. The cell names, cell group
names, and scan chain names can be defined in the ScanStructures block (outside a core) or in the
ScanStructures block inside a core. See the definition of the CoreType statement.

The definitions of the syntax in this clause should be taken from the Internal block. The semantics of the
statements is identical with a context of cell-names.

The Wrapper statement semantics differs from that in the Internal block in the fact that it is providing
information on about the cells of the cellref expr, and it is not associated with a connection. Thus, a
combinational wrapper cell is not relevant in the context of the statement on cellref expr’s. If the Wrapper
statement is used in the Internal block and in the ScanInternal block to refer to the same cell, the information
must be consistant.

11.4 Scaninternal block syntax example

The following syntax shows the definition of six scan cells, namely, c[0], c[1], c[2], ¢[3], c[4], and c[5].
Then information is provided for the scan cells in the environment:

ScanStructures {
ScanCells c[0..5];

}
Environment
CTLMode {
ScanInternal {
c[0o] { /* information on c[0] */}
‘c[1..5]’ { /* information on c[1..5] */}
}
}
Copyright © 2006 IEEE. Al rights reserved. 81

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

Examples of information on scan cells.
DataType TestFail; // the cell contains a value that indicates the
// failure of a test.

DataType TestDone { ActiveState ForceUp;} // the cell contains a value
// that indicates the end of execution of a test. The
// condition is reached if the cell has a value of
// logic-1.

DataType TestDone { ActiveState U;} // Same as ActiveState ForcelUp.

IsConnected In { CoreSignal corel:sigl; Transform { Invert;}} // the cell
// has a path sensitized to an internal core of the design
// (to its sigl), and the value gets inverted in the path.

// The cell has a sensitized path to another scan cell named c[0]. This
// path is sensitized when sigA of the design is at a logic-1, and the
// signal on the internal core of the design named sigl is also at a
// logic-1. The value in state element c[0] can be observed by operating
// the macro named mymacro_ to observe scan cell.
IsConnected In { StateElement Scan c[0];
IsGatedBy LogicAnd ‘a&b’ ({
a { Type Signal; Name sigA;}
b { Type CoreSignal; Name corel:sigl; }}
TestAccess Observe Macro mymacro to observe scan cell; }

// the scan cell has a non-scan element on its input side. The path is
// always sensitized.
IsConnected Out { StateElement NonScan; |}

// the scan cell has a sensitized path from scan cell named c[1l] on its
// input side.
IsConnected Out { StateElement Scan c[1]; }

// the scan cell has a sensitized path on its input side from a

// scan cell that is part of a core internal to the design.

// The core instance name is corel, and the scan cell name is c[5] of the
// corel.

IsConnected Out { StateElement Scan corel:c[5]; }

// the scan cell has a sensitized path from a internal core signal of
// the design. The path is sensitzed when sigB of the design is at
// a logic-1. The scan cell changes state on the leading edge of clkl.
// After the leading edge of clkl, the scan cell goes to an unknown
// state.
IsConnected Out { CoreSignal corel:sig2;

IsGatedBy LogicAnd a { a { Type Signal; Name sigB;}}

LaunchClock clkl { LeadingEdge; StateAfterEvent ExpectUnknown; }}

82 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

12. CTLMode—Corelnternal block

12.1 General

This block of statements is used to describe information on the signals of Corelnstances defined in the
design. The signals of the core instances are referenced in the sigref expr, and information is provided for it.
The syntax refers to the data_type_enum that is defined in 10.2.

12.2 Corelnternal syntax
Environment { CTLMode (CTLMODE NAME) {

Corelnternal { (1
(sigref expr { // format = coreinstance.signame 2)
A3)
(DataType (data_type_enum)+ ;) 4
(DataType (data_type_enum)+ {
(ActiveState
<ForceDown
| ForceUp
| ForceOff
| ForceValid
| ExpectLow
| ExpectHigh
| ExpectOff
| ExpectValid
>3)
(ScanDataType (ScanDataType enum)+ ;) 4)
(ValueRange INTEGER INTEGER (CORE_INSTANCE NAME)+;)* 6)
(UnusedRange INTEGER INTEGER;)* @)

})* // end DataType

(IsConnected < In|Out > { ®)
(CoreSignal sigref expr ;) 9
(IsGatedBy <LogicAnd | LogicOr | LogicXor> logic expr { (10)

(LOGICSIGNAME {
Type < Signal | StateElement Scan | StateElement NonScan | CoreSignal >;
Name <SIGNAME | CELLNAME | SYMBOLNAME>;
} Y+ // end logicsigname
})* // end IsGatedBy
(IsGatedBy < Macro | Procedure > NAME ;)*

(TestAccess (11
(Control
| Observe
| User USER DEFINED)+
< Macro | Procedure > NAME;)*

(Transform { (12)

Copyright © 2006 IEEE. Al rights reserved. 83

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(WaveformTable (WFT_NAME)+;)
(Invert ;)
(WFCMap FROM_WFC -> TO_WFC;)*
(DelayCycles INTEGER;)

})* // end Transform

})* // end IsConnected

} Y+ // end cellref expr
} // end Corelnternal
}} // end Environment, CTLMode

12.3 Corelnternal block syntax descriptions

(1) Corelnternal: This block of statements allows for information to be defined on Corelnstance-signals
and Corelnstance-SignalGroups. Apart from this difference, this block has the same function as the Internal
block or the ScanInternal block of statements. Information here is between the boundaries of two cores in
the design or about the boundary of the core. There shall be only one Corelnternal block in a single
CTLMode block of statements.

(2) sigref expr: The signals and signal groups in the sigref expr have a format of coreinstance.signame,
coreinstance:signalgroupname, and coreinstance:domainname: :signalgroupname.

The definitions of the syntax in this subclause should be taken from the Internal block. The semantics of the
statements is identical with a context of coreinstance:signames.

12.4 Corelnternal block syntax examples

CoreType A {
Signals { ins[0..5] In; outs[0..3] Out; }
}

CoreInstance A { I1; I2;}
Environment
CTLMode {
CoreInternal {
Il:ins[0] { /* information on i[0] of I1 */ }
‘Il:outs[0..3]+I2:0uts[0..3]" {
// information on the outputs of Il and I2

Examples of information on core signals. These are similar to scan cells.
The examples are intentionally the same to show the similarity of the
constructs.

DataType TestFail;

DataType TestDone { ActiveState ForceUp; }

DataType TestDone { ActiveState U;}

IsConnected In { CoreSignal I2:ins([1]; Transform { Invert;}}
IsConnected In { CoreSignal Il:ins[0..3];

84 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

IsGatedBy LogicAnd a&b
a { Type Signal; Name sigA;}
b { Type CoreSignal; Name I2:outs[3]; }}
TestAccess Observe Macro mymacro to observe value from core input; }
IsConnected Out { CoreSignal Il:ins[1];
IsGatedBy LogicAnd a { a { Type Signal; Name sigB;}}}

13. CTLMode—Relation Block

13.1 General

The Relation block is used to define relationships between signals and/or signal groups. The default is that
there is no relationship between signals. The allowed syntax is as follows.

13.2 Relation syntax

Environment { CTLMode (CTLMODE NAME) {

Relation { (1)
(Bus sigref expr (BUSNAME);)* (2)
(Common sigref expr ;)* (3)
(Corresponding sigref expr ;)* 4)
(Differential sigref expr (sigref expr) ;)* (%)
(Equivalent sigref expr (sigref expr);)* (6)
(Independent sigref expr (sigref expr (Set));)* (7N
(InOutSet signame signame (signame);)* // enable, output name, input name ®)
(MuxSet sigref expr (sigref expr { tag })+;)*)
(NotEquivalent sigref expr sigref expr;)* (10)
(OneCold sigref expr;) * (11)
(OneHot sigref expr;) * (12)
(Port sigref expr (integer) ;)* // port data, port select value 13)
(ZeroOneCold sigref expr;) * (14)
(ZeroOneHot sigref expr;) * (15)

} // end Relation
+} // end Environment, CTLMode

13.3 Relation block syntax descriptions

(1) Relation: This statement begins the relation block, which allows for the definition of relationships
between various signals and/or signal groups (sigref expr) that are in the scope of CTL. These signals/signal
groups are exclusive of those defined in the CoreType block. The information defined in the relationship is
applicable to the current CTLMode block and is available to other CTLMode blocks through the inheritance
mechanisms defined in CTL.

(2) Bus sigref expr (BUSNAME): The signals contained in the sigref expr are part of a group of signals that
are treated as a single entity or a bus. The bus, which contains the identified signals, can be named
(BUSNAME) using the naming convention for names as defined by IEEE Std 1450-1999. Examples of this
entity are the Address Bus and Data Bus of Memories. This keyword differentiates between arbitrary
groupings of signals created with the bused syntax in CTL (name[]) and actual buses that exist. Buses
typically have an ordering to the signals in the group. The ordering information should be obtained from the

Copyright © 2006 IEEE. Al rights reserved. 85

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

one defined by the grouping mechanism for buses. For example, signals a[31..0] represent a set of signals
that have an MSB, a[31], and an LSB of a[0]. This statement does not require the signals in the sigref expr
to have the [] notation.

(3) Common sigref expr: The signals contained in the sigref expr of this statement are to be connected
together external to the core. For example, two signals of the current design, namely A and B, are identified
as common if the logic external to the design in the embedded environment is to connect them to the same
source. This statement provides the opposite meaning to the Independent statement in the Relation block.

(4) Corresponding sigref expr: The signals identified in the sigref expr of this statement are expected to
be connected externally to points that have similar characteristics. For example, two signals of the current
design, namely A and B, that is to be embedded in an SoC could be cither connected to an input of the SoC
or could be connected to a scan-element in the SoC. Although both are possible, the corresponding statement
would limit the choice of the connection to either both A and B are connected to inputs of the SoC or both A
and B are connected to scan-elements on the SoC. The case where one signal comes from one of the two
choices and the other signal comes from the other choice is not allowed with the Corresponding statement in
effect.

(5) Differential sigref expr (sigref expr): This statement is used to identify differential signals on the
design. If only one sigref expr is used, all signals in the sigref expr are differential signals with no
relationship among the signals. If a second sigref expr is defined, both sets of signals are identified as
differential with a one-to-one relationship (in the same order) between the signals in the two sigref expr’s to
identify the signal that has opposite waveforms.

(6) Equivalent sigref expr (sigref expr): This statement links signals that function exactly the same and
have the same values at all times during the configuration being described. These signals may or may not be
connected to the same source in the SoC. When one sigref” expr is used, all signals within it have the same
values. When two sets of sigref expr’s are used, the two sets of sigref expr’s shall have the same number of
signals such that there is a one-to-one correspondence established between the signals in the order they are

specified. Each corresponding signal pair has the same values at all times during the configuration being
described.

(7) Independent sigref expr (sigref expr (Set)): The signals identified in this statement represent signals
that are expected to be managed externally to the core in a way that they are completely isolated from one
another. The signals identified cannot be connected to the same third point/net/signal externally. Therefore
they should not be connected on the SoC. There are three forms that this statement can express:
a) Independent sigref expr: All signals in the expressions are expected to be isolated from all others
in the group.
b) Independent sigref expr sigref expr: All signals in the first expression are expected to be isolated
from the signals of the second expression with one-to-one ordering relationship.
¢) Independent sigref expr sigref expr Set: All signals in the first expression are expected to be
isolated from all signals in the second expression.

(8) InOutSet signame signame (signame): The signals specified in this statement form an input/output set
that has not been combined by a wrapper cell. The first signame is the I/O enable signal. The second signal
name is the output signal and the output driver is turned on when the I/O enable signal is a “1.” The third
signal is optional and is the name of the input signal that is enabled when the output driver is turned off by
the enable signal being a “0.”

enable | Core
|
output - |
) |
Input I I
86 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

(9) NotEquivalent sigref expr sigref expr: The number of signals in the two sigref expr’s should be the
same. There shall be at least two signals in each sigref expr. There is a one-to-one correspondence
established between the two sets of signals based on the order in which they are specified. The logical values
taken on by the two signals of each corresponding pair cannot be the same for all pairs. Thus, if the two sets
are address busses of a multiport memory, then this statement could be used to specify that the two address
busses can never take on the same address.

(10) MuxSet sigref expr (sigref expr { tag })+: The signals specified in this statement are all part of a
multiplexor set. The signal or set of signals (sigref expr) that is specified first is the select portion of the
multiplexor that determines which of the inputs to follow is connected to the output of the multiplexor.
Following the control signals are sets of signals identified in sigref expr’s that represent inputs to the
multiplexor. These inputs can be individual signals or sets of signals that represent busses. Following each
input sigref expr is a tag that represents the binary value on the select signals that picks the associated input
signals of the multiplexor. Thus, the tag represents a string of 0’s and 1°s such that the values have a one-to-
one correspondence (in the same order) with the select signals of the first sigref expr of this statement. Tag
lengths that do not match the number of select signals is an error condition.

Core

select
—\L

mux_0 MuxSet select mux 0 {0 } mux 1{1};

mux_1

(11) OneCold sigref expr: The signals specified in this statement are expected to have values of all “1’s”
except one of them being “0.”

(12) OneHot sigref expr: The signals specified in this statement are expected to have values of all “0’s”
except one of them except one of them being “1.”

(13) Port sigref expr (integer): The signals identified in the sigref expr are related to each other as signals
that correspond to a single port of a multiported entity within the design being represented. The port can be
given an integer identifier that can be used to identify this set of signals. This integer is expected to be
unique for across all ports defined within the same scope of the test mode information.

(14) ZeroOneCold sigref expr: The signals specified in this statement are expected to have values of all 1’s
or OneCold characteristic.

(15) ZeroOneHot sigref expr: The signals specified in this statement are expected to have values of all 0’s
or OneHot characteristic.

13.4 Relation block syntax example

In the following example, some signals are defined for a design and relationships are assumed for the
purposes of showing examples of the syntax:

Signals {
A In; B In; C In; D In; E In; F Out;
Environment
CTLMode {
Relation {
// A and B are to be connected up to the same signals in the SoC
Common ‘A+B’;
Copyright © 2006 IEEE. Al rights reserved. 87

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

// A and C should be connected to similar constructs on the SoC
Corresponding ‘A+C’;

// A and B are differential signals but no relationship defined to
// each other.
Differential ‘A+B’;

// A and B are always opposite values to each other.
Differential A B;

// A and B are differential and take on opposite values and C-D
// have a similar relationship as A and B have to each other.
Differential ‘A+C’ ‘B+D’;

// A and B take on the same values all the time, and B and D take
// on the same values all the time.
Equivalent ‘A+C’ ‘B+4D’;

// A and B are to be connected to different signals in the SoC
Independent ‘A+B’;

// A and B are to be connected to different signals in the SoC and
// C and D are to be connected to different signals on the SoC
Independent ‘A+C’ ‘B+D’;

// A and C are to remain independent from B and D in the SoC
Independent ‘A+C’ ‘B+D’ Set;

// The three signals are part of a bidirectional signal where
// F and A are connected
InOutSet E F A;

// The three signals are part of a multiplexer internal to the
// design. E = enable.
MuxSet E A F;

// The two sets of signals (addr busses) cannot have the same
// logical address.
NotEquivalent ‘pladdr[0..2]’ ‘p2addr[0..2]’';

// The signals ABC can take on the following values: 110, 011,
// 101

OneCold ‘A+B+C’;

// The signals ABC can take on the following values: 100, 010,
// 001

OneHot ‘A+B+C’;

// The signals ABC can take on the following values: 110, 011,
// 101, 111

ZeroOneCold ‘A+B+C’;

// The signals ABC can take on the following values: 100, 010,

88 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

// 001, 000
zZzeroOneHot ‘A+B+C’;

// The signals A and B are part of a port of an internal memory
// element.
Port ‘A+B’;
// The signals A and B are part of a port of an internal memory

// element, and the port is labeled 1.
Port ‘A+B’ 1;

14. CTLMode—ScanRelation block

14.1 General
The ScanRelation block is used to define relationships between scan cells (cellnames or cell groups) that are

specifiable in a cellref expr. The default is that there is no relationship between cells. The allowed syntax is
given in this clause.

14.2 ScanRelation syntax

Environment { CTLMode (CTLMODE NAME) {

ScanRelation { ()
(Differential cellref expr (cellref expr) ;)* (2)
(Equivalent cellref expr (cellref expr);)* A3)
(OneCold cellref expr;) *)
(OneHot celiref expr;) * (%)
(ZeroOneCold cellref expr;) * (©)
(ZeroOneHot cellref expr;) *)

} // end ScanRelation
}}+ // end Environment, CTLMode

14.3 ScanRelation block syntax descriptions
The ScanRelation block mimics the capabilities of the Relation block. The only difference is in the fact that

the relationship is defined between scan cells. As this is the case, the definitions and example usage of the
syntax should be taken from the Relation block definitions.

15. CTLMode—EXxternal block

15.1 General

CTL is used to describe designs that are to be embedded in a larger design called the SoC. The External
Block of statements defines information that lies outside the design hierarchy to which the CTL is written

Copyright © 2006 IEEE. Al rights reserved. 89

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

such that the correct connections can be made on the SoC. On a signal-by-signal basis, the information about
embedding the design is described. When the design is embedded, the information in the External block of
the embedded designs CTL can be used for verification purposes. The syntax refers to the data_type _enum
and the cell_enum that are defined in 10.2.

15.2 External statement syntax

Environment { CTLMode (CTLMODE NAME) {

External { (1)
(sigref expr { 2
(AllowSharedConnection { 3)

(Core NAME (sigref expr) ;)*
(DataType (data_type_enum)+ ;)
(Family (NAME)+ ;)
(OutputFunction <And | Or | Xor> ;)
(Self sigref expr ;)
(Vendor (NAME)+ ;)
})* // end AllowSharedConnection

(ConnectTo { 4)
(Core NAME sigref expr;)
(DataType (data_type_enum)+ ;)
(Fanout INTEGER;)
(Instruction;)
(NoRebuffering;)
(Symbolic (SYMBOLIC NAME)+;)
(TAM;)
(Termination < TerminateHigh | TerminateLow | TerminateOff | TerminateUnknown >
(TERMINATION VALUE);)
(Safe;)
(WBR;)
(Wrapper
<IEEE1500 | None | User USER DEFINED >
(< CellID cell enum | PinID USER_DEFINED PIN ID >) ;)
})*// end ConnectTo

})Y+ // end sigref expr
} // end External
+} // end Environment, CTLMode

15.3 External block syntax descriptions

(1) External: This statement begins the external block within the CTLMode block. The external block
contains statements used to provide information to the core integrator about the expected environment
outside the core boundary. As the external environment of the core is yet to be created, the contents of this
block are to be considered as suggestions to the integrator.

(2) sigref expr: This is a signal or group of signals or an expression combining the first two entities. In the
external block, statements assign properties to the signals or signal groups that are part of the sigref expr.
Multiple instantiations of the same sigref expr in a single external block are not allowed. Resolution of

90 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

information is down to individual signals that get the union of information from the blocks of information on
the signal and the blocks on named signal groups of which the signal is part. For example, in the same block
of statements, one can see information on signal mysignal and information on signal group allsignals[0..10],
which includes mysignal. mysignal gets the combined information from the two blocks of information.
sigref _expr’s, which break any signal group into its subentities by using the “-” or bit-indexing
capability ([]), make the sigref expr resolve to the individual signals that make up the resulting sigref expr.
Refer to the definition and examples of the InheritCTLMode statement for more details on interpreting
sigref _expr’s and association of information to the entities in the sigref expr (9.2). The exact definition of
sigref expr should be taken from IEEE Std 1450-1999 and its extension in this standard. The CTL provider
shall ensure that signal information statements are consistent with each other when information is provided
on a signal and when the signal is part of a named signal group in the same block.

(3) AllowSharedConnection: Through this statement the allowed parallelism in connecting and hence
testing different cores can be specified. If specific signals are specified on entities external to the design,
there should be a one-to-one mapping in the same order between the signals that this statement is attributing
and the signals of the other external entity. No parallelism can be assumed if not explicitly specified by this
statement. In the AllowSharedConnection block, multiple statements can be specified and a logic AND of
the associated information should be assumed between the information within the block.

Core sigref expr: The shared connection is defined with signals on another Core with core _name. The
other Core should be defined using the FileReference statement in the environment block and identifies
with a file type equal to Core. The file name and the name should be specified according to
IEEE Std 1450 and IEEE Std 1450.1-2005. The format of the sigref expr is of the format
corename:signame.

DataType data_type enum: The signals with DataType referred to by the data type enum are valid for
parallel testing. All signals identified in the Internal block of the CTLMode for the associated core are
referred to by this statement.

Family NAME: This refers to cores that are linked to a certain family. The cores referred to by this
statement are cores that have the Family statement with the same name as specified here in their top-level
CTLMode block.

OutputFunction And|Or|Xor: This statement refers to the logic function allowed to combine the outputs
of different cores. Outputs can only be combined using the logical AND, OR, or XOR functions.

Self sigref expr: The shared connection is defined with signals on the current design.

Vendor NAME: This refers to cores that are linked to some Vendor (foundry, tool, etc.). The cores referred
to by this statement are cores that have the Vendor statement with the same name as specified here in their
top-level CTLMode block.

(4) ConnectTo: This statement allows the core provider to provide suggestions to the integrator on
connections outside the core. Multiple statements can exist within a ConnectTo block. A logic AND is to be
assumed between the information provided by each statement in the same block of information. A logic-OR
condition is to be assumed between multiple ConnectTo statements to define an either/or recommendation.

Core sigref expr: A connection to a specific signal on a design specified by the NAME and the sigref expr
is defined by this statement. The NAME should be identified through the FileReference statement in the
environment (syntax defined by IEEE Std 1450.1-2005) as another design. The NAME is the name of the
design that could include the entire path to access it. sigref expr identifies an existing signal or set of
signals of the design. If a group of signals are identified, a one-to-one mapping (in the same order) is
assumed between the sigref expr on which the ConnectTo statement is being assigned and the sigref expr
of the signals identified on NAME.

Copyright © 2006 IEEE. Al rights reserved. 91

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

DataType data_type enum: Signals that have characteristics defined by the data type enum. The
definition of the data types should be obtained from the internal block statements definition of the
DataTypes.

Fanout INTEGER: This statement defines the number of external gates that the associated signal is allowed
to drive. The number is only allowed to be an integer.

Instruction: The outputs of the instruction register of wrapper technology that configures the structures
inside a design. This reflects the ability to control the associated signal of the design through the state of
an instruction register external to the design.

NoRebuffering: No logic gates can be added to the connection of the signal. This is common for signals
where the I/O Pads are already implemented in the design being described.

Symbolic SYMBOLNAME: A symbolic name that is to be considered as a means of communicating a global
point in the environment of the design that is to be considered unique across all designs in the
environment. The SYMBOLNAME should follow the user-defined naming conventions for signals defined
by IEEE Std 1450-1999.

TAM: The test access mechanism put in place on the SoC outside of the embedded design to transport
data to individual designs. Example TAMs are buses and scan-chains.

Termination: It indicates the need for some form of termination to be applied to the associated signal.
The termination could be provided by a design construct external to the design or through an ATE.

TerminateHigh: Indicates that the signal is to be terminated to a logic-1 to resolve the high-
impedance states on the signal.

TerminateLow: Indicates that the signal is to be terminated to a logic-0 to resolve the high-
impedance states on the signal.

TerminateOff: Indicates that the signal should not be terminated to resolve floating states.

TerminateUnknown: Indicates that some termination is required to resolve the floating states on
the signal. However, the type of termination is unknown and any form of termination could be
applied to the signal to resolve high-impedance states.

TERMINATION VALUE: A termination value that is specified as a time expr (refer to 6.13 of
IEEE Std 1450-1999). For example 50 Ohms would be specified as “500hm”.

Safe: The functional (user-defined logic) outside the design that is configured in such a way that no
conflicting values can occur at the associated signals of the design when they are changing values during
the operation of the design in the current mode.

WBR: A wrapper boundary register that is a scannable memory element.

Wrapper: Using this statement, a specific wrapper and associated connections can be recommended to be
instantiated outside the design.
IEEE1500: An IEEE Std 1500-2005 compliant wrapper.
None: No wrapper construct.
User USER_DEFINED: A user-specified wrapper can be named. The name follows the legal naming
conventions set by IEEE Std 1450-1999.

CellID cell _enum: This keyword allows for the identification of a cell that is taken in context of the
type of wrapper identified. The cell_enum allows for the description of the behavior of the cell. The

92 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

definition of the cell_enum should be obtained from the Internal Block statements definition of the
same. This keyword should not be used in conjunction with the None selection for Wrapper.

PinID USER _DEFINED PIN_ID: This keyword allows for the identification of a special signal in context
of the type of wrapper identified. The keywords to identify the special signals are defined in the
associated standard’s document. The USER_DEFINED_PIN_ID should be constructed using the rules for
names as defined by 1450.0. This keyword should not be used in conjunction with the None selection of

the Wrapper.

15.4 External block syntax example

Consider a fictitious design with input signals a, b, ¢, d, and ¢ and an output signal f. Without worrying about
any specific implementation or feasibility of the information, some examples are provided below to show
how the syntax could be used:

Signals {
a In; b In; ¢ In; d In; e In; £ Out;

Environment
CTLMode {
External {
a f{
// signal a and b of the current design being described
// can connect to the same design entity externally.
AllowSharedConnection { Self b;}

// Signal a is recommended to be connected to an input terminal
// in the embedded environment.
ConnectTo { DataType In;}

This code shows the exact location of the External block of statements and the AllowSharedConnection and
ConnectTo statements in CTL.

16. CTLMode—Patterninformation block

16.1 Patterninformation syntax

The pattern information block is used to attach extra information to various types of pattern-related elements
such as Pattern blocks, PatternBurst blocks, Procedures, and Macros. The information contained here can
describe usage, purpose, or additional details such as fault coverage. The syntax refers to
pattern_or_burst_enum and exec_enum that are defined in 9.2.

procedure_or _macro_enum =
< Capture
| Control
| DoTest

Copyright © 2006 IEEE. Al rights reserved. 93

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005

| DoTestOverlap

| Hold

| Instruction

| MemoryPrecharge

| MemoryRead

| MemoryReadModifyWrite
| MemoryRefresh

| MemoryWrite

| ModeControl

| Observe

| Operate

| ShiftIn

| ShiftOut

| Transfer

| Update

| User USER DEFINED >

identifier_event_enum=

< Capture

| Control

| ControlObserve

| DataFromCurrentActivity
| DataFromPriorActivity

| DataFromCurrentAndPriorActivity
| Hold

| Measure

| Observe

| TestPatternUnit

| Reference

| Transfer

| Update

| User USER DEFINED >

Environment { CTLMode (CTLMODE_NAME) {

94

PatternInformation {

(< Pattern | PatternBurst > (pat_or_burst name) {

(Purpose (pattern_or_burst_enum)+ ;)
(Corelnstance (CORE_INSTANCE_NAME)+;)
(CycleCount integer;)

(Power power_expr < Average | Maximum > ;)*
(Fault { })* // see below for Fault block syntax

(FileName FILE_NAME ;)
(ForeignPatterns {
(BlockName NAME;)
(BeginLine LINE_NUM;)
(EndLine LINE_NUM;)
(BeginLabel LABEL;)
(EndLabel LABEL;)
}) // end ForeignPatterns

(Identifiers { })* // see below for Identifiers block syntax

IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(M
2

(Protocol <Macro | Procedure> MACRO OR_PROC_NAME (SETUP_MACRO_OR_PROC_NAME);)

Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

})* // end Pattern | PatternBurst

(PatternExec (EXEC_NAME) { 3)
(Purpose (exec_enum)+ ;)
(PatternBurst (BURST NAME)+ ;)
(CycleCount integer;)
(Power power_expr < Average | Maximum > ;)*
(Fault { })* // see below for Fault block syntax
})* // end PatternExec

(<Procedure | Macro > PROCEDURE_OR_MACRO_NAME { @)
(Purpose (procedure_or_macro_enum)+ ;)
(ScanChain (CHAINNAME)+;)*
(UseByPattern (pattern_or_burst_enum)+;)
(Identifiers { })* // see below for Identifiers block syntax
})* // end Procedure | Macro

(WaveformTable (WFT)* {)
(Purpose (< Shift | Capture | Data | User USER_DEFINED >)+ ;)
(WaveformChar (WFC)+
(< Level | Pulse | DoublePulse | Complex >)
(< Critical | NonCritical >)
(Measure);)*
})* // end WaveformTable

} // end Patternlnformation
}} // end Environment, CTLMode

Identifiers (PATTERN_OR_BURST_ENUM)* { 6)
(EventType identifier _event_enum {
<(< Label | Xref > LABEL_ID {
(< Prefix | Complete > ;)
(<Begin | During | End> ;)
(SequenceNumber INTEGER;)
(EventValue (time_expr)+;)
} Yt/ end Label | Xref
| (Variable (VAR _NAME (values)*);)+>
})* // end EventType
})* // end Identifiers

Fault { @)
(Type
< Toggle
| StuckAt
| StuckOpen
| Transition
| Path
| Bridge
| PseudoStuckAt
| User USER_DEFINED > (<Collapsed | UnCollapsed | Estimated>);)
(Boundary < Cell | Primitive >;)
(FaultCount integer;)
(FaultsDetected infeger ;)

Copyright © 2006 IEEE. Al rights reserved. 95

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

(FaultsDetected integer {
(Simulation integer;)
(Implication integer;)
(Robustly integer;)

1)

(FaultsPossiblyDetected integer;) // detection credit with X

(FaultsPossiblyDetected integer {
(PossibleX integer ;)
(Oscillatory integer ;)
(Hypertrophic integer ;)

3)

(FaultsUntestable integer;)

(FaultsUntestable integer {
(Dangling integer;)
(FixedValues integer;)
(Blocked integer;)
(Redundant integers;)

1)

(FaultsNotDetected integer;)

(FaultsNotDetected integer {
(Uncontrolled integer;)
(Unobserved integer;)
(ATPGlimitations integer;)
(Oscillatory integer ;)
(Hypertrophic integer ;)

1)

(MultiplyDetected integer {
FaultsDetected ...
FaultsPossiblyDetected ...
FaultsUntestable ...
FaultsNotDetected ...

3

} // end Fault

16.2 Patterninformation block syntax descriptions

(1) PatternInformation: This statement begins the block of statements that contains the pattern-related
information about the current configuration of the design.

(2) Pattern | PatternBurst pat or burst name: This statement begins the reference to Patterns and
PatternBursts of the current mode. The pat or burst name of this statement is expected to be a valid
construct in the current CTL. If foreign patterns are referred to, the pat or burst name need not be
specified. If the foreign statement is not used, the pat _or burst name must exist and the definition of the
pattern or burst is expected to be found (i.e., missing definition of the construct is an error).

Purpose: This statement allows for a type assigned to the patterns.
a) IDDQ: Patterns that are used for measuring current.
b) LogicBIST: Patterns that are applied using logic BIST.
¢) MemoryBIST: Patterns that are applied using Memory BIST.
d) Padding: Patterns that can be used to increase the number of patterns for synchronization.
e) Parametric: Patterns that support analog measurements.

96 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

f) AtSpeed: Patterns that are applied at speed to the product.

g) Scan: Patterns that use the scan structures of a product.

h) ChainContinuity: Patterns that check the scan structures in the product.

i) EstablishMode: Patterns used to configure the design in a mode.

j) TerminateMode: Patterns that are used to exit a configuration of the design.

k) Endurance: Patterns that stress the design by changing the basic parameters of a test.

1) Retention: Patterns that check the ability to retain state.

m) CompatibilityInformation: A PatternBurst that is used only to show which PatternBursts or
Patterns can be executed in parallel, that is, are compatible. This PatternBurst is never executed.

n) User USER DEFINED: A user-defined type for extendability of CTL. It is not allowed to use this
capability for describing pattern types already covered by other keywords in this category. The user-
defined name cannot be used to redefine any of the existing pattern type keywords. The user_defined
name shall follow the definitions for user-defined names as defined by IEEE Std 1450-1999.

Corelnstance CORE_INSTANCE NAME: The patterns may be applicable to one or more hierarchies in the
design. This statement is used to link the patterns to the hierarchies being tested.

CORE_INSTANCE NAME: This name shall be a valid name of a core instance defined in the current
CTL. The core instance could be embedded in multiple hierarchies; in which case, its name is a
concatenation of the core instance name’s beginning from the highest level in the hierarchy. The

[73%2)

concatenated names are separated by a *“:

CycleCount integer: This statement identifies the number of cycles (or periods) required to execute the
associated pattern data.

Power: This keyword begins a statement that specifies either the average or maximum power usage of the
patterns.

a) Average: Keyword that specifies that the power expression is for average power.

b) Maximum: Keyword that specifies that the power expression is for maximum power.

Fault{}: This statement begins the set of statements that add more information about the Patterns or
PattternBursts being referred to. See the definition of the Fault block for details.

FileName FILE NAME: This statement defines the name of the file that contains the patterns. The
file_name shall be specified using the rules defined in IEEE Std 1450.1-2005. The file name shall be
defined in the current environment block using the FileReference statement, identifying the file as a
TestPattern type.

ForeignPatterns: This keyword begins the block of statements to identify the set of test patterns that are
representative of this block of patterns but are not in the CTL language. As this construct ties in patterns
that do not follow the rules defined by CTL, the tools support for the identified patterns may not be
available.

a) BlockName BLOCK NAME This statement defines which block of patterns to use from the foreign
file. This is applicable to pattern file formats that have structure and allow patterns to be grouped
into blocks or clauses.

b) BeginLine LINE NUM: This statement is used to define the beginning line number of the patterns.
The line_num is an integer and is inclusive of the line being referred to. If missing and there is no
Begin Label statement, then the beginning of the file is to be assumed. An error is to be assumed if
both Begin Line and Begin Label are used.

c¢) EndLine LINE NUM: This statement is used to define the ending line number of the patterns. The
line_num is an integer and is inclusive of the line being referred to. If missing and there is no End
Label statement, then the end of the file is to be assumed. An error is to be assumed if both Begin
Line and Begin Label are used.

d) BeginLabel LABEL: This statement is used to define the beginning of the patterns referred to by this
block of statements. The line beginning with a unique label (unique to the file) defines the first

Copyright © 2006 IEEE. Al rights reserved. 97

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

pattern of the set of patterns being referred to. The label is an existing label in the file being
referenced. This statement cannot be used in conjunction with the BeginLine statement. If
BeginLabel and BeginLine are missing, the start of the file is the beginning of the patterns of this
block.

e) EndLabel LABEL: This statement is used to define the end of the patterns referred to by this block of
statements. The line beginning with a unique label (unique to the file) defines the last pattern of the
set of patterns being referred to. The label is an existing label in the file being referenced. This
statement cannot be used in conjunction with the EndLine statement. If EndLabel and EndLine are
missing, the end of the file is the end of the patterns of this block.

Identifiers {}: This statement begins the set of statement that add more information about the Patterns or
PattternBursts being referred to. See the definition of the Identifiers block for details.

Protocol <Macro | Procedure> MACRO OR_PROC NAME SETUP_MACRO OR PROC NAME: Through this
statement, the protocol (Macro or Procedure) invoked by the patterns is defined. This is required to match
the information in the PatternBursts that invoke the associated Patterns. As patterns are required in CTL
to call only one type of protocol, this statement does not allow more than one macro or procedure to be
identified. This statement is required if the information is not in a PatternBurst. The
MACRO_OR_PROC NAME represents the name of the Macro/Procedure that is to be used by the P statement
in the associated Pattern. The SETUP MACRO OR PROC NAME represents the name of the Macro/
Procedure that is to be used by the Setup statement in the Pattern.

(3) PatternExec EXEC_NAME: The top-level construct in STIL that contains a set of patterns/sequences for
the configuration of the design being described. The EXEC_NAME is a user-specified name that shall follow
the rules of IEEE Std 1450-1999. This statement is a reference to the PatternExec defined outside the
Environment block of statements. An error is to be assumed if the definition is not found.

Purpose exec_enum: The statement that describes the content of the PatternExec referred to by the
PatternExec statement.
a) Diagnostic: Patterns/Sequences of the design configuration that are to be used for Diagnostics.
b) Production: Patterns/Sequences of the design configuration that are to be used for Production.
c) Characterization: Patterns/Sequences of the design configuration that are to be used for
Characterization.
d) Verification: Patterns/Sequences of the design configuration that are to be used for the validation of
the patterns. Validation typically involves a full timing-based simulation to verify the validity of
expected responses of the test patterns.

PatternBurst burst name: The highest level pattern bursts in the calling hierarchy of the pattern exec that
are to be executed for the current design configuration (test mode). If no PatternBurst statement exists,
then all patterns in the PatternExec are to be executed.

Power: This keyword begins a statement that specifies either the average or the maximum power usage of
the patterns.

a) Average: Keyword that specifies that the power expression is for average power.

b) Maximum: Keyword that specifies that the power expression is for maximum power.

Fault{}: This statement begins the set of statements that add more information about the Patterns or
PattternBursts being referred to. See the definition of the Fault block for details.

CycleCount integer: This statement identifies the number of cycles (or periods) required to execute the
associated pattern data.

(4) Procedure | Macro PROC_ OR_MACRO NAME: This statement begins the reference to the Macro or
Procedures that exist in the scope of the current CTLMode block as defined by the DomainReferences. That

98 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

is, the PROC_OR_MACRO NAME of this statement is expected to be a valid construct in the MacroDefs/
Procedures blocks included in the test mode.

Purpose: This statement allows for a type assigned to the procedure or macro.

a)
b)

¢)

d)

g)

h)

)
),

s)
t)
w)

Control: A sequence that allows for stimulus values to be put on a set of nets in the design.
Observe: A sequence that allows for the values on a set of nets of the design to be externally
available.

ControlObserve: A sequence that allows for the control and observe as defined by the Control
keyword and the Observe keyword.

DoTest: A sequence or set of sequences that applies a complete test pattern (test pattern unit). A
complete test pattern typically comprises a scan load; some number of clocks that either advance the
data or launch/capture the data, followed by a scan unload. This type of test pattern sequence is
preferred over DoTestOverlap.

DoTestOverlap: A sequence or set of sequences that applies a complete test pattern (test pattern
unit). Overlapped test pattern protocols represented by this keyword allow for the Scan Operation of
adjacent test patterns to occur simultaneously. The overlapped test protocol is required to take in a
redundant parameter of the output signals that was observed by the previous test pattern but could be
overlapped if scanned later.

Operate: A sequence that when executed makes the associated hardware perform its function.
Hold: A sequence that allows for the state of the design to be suspended such that the following
patterns can be applied without any disruption.

Transparent: A sequence that allows for values to pass through certain logic and are available intact
with maybe an inversion at the end of the sequence.

Instruction: A sequence that is used to operate the instruction register of a design.

Capture: A sequence that allows for some values on the nets of a design to be captured in memory
elements.

Update: A sequence that allows for some values to be made available to a portion of the design after
a period of isolation.

ModeControl: A sequence that is used to configure the design into a mode.

MemoryPrecharge: A sequence that precharges a memory.

MemoryRefresh: A sequence that refreshes a memory.

MemoryRead: A sequence that allows for the access of values in a memory.

MemoryWrite: A sequence that allows for values to be stored into a memory.
MemoryReadModifyWrite: A sequence that allows for values to be read and then written into a
memory.

Launch: A sequence that performs a circuit setup and then launches values from memory elements
onto certain nets in a design. This is used in test patterns that are detecting transition or path delay
faults.

Transfer: A sequence that transfers data from a memory element that is not part of the scan chain to
one that is, or from a memory element that is part of the scan chain to one that is not.

ShiftIn: This is similar to the Control purpose except that the values are placed on nets in the design
by only using a scan shift mechanism.

ShiftOut: This is similar to the Observe purpose, except that the values are made externally
available by only using a scan shift mechanism.

ScanChain (CHAINNAME)+: This statement lists the scan chains that are operated by the Procedure or
Macro. The list of chains in this statement identifies the scan chains that operate in parallel. Multiple use
of this statement identifies the different parallel sets of scan chains operated by the protocol.

UseByPattern pattern_or_burst_enum: Through this statement, the possible use of the current sequence
is specified. The type of patterns that can call this Macro or Procedure is specified as part of the
pattern_or_burst_enum.

Copyright © 2006 IEEE. Al rights reserved. 99

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

Identifiers {}: This statement begins the set of statements that add more information about the
Procedures or Macros being referred to. See the definition of the Identifiers block for details.

(5) WaveformTable (WFT)*: This statement begins the block of statements that defines the conventions
used to define the timing information in CTL. The WFT (table name) is a reference to the table name that is
within the scope of the current CTLMode block of statements as defined by the DomainReferences. The
CTL is erroneous if the table name is not found within the scope of the test mode being described. If no table
name is specified in this statement, the convention is used across all of the timing information available in
the current CTLMode block of statements.

Purpose: This statement defines the purpose of the WaveformTable and is assigned one of the following
enumerated identifiers:

a) Shift: This waveform table is used when shifting data in registers or scan chains.

b) Capture: This waveform table is used when capturing data into registers or scan chains.

¢) Data: This waveform table is used when applying test data to data inputs of a design.

d) User USER DEFINED: A user-defined usage of the usage of the waveforms defined in the
WaveformTable. The user-defined name should follow the naming conventions defined in
IEEE Std 1450-1999 for names. This name cannot be the same as the keywords already allowed in
this statement.

WaveformChar:

a) Level: This WaveformChar represents a single data value or signal level.

b) Pulse: This WaveformChar is used to represent a pulse waveform.

c) DoublePulse: This WaveformChar is used to represent a double pulse waveform.

d) Complex: This WaveformChar is used to represent a complex waveform that cannot be described as
a Level, Pulse, or DoublePulse.

e) Critical: The timing described by this WaveformChar is critical timing.

f) NonCeritical : The timing described by this WaveformChar is noncritical.

g) Measure: This WaveformChar is used when comparing the measured value on an output or
bidirectional signal.

(6) Identifiers (pattern_or burst enum)*: The identifiers block of statements is used to add additional
information to identifiers or events for constructs that allow the Identifier statement (such as Procedures,
Macros, Patterns, or PatternBursts). Identifiers allows for information about special labeled/tagged
statements to describe special events. Through the pattern_or_burst enum, the information is made relevant
to specific types of patterns and bursts. The definition of the types of patterns or bursts identifiable in CTL is
provided in the definition of the Purpose statement for Pattern and PatternBurst. The identifier’s information
is meta information on the associated construct to provide meaning that is appropriate to activities such as
synchronization of patterns from multiple embedded designs on the SoC. In addition to information on
labels, the identifiers can provide information on Variables used in the associated construct (e.g., macro or
procedure).

EventType identifier event enum: Several events are identifiable through this statement to be associated
with either a label or a variable but not both. The events (listed below) are valid for the associated
construct (for example, Macro or Procedure) for use in patterns that apply to the pattern_or burst enum
in which this statement occurs. When the event is associated with a variable, the Variable statement is
used. When the event is associated with a statement in the associated construct (such as macro), a label on
the statement is identified. The event type cannot be used to simultaneously define information about
variable contents and statements. The following are valid identifier event enums:
a) Capture: This event type associates the identifier with an activity where a value is stored in a
memory element broadside.
b) Control: This marks an event where a known value can be set in a memory element. Shift-in for
scan elements is a special case for control.
c) Observe: An event that allows for the values on a set of nets of the design to be externally available.

100 Copyright © 2006 |IEEE. Al rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

d)

g)

h)

)

k)

D

ControlObserve: This event type associates the identifier with an activity that both controls and
observes internal memory elements of a design as defined by both the Control and the Observe event
types.

DataFromCurrentActivity: Protocols are invoked multiple times sequentially by patterns. Each
invocation is a test pattern unit. Due to optimizations such as overlapping the scan operation of one
test unit with an adjacent test unit, the data that are applied in any invocation may/may not be
associated with the current test unit. DataFromCurrentActivity is used to identify the fact that the
data being used are associated with the current invocation. When used as information on a variable,
all contents of the variable are from the current test pattern unit. When associated with a statement,
all values used in the statement are from the current test pattern unit.

DataFromPriorActivity: This event is used to specify that the data being used are associated with
the prior invocation of the protocol. When used as information on a variable, all contents of the
variable are from the previous test pattern unit. When associated with a statement, all values used in
the statement are from the previous test pattern unit.

DataFromCurrentAndPriorActivity: This event specifies that the data being used are associated
with both the prior and the current invocation of the test protocol.

Hold: This event identifies the ability to insert more clock periods without corrupting the intended
function of the protocol. In conjunction with the Begin, During, or End statement, the location of the
new clock periods is identified. Begin defines the additional cycles to be inserted before the
beginning of the identified statement. During (only valid for complex statements like Shift)
identifies the ability to insert additional clock cycles between any two clock cycles of the multicycle
statement. End defines the additional cycles to be inserted after the execution of the identified
statement.

Measure: This event identifies statements where a measurement of some value is to be performed.
For example, this statement would identify where an IDDQ measurement would take place.
TestPatternUnit: A test pattern unit is a complete set of stimulus, responses, and sequencing of the
associated values such that failures are tested by the entity. This is typically associated with an
ATPG tools output that includes tests for faults such as the stuck-at faults or transition faults. The
test pattern unit in this case would include a scan-in/scan-out operation and some stimulus and
capture events. BIST methods typically loop over multiple test pattern units. Functional tests have
test pattern units that do not involve scan operations. This keyword identifies this entity.

Transfer: This specifies an event that transfers values from the off-shift path memory elements to
the shift path.

Update: This specifies an event that updates memory elements off the shift path with value from the
shift path.

Label | Xref LABEL ID: Through this statement, a label or tag (LABEL_ID) is identified in the associated
construct and information is provided about the statement associated with it. The information provided
through this block of statements is only to be interpreted when the label or tag matches the label or tag in
the associated construct (such as Macro or Procedure). Depending on the use of PreFix or Complete
defined below, the label or tag can be a subset or exact match. If this statement exists and no matching
identifier is found in the associated construct, the information is redundant and meaningless and is an
error condition.

a) PreFix : Specifies that the label id is only a prefix. All labels that start with this prefix are
identified.

b) Complete: Identifies the label id as being complete. Only a label that exactly matches the specified
label id is identified. This is the default condition.

c) Begin: Specifies that the identifier event occurs at the beginning of the execution of the associated
statement.

d) During: Specifies that the identifier event occurs during the associated statement. This is the default
condition.

e) End: Specifies that the identifier event occurs at the end of the associated statement.

Copyright © 2006 IEEE. Al rights reserved. 101

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

f) SequenceNumber integer: This statement is used to provide a relative ordering of identifiers that is
global across all identifiers of a certain pattern-enum and event type in a mode. One can provide
Iddq measure points with relative priority.

g) EventValue (time expr)+: This statement is used to provide some numeric value that is then
associated with the identifier event. For example, for a Measure event, this could specify Iddq
current to be measured when used within a PatternType of Iddq.

Variable (VAR_NAME (values)*): This identifies the EventType to be associated with a variable instead of
a Label or Xref. This statement is followed by an optional variable name (VAR NAME) used in the
associated construct (such as Macro, Procedure). The VAR NAME shall be a valid VAR_NAME in the scope
of the current test mode as defined by the DomainReferences. If no variable name is identified, all
variables in the associated construct (e.g., Macro) would be associated with the EventType.

The variable name can be followed by an optional list of values that the variable can take on. Variables
hold waveform characters that represent logic values with timing information. The values in this
statement represent the logic levels that the waveforms achieve. The values can be specified with strings
created by using 1, 0, and x, where each position in the string represents a single bit value. (Example use
scenario: The associated variable could reside in an instruction register of the IEEE 1500 architecture. In
that case, the values specified by the string provide the valid instructions for that register.)

EventTypes that are allowed from the pre-defined enumerations to be used for variables are:
DataFromCurrentActivity, DataFromPriorActivity, and DataFromCurrentAndPriorActivity.

(7) Fault: This statement begins the optional block of statements that can be used to define the fault
coverage information for a set of Patterns or PatternBursts. Multiple fault blocks can be used to describe
fault coverage information for different fault measurements.

Type: This statement declares to which type of fault the fault coverage information relates. All
information contained in this Fault block relates only to this fault type. If a set of Patterns or PatternBursts
can have fault coverage information for more than one fault type, then multiple Fault blocks should be
used. The default fault type is uncollapsed stuck-at faults.

a) Toggle: The toggle fault type indicates that detected nodes can be driven to both a high and a low
state.

b) StuckAt: The single stuck-at fault type indicates that detected nodes can be driven to both a high
and a low state, and the result of these states can be properly observed.

¢) StuckOpen: This fault type is used to model a single broken line in CMOS circuits such that the
faulty circuit exhibits a memory effect. Multiple stuck-at tests are required to cover a stuck-open
fault.

d) Transition: The transition fault type is used to model large delay defects on nodes in the design.

e) Path: The fault type is the path delay fault that is used to model delay defects along a specific path
in the design. This fault type does not have a specific fault site, but it is associated with the entire
path.

f) Bridge: The bridge fault type is used to model the effect of two nodes in a design being shorted
together.

g) PseudoStuckAt: The pseudo stuck-at fault type is similar to the stuck-at fault type except that the
change of state needs only to be observed at the output of cell boundaries. This is used mainly for
IDDQ tests.

h) User USER_DEFINED.

< Collapsed | UnCollapsed | Estimated >: This optional clause for the Type statement further clarifies
the fault type. The fault information can be collapsed, uncollapsed, or estimated.

Boundary < Cell | Primitive >: This statement specifies whether faults in the core are inserted only on
the cell boundaries or if they are also inserted on primitives within cells.

FaultCount integer: Specifies the total number of faults of the specified fault type present in the core.

102 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

FaultsDetected integer: Specifies the total number of faults of the specified fault type detected by the
Pattern or PatternBurst. The number of detected faults can be further divided into subcategories used to
specify the detection method. The total count for the subcategories should equal the number of faults
specified here.
a) Simulation infeger: A subcategory of FaultsDetected that enumerates the number of faults
explicitly detected by simulation.
b) Implication integer: The number of faults with detection credit given by a priori markoff, for
example, faults detected by shifting of the scan chains.
c) Robustly integer: This subcategory can only be used for the Path fault type. This indicates that the
path delay fault type was detected independent of glitches.

FaultsPossiblyDetected infeger: This statement indicates the number of faults with possible detection
credit. This fault category can be divided into subcategories. The total count of faults listed in the
subcategories should equal the number of faults specified here.

a) PossibleX integer: A subcategory of FaultsPossiblyDetected that specifies the number of faults
given possible detect credit due to a low to unknown or a high to unknown difference at the observe
point.

b) Oscillatory integer: This statement lists the number of faults that have an unstable circuit status.
These faults would require a great deal of computation to calculate for detection status. Note that
this subcategory can be used as a FaultsPossiblyDetected subcategory or as a FaultsNotDetected
subcategory.

c) Hypertrophic integer: The hypertrophic fault subcategory enumerates faults that cause extensive
areas of the entire design to diverge from good state status. These faults would also require a great
deal of computation to calculate the detection status. Note that this subcategory can be used as a
FaultsPossiblyDetected subcategory or as a FaultsNotDetected subcategory.

FaultsUntestable integer: This is a category of faults that cannot be detected by the ATPG tool that was
used. The tool has exhausted its solution space and has proved that the fault cannot be detected. This fault
category can be divided into subcategories. The total count of faults listed in the subcategories should
equal the number of faults specified here:

a) Dangling integer: Disconnected logic (input or output)

b) FixedValues integer: Faults that are on logic that have fixed values

c) Blocked integer: Faults that cannot be detected because of fixed values in logic

d) Redundant integer: Cannot be controlled and observed simultaneously

FaultsNotDetected infeger: This category contains the faults that were not detected but were not proven
untestable. This fault category can be divided into subcategories. The total count of faults listed in the
subcategories should equal the number of faults specified here.

a) Uncontrolled integer: Could not excite the fault

b) Unobserved intege : Fault is excited, but could not observe effects of the fault

c) ATPGlimitations infeger: atpg completed search, but some other method could possibly detect the

fault
d) Oscillatory integer: See above
e) Hypertrophic infeger: See above

MultiplyDetected integer: The MultiplyDetected block is used to specify the fault information when
multiple detect fault simulation is used. The integer specifies the number of times faults are detected.
Within this block, the FaultsDetected, FaultsPossiblyDetected, FaultsUntestable, and
FaultsNotDetected statements or blocks are used to specify the fault information numbers, which are
multiply detected the number of times specified.

Copyright © 2006 IEEE. Al rights reserved. 103

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

16.3 Patterninformation block syntax example

Example showing multiple CTLMode blocks with pattern information. Note that several details are not
shown. For example, Patterns and Timing are not shown. Statements are also incomplete as marked with

@ 9,

Procedures {
mode setup {
W tpl;
v {...} // details not shown

}

PatternBurst model burst {

PatList {
begin model { Protocol Procedure mode setup;}
model test { Protocol ... ;} // details not shown.

}
}
PatternBurst isolate burst

PatList {
isolate pat {Protocol ... ;} // details not shown
1
1

PatternBurst Top {
PatSet {
model burst;
isolate burst;

}
}

PatternExec {
PatternBurst Top;

Environment
CTLMode {
// details not shown
}

CTLMode model
TestMode InternalTest;
PatternInformation {
PatternExec CoreExec (
Purpose Production;
PatternBurst model burst;
Fault
Type StuckAt;
FaultCount 2000;
FaultsDetected 1900 {
Simulation 1850;
Implicatin 50;
}
FaultsUntestable 20;
FaultsNotDetected 80;

104 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL)

Procedure mode setup {
Purpose ModeControl;

Pattern begin model ({
Purpose EstablishMode;
Protocol Procedure mode_ setup;

}
}
}
CTLMode isolate(
TestMode Isolate;
PatternInformation {

PatternExec CoreExec (
Purpose Production;
PatternBurst isolate burst;

}

Procedure mode setup {
Purpose ModeControl;
Protocol Procedure mode_ setup;

}

Pattern isolate pat({

Purpose EstablishMode;

}
}
}
}

Example showing Macro purpose and Identifiers use the following:

MacroDefs
load unload {

W shift_tp;
vV { "CLK" = 0; “SE” = 1;}
shift { v { si = #; so = #; "CLK"

}

launch cap {
W capture tp;
launch: v { "SE"
capture: V { po

0

;i _pi_ = %; "CLK"
%; "CLK" = P; }

}

capture {
W shift tp;
capture: V { "SE" = 0; _pi_ = %; _po_ =
}
basic_pat {
Macro load unload { si = #; so_ = #;
Macro capture { pi = %; po_ = %; }
}
transition pat {
Macro load unload { si = #; so_ = #;
Macro launch cap { pi = %; po_ = % ;

}

Copyright © 2006 IEEE. All rights reserved.

o .
)

7

n CLKII

P;

IEEE
Std 1450.6-2005

105

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

Environment unwrapped design {

CTLMode {
// details not shown
}

CTLMode internal test {
TestMode InternalTest;
PatternInformation {

Macro load unload {
Purpose ControlObserve;
}
Macro launch cap{
Purpose Launch Capture;
Identifiers {
EventType Launch {
Label launch { Complete; During; }
}

EventType Capture
Label capture { Complete; During; }
}

Macro capture{
Purpose Capture;
Identifiers {

EventType Capture (
Label capture { Complete; During; }

}
EventType Hold ({
Label capture { Complete; End; }

}
}
}
Procedure test setup {
Purpose ModeControl;
UseByPattern test setup pat;
}
Macro basic pat{
Purpose DoTestOverlap;
Identifiers {
EventType DataFromPriorActivity {
Variable so_;

}
}
}

Macro transition pat{
Purpose DoTestOverlap;

}
}
}

Example showing complex fault information, as follows:

106 Copyright © 2006 |IEEE. Al rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Environment
CTLMode mode A {
TestMode InternalTest;
PatternInformation {
PatternExec CoreExec (
Purpose Production;
PatternBurst modeA burst;
Fault
Type StuckAt;
FaultCount 2000;
FaultsDetected 1900 {
Simulation 1850;
Implication 50;
1
FaultsUntestable 20 {
FixedValues 10;
Redundant 10;
1
FaultsNotDetected 70 {
Uncontrollable 30;
Unobservable 40;

}

FaultsPossiblyDetected 10;

MultiplyDetected 2 ({
FaultsDetected 1700;
FaultsUntestable 20;
FaultsNotDetected 180 ({

Uncontrollable 100;
Unobservable 80;

}
}

MultiplyDetected 3 {
FaultsDetected 1500;

}
}
}
}

}

Example showing use of WaveformTable block, as follows:

Timing CoreTiming {
WaveformTable tset 1 {
Period ‘'100ns’;
Waveforms
pi_ { oix { ‘ons’ D/U/N; }}
po { LEXZ { ‘10ms’ 1lhXt; ‘20ns’ X; }}
slow clk { op { ‘Ons’ D; ‘20mns’ D/U; ‘80ns’ D; }}
fast _clk { oF { ‘Ons’ D; ‘20mns’ D/U; ‘30ns’ D; ‘40ns’ D/U; 50ns
D;}}
}

Copyright © 2006 IEEE. Al rights reserved. 107

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

}
}

Environment
CTLMode mode A {
TestMode InternalTest;
DomainReferences { Timing CoreTiming; }
PatternInformation {
PatternExec CoreExec
Purpose Production;
PatternBurst modeA burst;
WaveformTable tset 1 {
Purpose Capture;
WaveformChar P Pulse NonCritical;
WaveformChar F DoublePulse Critical;

}
}
}

108 Copyright © 2006 IEEE. All rights reserved

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Index

A

ActiveState 15, 57, 61, 63, 83
AllowSharedConnection 90, 91, 93
AlternateTestMode 46, 48, 52
AssumedInitialState 57, 63, 69

B
Boundary 95, 102
Bus 85

C

Category 46, 48

Common 85, 86

Compliancy 46, 52

ConnectTo 90, 91, 93

Corelnternal 46, 48, 50, 53, 83, 84

CoreSignal 59, 68, 73

Corresponding 85, 86

CTL 7, 8, 10, 15, 16, 21, 40- 42, 44, 47, 49, 51- 53, 56, 61, 62, 64, 67, 70, 85, 89-91, 93,
96-98, 100

CTLMode 8, 15, 27, 44— 46, 48, 50, 51, 83, 85, 89, 100, 104

D
data_type enum 56, 79, 83, 90- 92
DataRateForProtocol 57, 63
DataType 15, 27, 50, 61, 64, 69, 79, 91, 92
DClLevels 46, 48
DCSets 46, 48
DEF 40, 42
Design 28, 39, 41, 47
design_file format
CTL 40
EDIF 40
User user_defined 40
user_defined 40
Verilog 40
VHDL 40
Differential 85, 86
DisableState 58, 65
doc_file format 40, 41, 43
documentation 43
DomainReferences 9, 15, 46, 48, 50, 98, 100, 102
DriveRequirements 58, 65, 66, 74, 75
DTIF 42

Copyright © 2006 IEEE. All rights reserved. 109

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

E

EDIF 42

ElectricalProperty 58, 66

Environment 2, 5, 8, 9, 15, 26, 27, 36, 39, 40, 43— 47, 50, 98
Equivalent 85, 86

EventType 95, 100, 102

exec_enum 45, 50, 93, 98

External 46, 49, 52, 90, 93

F
Family 46, 49, 91
Fault 95, 97, 98, 102
fault list file format

DTIF 40

user_defined 40
FaultCount 95, 102
FaultList 39, 41
FaultsDetected 95, 103
FaultsNotDetected 96, 103
FaultsPossiblyDetected 96, 103
FaultsUntestable 96, 103
file type

documentation 39

faultlist 39

layout 39

pattern 39

script 39

user_defined 40
Focus 46, 49, 50, 53

I

identifier event enum 94, 100

Independent 85, 86

InheritCTLMode 44, 46, 47, 50, 53, 61, 91

InOutSet 85, 86

InputProperty 58, 66

Internal 46, 50, 52, 53, 56, 64, 65, 76, 81, 84,91, 93
IsConnected 21, 50, 59, 67, 68, 70, 71, 73, 74, 76, 80, 83
IsDisabledBy 59, 65, 73

IsGatedBy 59, 68, 69

110 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

L
LaunchClock 59, 69, 73
Layout 39, 41
layout file format

def 40

gdslI 40

lef 40

oasis 40

M

Macro 26, 29-34, 48, 95, 98- 102, 105
MacroDefs 9, 10, 29, 31, 33, 46, 48, 69, 73, 99
MultiplyDetected 96, 103

MuxSet 85, 87

N
NotEquivalent 85, 87

(0)

OneCold 85, 87
OneHot 85, 87
OutputProperty 59, 74

P
Pattern 41, 48, 93, 96, 98, 100, 103
pattern_file format

stil 40

user_defined 40

verilog 40

ved 40

vhdl 40

wgl 40
pattern_or burst _enum 45, 49, 99, 100
PatternExec 27, 50, 51, 95, 98
PatternInformation 16, 26, 29, 31, 32, 46-48, 50, 53, 69, 93, 94, 96, 104
PatternTypes 46, 49
Port 85, 87
Procedure 29- 34, 69, 73, 95, 98-102
procedure _or macro_enum 93

R
Relation 46, 85

Copyright © 2006 IEEE. All rights reserved. 111

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
Std 1450.6-2005 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL) FOR

S
ScanDataType 58, 80, 83
Scanlnternal 46, 79
ScanRelation 46
ScanStructures 46
ScanStyle 60
Script 41
script_file format
AWK 40
Perl 40
SED 40
TCL 40
user_defined 40
Selector 46
SignalGroups 46
STIL 40
StrobeRequirements 60

T

test mode enum 45
TestAccess 80, 83
testcontrol subtype enum 56
testdata_subtype enum 56
TestMode 46
TestModeForWrapper 46
TimingNonSensitive 58
TimingSensitive 58

U

UnusedRange 58, 80, 83

Usage 46

User user_defined 50, 52, 53, 62, 64, 67, 69, 70, 72, 74, 76, 92, 97, 100, 102

\%
ValueRange 58, 80, 83
Variables 46

W
WaveformTable 95
Wrapper 60

Z
ZeroOneCold &5
ZeroOneHot 85

112 Copyright © 2006 IEEE. All rights reserved.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

IEEE
DIGITAL TEST VECTOR DATA—CORE TEST LANGUAGE (CTL) Std 1450.6-2005

Copyright © 2006 IEEE. All rights reserved. 113

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 07:33:23 UTC from IEEE Xplore. Restrictions apply.

	IEEE Std 1450.6™-2005, IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data—Core Test ...
	Introduction
	Notice to users
	Errata
	Interpretations
	Patents

	Participants
	Contents
	1. Overview
	1.1 General
	1.2 SoC flow
	1.3 Scope
	1.4 Purpose
	1.5 Limitations of this standard
	1.6 Structure of this standard

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. CTL orientation and capabilities tutorial
	4.1 Introduction
	4.2 CTL for design configurations
	4.3 CTL for structural information
	4.4 CTL for test pattern information
	4.5 Beyond the examples

	5. Extensions to IEEE Std 1450-1999 and IEEE Std 1450.1-2005
	5.1 STIL name spaces and name resolution
	5.2 Optional statements of IEEE Std 1450-1999
	5.3 Restricting the usage of SignalGroup and variable names
	5.4 Additional reserved words
	5.5 STIL statement—extensions to IEEE Std 1450-1999, Clause 8
	5.6 Extensions to IEEE Std 1450-1999, 17.1 and 23.1
	5.7 Extensions associated with the LockStep construct of Clause 13 of IEEE�Std�1450.1-2005

	6. Design hierarchy—cores
	6.1 CoreType block and CoreInstance statement
	6.2 CoreType block syntax descriptions
	6.3 CoreType block code example

	7. Cell expression (cellref_expr)
	8. Environment block—extensions to IEEE Std 1450.1-2005, Clause 17
	8.1 General
	8.2 Definition of FileReference keywords
	8.3 Example of Environment block FileReference syntax
	8.4 Extension to NameMaps
	8.5 Extension to the inheritance of environment statements

	9. CTLMode block
	9.1 General
	9.2 CTLMode syntax
	9.3 CTLMode block—syntax descriptions
	9.4 CTLMode block syntax example

	10. CTLMode—Internal block
	10.1 General
	10.2 Internal syntax
	10.3 Internal block syntax descriptions
	10.4 Internal BlockSyntax examples

	11. CTLMode—ScanInternal block
	11.1 General
	11.2 ScanInternal syntax
	11.3 ScanInternal block syntax descriptions
	11.4 ScanInternal block syntax example

	12. CTLMode—CoreInternal block
	12.1 General
	12.2 CoreInternal syntax
	12.3 CoreInternal block syntax descriptions
	12.4 CoreInternal block syntax examples

	13. CTLMode—Relation Block
	13.1 General
	13.2 Relation syntax
	13.3 Relation block syntax descriptions
	13.4 Relation block syntax example

	14. CTLMode—ScanRelation block
	14.1 General
	14.2 ScanRelation syntax
	14.3 ScanRelation block syntax descriptions

	15. CTLMode—External block
	15.1 General
	15.2 External statement syntax
	15.3 External block syntax descriptions
	15.4 External block syntax example

	16. CTLMode—PatternInformation block
	16.1 PatternInformation syntax
	16.2 PatternInformation block syntax descriptions
	16.3 PatternInformation block syntax example

	Index
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	R

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-Condensed
 /AbadiMT-CondensedExtraBold
 /AbadiMT-CondensedLight
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Andy-Bold
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BaskOldFace
 /Bauhaus93
 /BeeskneesITC
 /BernardMT-Condensed
 /BickleyScript
 /BlackadderITC-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Chiller-Regular
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Edda
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /EngraversMT-Bold
 /Enviro-Regular
 /ErasITC-Demi
 /ErasITC-Light
 /EstrangeloEdessa
 /EurostileBold
 /EurostileRegular
 /FelixTitlingMT
 /FineHand
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldCondensed
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /HarlowSolid
 /Harrington
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KinoMT
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /MaiandraGD-DemiBold
 /MaiandraGD-Italic
 /MaiandraGD-Regular
 /Mangal-Regular
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /Nina
 /Nina-Bold
 /Nina-BoldItalic
 /Nina-Italic
 /OCR-AII
 /OCRB
 /OCRBMT
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parade
 /Parchment-Regular
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlacardMT-Condensed
 /Playbill
 /PoorRichard-Regular
 /Pristina-Regular
 /QuickType
 /QuickType-Bold
 /QuickTypeCondensed
 /QuickTypeCondensed-Bold
 /QuickTypeCondensed-Italic
 /QuickTypeII
 /QuickTypeII-Bold
 /QuickTypeIICondensed
 /QuickTypeIICondensed-Bold
 /QuickTypeIICondensed-Italic
 /QuickTypeII-Italic
 /QuickTypeIIMono
 /QuickTypeIIPi
 /QuickType-Italic
 /QuickTypeMono
 /QuickTypePi
 /Raavi
 /RageItalic
 /RefSpecialty
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RunicMT-Condensed
 /ScriptMTBold
 /Shruti
 /SnapITC-Regular
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRoman
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

