

IEEE Standard for Extensions to
Standard Test Interface Language
(STIL) (IEEE Std 1450™-1999) for Test
Flow Specification

Sponsored by the
Test Technology Standards Committee

IEEE
3 Park Avenue
New York, NY 10016-5997
USA

IEEE Computer Society

IEEE Std 1450.4™-2017

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4™-2017

IEEE Standard for Extensions to
Standard Test Interface Language
(STIL) (IEEE Std 1450-1999) for Test
Flow Specification

Sponsor

Test Technology Standards Committee
of the
IEEE Computer Society

Approved 6 December 2017

IEEE-SA Standards Board

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

 ii

Abstract: IEEE Std 1450™-1999, which specifies the Standard Test Interface Language (STIL),
is extended by this standard to provide an interface between test generation tools and test
equipment with regard to the specification of the flow of execution of test program components. It
defines structures so that test flows, sub-flows, and binning may be described in a manner that
facilitates automated generation, modification, and/or manual maintenance and, although not yet
a complete run-time test language, execution on automated test equipment (ATE). It also defines
an interface between tester configurations (described by IEEE Std 1450-1999 and IEEE
Std 1450.2™-2002) and test program components. It also defines a hierarchy of flows, sub-flows,
and test components as well as structures for defining flow-related variables and processing
expressions involving those variables. It provides structures that support automatic test program
generation (ATPRG) and translation and that support running it natively as an ATE programming
language. As an adjunct, IEEE Std 1450.3™-2007 may be used by ATPRG for tester rules
checking.

Keywords: ATPG, ATPRG, automatic test program generator or generation, binning, CAE,
computer-aided engineering, device under test, DUT, IC test, IEEE 1450.4™, integrated circuit
test, test flow, test program description, test program language, TPG
•

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2018 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 9 February 2018. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers,
Incorporated.

PDF: ISBN 978-1-5044-4643-3 STD22970
Print: ISBN 978-1-5044-4644-0 STDPD22970

IEEE prohibits discrimination, harassment, and bullying.
For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

 iii

Important Notices and Disclaimers Concerning IEEE Standards Documents
IEEE documents are made available for use subject to important notices and legal disclaimers. These
notices and disclaimers, or a reference to this page, appear in all standards and may be found under the
heading “Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be
obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are
developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards
Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a
consensus development process, approved by the American National Standards Institute (“ANSI”), which
brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE
Standards are documents developed through scientific, academic, and industry-based technical working
groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate
without compensation from IEEE. While IEEE administers the process and establishes rules to promote
fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the
accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure
against interference with or from other devices or networks. Implementers and users of IEEE Standards
documents are responsible for determining and complying with all appropriate safety, security,
environmental, health, and interference protection practices and all applicable laws and regulations.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and
expressly disclaims all warranties (express, implied and statutory) not included in this or any other
document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness
for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness
of material. In addition, IEEE disclaims any and all conditions relating to results; and workmanlike effort.
IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related
to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his
or her own independent judgment in the exercise of reasonable care in any given circumstances or, as
appropriate, seek the advice of a competent professional in determining the appropriateness of a given
IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE
UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/IPR/disclaimers.html

 iv

Translations
The IEEE consensus development process involves the review of documents in English only. In the event
that an IEEE standard is translated, only the English version published by IEEE should be considered the
approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board
Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its
committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures,
symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the
formal position of IEEE.

Comments on standards
Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of
membership affiliation with IEEE. However, IEEE does not provide consulting information or advice
pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a
consensus of concerned interests, it is important that any responses to comments and questions also receive
the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to comments or questions
except in those cases where the matter has previously been addressed. For the same reason, IEEE does not
respond to interpretation requests. Any person who would like to participate in revisions to an IEEE
standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

 Secretary, IEEE-SA Standards Board
 445 Hoes Lane
 Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with
the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not
in compliance with applicable laws, and these documents may not be construed as doing so

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.
They are made available by IEEE and are adopted for a wide variety of both public and private uses. These
include both use, by reference, in laws and regulations, and use in private self-regulation, standardization,
and the promotion of engineering practices and methods. By making these documents available for use and
adoption by public authorities and private users, IEEE does not waive any rights in copyright to the
documents.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

 v

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to
photocopy portions of any individual standard for company or organizational internal use or individual,
non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance
Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission
to photocopy portions of any individual standard for educational classroom use can also be obtained
through the Copyright Clearance Center.

Updating of IEEE Standards documents
Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten
years old and has not undergone a revision process, it is reasonable to conclude that its contents, although
still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit the IEEE Xplore at
http://ieeexplore.ieee.org/ or contact IEEE at the address listed previously. For more information about the
IEEE-SA or IEEE’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL:
http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata
periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to
the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant
has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the
IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may
indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without
compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of
any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not
responsible for identifying Essential Patent Claims for which a license may be required, for conducting
inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely
their own responsibility. Further information may be obtained from the IEEE Standards Association.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

http://ieeexplore.ieee.org/
http://standards.ieee.org/
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html

vi
Copyright ©2018 IEEE. All rights reserved.

Participants

At the time this IEEE standard was completed, the STIL Test Flow Working Group had the following
membership:

Jim O’Reilly, Chair
Ernst J. Wahl, Vice Chair

Gerald Chan*
Kevin Coggins
Julia DiChiaro
Ric Dokken*
Carol Dowding
Dave Dowding
Oleg Erlich
Daniel Fan
Jim Felte
J. Scott Franzen*
Mitsuhito Fujii
Carey Garrenton*
Brian Johnson

Alan Jones
Rohit Kapur
Ajay Khoche
Josie Lewis
Yuhai Ma
Gregory Maston*
Tom Micek
Jim Mosley
Gary Murray
Chris Nelson
Eric Nguyen
Yasunori Okamoto

Don Organ
Bruce Parnas
Paul Reuter
Bob Roberts
Oscar Rodriguez
Jose Santiago
Markus Seuring
Douglas Sprague
Spass Stoiantschewsky
Tony Taylor
S. B. Thum
Steve Tilden
Allen Yeates

(* indicates active membership at the time of draft submission)

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Paul Berndt
Bill Brown
Juan Carreon
Gerald Chan
Keith Chow
John Cosley
Alfred Crouch
Ric Dokken
David Dowding
Heiko Ehrenberg

Oleg Erlich
J. Scott Franzen
William Fritzsche
Randall Groves
Jon Hagar
Peter Harrod
Werner Hoelzl
Noriyuki Ikeuchi
Gregory Maston
Stephen McGinty
Jeffrey Moore

Charles Ngethe
Jim O’Reilly
Paul Reuter
Osman Sakr
Douglas Sprague
Walter Struppler
Ernst J. Wahl
Yoshihiro Watanabe
Gregg Wilder
Oren Yuen

When the IEEE-SA Standards Board approved this standard on 6 December 2017, it had the following
membership:

Jean-Philippe FaureJohn D. Kulick Chair
Gary Hoffman, Vice Chair
John D. Kulick, Past Chair

Konstantinos Karachalios, Secretary

Chuck Adams
Masayuki Ariyoshi
Ted Burse
Stephen Dukes
Doug Edwards
J. Travis Griffith
Michael Janezic

Thomas Kochy
Joseph L. Koepfinger*
Kevin Lu
Daleep Mohla
Damir Novosel
Ronald C. Petersen
Annette D. Reilly

Robby Robson
Dorothy Stanley
Adrian Stephens
Mehmet Ulema
Phil Wennblom
Howard Wolfman
Yu Yuan

*Member Emeritus

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

vii
Copyright ©2018 IEEE. All rights reserved.

Introduction

This introduction is not part of IEEE Std 1450.4-2017, IEEE Standard for Extensions to Standard Test Interface
Language (STIL) (IEEE Std 1450-1999) for Test Flow Specification.

This document is part of a set of IEEE 1450 standards, which cover the Standard Test Interface Language
(STIL).

More specifically, this standard (STIL.4) extends IEEE Std 1450™-1999 (STIL.0) to provide an interface
between test generation tools and test equipment with regard to the specification of the flow of execution of
test program components. It defines

 Structures so that test flows, sub-flows, and binning may be described in a manner that facilitates
automated generation, modification, and/or manual maintenance and, although not yet a complete
run-time test language, execution on automated test equipment (ATE).

 An interface between tester configurations [described by STIL.0 and IEEE Std 1450.2™-2002
(STIL.2)] and test program components.

 A hierarchy of flows, sub-flows, and test components.
 Structures for defining flow-related variables and processing expressions involving those variables.
 Structures that support automatic test program generation (ATPRG) and translation and that

support running it natively as an ATE programming language. As an adjunct, IEEE Std 1450.3™-
2007 (STIL.3) may be used by ATPRG for tester rules checking.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

viii
Copyright ©2018 IEEE. All rights reserved.

Contents

1. Overview .. 1
1.1 General .. 1
1.2 Scope ... 3
1.3 Purpose .. 3

2. Normative references .. 3

3. Definitions, abbreviations, and acronyms .. 4
3.1 Definitions ... 4
3.2 Acronyms and abbreviations ... 6

4. Preface .. 7
4.1 General .. 7
4.2 Word usage .. 7
4.3 Conventions ... 7
4.4 Semantics ... 8

5. Tutorial ... 8
5.1 General .. 8
5.2 Flow test program example ... 8
5.3 FlowExtended test program example .. 11

6. Extensions to STIL.0 Clause 6 (STIL syntax description) ... 13
6.1 General .. 13
6.2 Additional reserved words ... 13
6.3 Additions to STIL.0 Table 3 (SI units) .. 15
6.4 Extensions to STIL.0 6.6 (token length) .. 15
6.5 Extensions to STIL.0 6.8 (user-defined name characteristics) .. 16
6.6 Extensions to STIL.0 6.12 (number characteristics) .. 16
6.7 Extensions to STIL.0 6.16 (STIL name spaces and name resolution) ... 16
6.8 Expressions .. 17
6.9 Functions ... 22
6.10 Enum .. 24
6.11 Parameter, MethodParameter, and FlowVariable types ... 25

7. Extensions to STIL.0 Clause 8 (STIL statement) ... 26
7.1 General .. 26
7.2 STIL syntax ... 28
7.3 STIL example .. 28

8. Extensions to STIL.0 Clause 14 (Signals block) (FlowExtended) ... 28
8.1 General .. 28
8.2 Signals block syntax and examples ... 28

9. Extensions to STIL.0 Clause 15 (SignalGroups block) (FlowExtended) ... 39

10. Extensions to STIL.0 Clause 16 (PatternExec block) (FlowExtended) .. 40
10.1 General .. 40
10.2 PatternExec block syntax ... 40

11. Extensions to STIL.0 Clause 17 (PatternBurst block) (FlowExtended) ... 40
11.1 General .. 40

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

ix
Copyright ©2018 IEEE. All rights reserved.

11.2 Extensions to STIL.0 17.1 (PatternBurst block syntax) ... 40

12. Extensions to STIL.0 Clause 18 (Timing and WaveformTable block) (FlowExtended) 41
12.1 General .. 41
12.2 Timing and WaveformTable syntax .. 42

13. Extensions to STIL.0 Clause 19 (Spec and Selector blocks) ... 42
13.1 General .. 42
13.2 Spec block syntax .. 43

14. Extensions to STIL.2 Clause 10 (DCLevels block) (FlowExtended) ... 44
14.1 General .. 44
14.2 DCLevels block syntax .. 44

15. Extensions to STIL.2 Clause 12 (DCSequence) (FlowExtended) .. 45
15.1 General .. 45
15.2 DCSequence block syntax ... 45
15.3 DCSequence block example .. 46

16. Include enhancements .. 47
16.1 IncludeOnce ... 47
16.2 DomainInclude .. 47

17. FlowVariables .. 49
17.1 General .. 49
17.2 FlowVariables syntax .. 49
17.3 FlowVariables examples .. 51
17.4 FlowVariable access .. 53
17.5 FlowVariable types .. 54
17.6 FlowVariable attributes ... 60
17.7 FlowVariable operators and member functions .. 63
17.8 FlowVariable array operations ... 65

18. Device to tester interface .. 66

19. SignalMap .. 67
19.1 General .. 67
19.2 SignalMap syntax .. 68
19.3 SignalMap examples .. 70

20. Device (FlowExtended) .. 75
20.1 General .. 75
20.2 STIL.2: DC levels .. 82
20.3 Chip ... 82
20.4 Package .. 83
20.5 Channel map .. 84
20.6 Multi-site/MPW testing ... 86
20.7 Device block examples .. 86

21. Binning ... 94
21.1 General .. 94
21.2 Binning element reference ... 94

22. SoftBinDefs .. 95
22.1 SoftBinDefs syntax .. 95

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

x
Copyright ©2018 IEEE. All rights reserved.

22.2 SoftBinDefs examples ... 96
22.3 Bins .. 97
22.4 Bin None (FlowExtended) ... 99
22.5 Bin axes ..100
22.6 countSince functions (FlowExtended) ..100

23. HardBinDefs ..101
23.1 HardBinDefs syntax..101
23.2 HardBinDefs examples ...102
23.3 Bins ...102

24. BinMap ..103
24.1 General ...103
24.2 BinMap syntax ..103
24.3 BinMap example ...104

25. Flow conceptual model ..104

26. Flow conceptual model (FlowExtended) ...107
26.1 General ...107
26.2 Flow-related types ..110
26.3 Inheritance ..110
26.4 Instantiation and execution ...112

27. TestBase definition (FlowExtended) ...112
27.1 TestBase syntax ..112
27.2 TestBase example ...116
27.3 Parameter initialization and assignment ...117
27.4 Parameter types ...118
27.5 Parameter attributes ..123
27.6 Parameter operators and member functions ..123
27.7 Parameter array operations ...124
27.8 Spec variable access ...124

28. TestType definition (FlowExtended) ...126
28.1 General ...126
28.2 TestType syntax ..126
28.3 TestType example ...128

29. Test ..129
29.1 General ...129
29.2 Test syntax ..129
29.3 Test example ...131

30. FlowNode ..133
30.1 General ...133
30.2 FlowNode syntax ..134
30.3 FlowNode examples ...136

31. FlowType definition (FlowExtended) ...137
31.1 FlowType syntax ..137

32. Flow ...137
32.1 General ...137
32.2 Flow syntax...138

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

xi
Copyright ©2018 IEEE. All rights reserved.

32.3 Flow examples ..139

33. Actions and flow control ...140

34. TestProgram ..142
34.1 General ...142
34.2 TestProgram syntax ..143
34.3 TestProgram examples..144
34.4 Entry points...145
34.5 Bin map ..145

35. Standard definitions ...146
35.1 Standard enumerated types ...146
35.2 Standard global variables (FlowExtended) ...148
35.3 Flow control defaults (FlowExtended) ...149
35.4 Standard No-op and None (FlowExtended) ..154
35.5 Standard PatternExec test (FlowExtended) ..154
35.6 Standard functional test (FlowExtended) ..155
35.7 Standard flow (FlowExtended) ...156

Annex A (informative) Event sequence ..158
A.1 General ...158
A.2 Parsing and loading ..158
A.3 Execution ...158

Annex B (informative) Top-level block sequence (FlowExtended) ..159
B.1 General ...159
B.2 Skeleton and dependencies ..159

Annex C (informative) Usage examples (FlowExtended) ...161
C.1 Coding examples ..161

Annex D (informative) Switching from Flow to FlowExtended ...172

List of Figures

Figure 1—Diagram: STIL flow contents and application .. 1
Figure 2—Diagram: ATPRG STIL data flow .. 2
Figure 3—Example: conventions ... 8
Figure 4—Diagram: STIL flow .. 9
Figure 5—Example: STIL.4 syntax overview .. 10
Figure 6—Example: "./Patterns/Pat1.stil" include file ... 11
Figure 7—Example: FlowExtended test program .. 13
Figure 8—Flow expression assignment and evaluation ... 18
Figure 9—FlowExtended expression assignment and evaluation .. 18
Figure 10—Example: SignalGroup functions .. 22
Figure 11—Example: mathematical functions ... 23
Figure 12—Example: context-sensitive function executed .. 24
Figure 13—Example: Enum FlowVariables .. 25
Figure 14—Diagram: LVDS center tap .. 33
Figure 15—Example: mixed signal Signals block ... 35
Figure 16—Diagram: inverter chip .. 36
Figure 17—Example: inverter signals block with pad numbers and coordinates ... 36
Figure 18—Example: inverter signals block, no pad numbers or coordinates ... 37

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

xii
Copyright ©2018 IEEE. All rights reserved.

Figure 19—Diagram: programmable buffers ... 38
Figure 20—Example: programmable buffers ... 39
Figure 21—Example: domainInclude statement .. 49
Figure 22—FlowVariables example ... 51
Figure 23—Example: scalar variable initialization .. 52
Figure 24—Example: scalar variable initialization .. 53
Figure 25—Example: array initialization ... 53
Figure 26—Example: array initialization, all elements set to the same value .. 53
Figure 27—Example: multi-dimensional array, per element initialization .. 53
Figure 28—Example: array element access and assignment .. 53
Figure 29—Example: limits function "check" .. 57
Figure 30—Example: FlowVariables block limits definitions ... 58
Figure 31—Example: FlowVariables block VecLocation definitions .. 59
Figure 32—Example: VecLocation parameter initializations .. 59
Figure 33—Example: FlowVariable window definitions ... 60
Figure 34—Example: real FlowVariable definitions .. 60
Figure 35—Example: Variables shared between Pattern and Flow ... 62
Figure 36—Example: SpecVariable field assignment .. 65
Figure 37—Example: array size ... 66
Figure 38—Diagram: single-site SignalMap with Signal names and device pins assigned to tester
 resources ... 71
Figure 39—Diagram: multi-site SignalMap with Signal names and device pins assignments to tester
 resources ... 72
Figure 40—Diagram: multi-site SignalMap with diagonal site layout specified, showing assignment of
 sites to grid positions in 4x4 grid .. 74
Figure 41—Diagram: multi-site SignalMap with counterclockwise (CCW) site layout specified,
 showing assignment of sites to grid positions in 2x2 grid .. 74
Figure 42—Diagram: Device block overview .. 75
Figure 43—Diagram: relay terminals, normally open positions .. 77
Figure 44—Diagram: component terminals ... 78
Figure 45—Example: loadboard components .. 78
Figure 46—Example: device site layout ... 80
Figure 47—Diagram: device site layout ... 80
Figure 48—Example: Signals, SignalGroups, chip, and package definitions .. 86
Figure 49—Diagram: single-site wafer test .. 87
Figure 50—Example: Device block for single-site wafer test .. 88
Figure 51—Diagram: single-site package test .. 89
Figure 52—Example: Device block for single-site package test .. 90
Figure 53—Diagram: dual chip package, dual site testing ... 91
Figure 54—Example: Device block for dual chip package, dual site testing ... 92
Figure 55—Diagram: pass group with two bin axes .. 96
Figure 56—Example: soft bin definitions—simple, common usage .. 97
Figure 57—Example: soft bin definitions—bin axes, autoincrementing bin numbers 97
Figure 58—Example: hard bin definitions—simple, common usage ..102
Figure 59—Example: hard Bin definitions—autoincrementing Bin numbers ..102
Figure 60—Example: BinMap using unnamed SoftBinDefs, HardBinDefs ...104
Figure 61—Example: BinMap using named SoftBinDefs, HardBinDefs ...104
Figure 62—Diagram: STIL.4 conceptual model ...105
Figure 63—Diagram: conceptual model of flow ...106
Figure 64—Diagram: conceptual model of test ...106
Figure 65—Diagram: conceptual model for flow node ...107
Figure 66—Diagram: STIL.4 conceptual model (FlowExtended) ..108
Figure 67—Diagram: conceptual model for test and flow (FlowExtended) ..109
Figure 68—Diagram: conceptual model for flow node ...110
Figure 69—Example: inheritance with overrides ..111
Figure 70—Example: parameter initialization ..117

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

xiii
Copyright ©2018 IEEE. All rights reserved.

Figure 71—Example: global, top-level, and local FlowVariables ...123
Figure 72—Example: TestType calling subflow using inline instantiation of other TestTypes and
 implicit standard FlowNode ..128
Figure 73—Example: Test block without TestType ..132
Figure 74—Example: Test statement using defined TestType (FlowExtended) ...133
Figure 75—Example: FlowNode with ExitPorts ...136
Figure 76—Example: equivalent FlowNode specification forms (FlowExtended)137
Figure 77—Example: Flow in TestProgram block (using Flow 2017 constructs)139
Figure 78—Example: Flow in TestProgram block (using FlowExtended 2017 constructs)140
Figure 79—Example: TestProgram using Flow constructs ...144
Figure 80—Example: TestProgram using FlowExtended constructs ..144
Figure 81—Example: standard global variable definitions ...149
Figure 82—Example: minimum content standard TestBase definition ...151
Figure 83—Example: FlowNode/Test interaction ...153
Figure 84—Example: standard functional test definition ..155
Figure C.1—Diagram: And gate with programmable output levels………………………………………166
Figure C.2—Example: small production test program…………………………………………………….171

List of Tables

Table 1—Additional global STIL.4 reserved words .. 14
Table 2—Additional STIL.4 reserved words—Flow ... 14
Table 3—Additional STIL.4 reserved words—FlowExtended .. 15
Table 4—Additions to STIL.0 Table 3 ... 15
Table 5—Namespaces .. 17
Table 6—Utility functions .. 22
Table 7— STIL.4 clauses by capability (Flow or FlowExtended) ... 27
Table 8—Signal type/subtype combinations .. 30
Table 9—Example: combinatorial units ... 43
Table 10—Real types ... 55
Table 11—FlowVariable types ... 55
Table 12—Variable attributes .. 61
Table 13—Operator precedence and associativity ... 63
Table 14—FlowVariable member functions .. 64
Table 15— SignalMap/Device block comparison .. 67
Table 16—Component-dependent connect statement positional significance ... 78
Table 17—Bin None standard attributes and data access functions ..100
Table 18—Parameter directionality semantics ..114
Table 19—STIL block parameter types ..119
Table 20—Parameter attributes ...123
Table 21—Actions and their legal locations ...140

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

1
Copyright ©2018 IEEE. All rights reserved.

IEEE Standard for Extensions to
Standard Test Interface Language
(STIL) (IEEE Std 1450-1999) for Test
Flow Specification

1. Overview

1.1 General

Standard Test Interface Language (STIL) is a standard language that provides an interface between digital
test generation tools and test equipment. This standard, referred to as STIL.4, extends IEEE Std 1450™-
1999 (STIL.0) to define test flows, enable STIL to tester-language translation, and provide hooks for
automatic test program generation (ATPRG).1

Test flows direct the execution and sequence of tests. STIL.4 defines TestProgram, Flow, FlowNode, Test,
Bin, and FlowVariable blocks to support the definition of test flows. The STIL.4 TestProgram block
invokes the test sequence that involves other STIL.4 blocks and references constructs from other STIL
standards to create a complete flow. Test operations are defined down to the TestMethod or TestType/Test
constructs, which identify invocation but not execution of specific test operations. Figure 1 diagrams the
interaction of other STIL standards with STIL.4; when present, a STIL.4 TestProgram identifies the top of
the STIL hierarchy.

STIL .0/.1
Signals,
Timing,
Patterns

STIL.4

STIL .2
DC Levels

STIL .3
Constraints

STIL Flow
consumer

Direct
Tester

Execution

Tester
language

Figure 1 — Diagram: STIL flow contents and application

1 Information on normative references can be found in Clause 2.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

2
Copyright ©2018 IEEE. All rights reserved.

STIL.4 supports multiple contexts of use as indicated in Figure 1. Some contexts leverage the ability to use
predefined tester interfaces, and the definition of the flow can be specific to that context, in which case the
STIL constructs are often directed for this specific context. Other contexts, such as ATPRG usage, require
comprehensive and concise semantics in order to translate between tester environments. Not specific to
context, STIL.4 identifies two levels of language use, identified with the STIL statement extensions Flow
or FlowExtended.

Figure 2 shows a data flow envisioned for ATPRG using STIL. The goal is to, as comprehensively as
possible, use STIL as a conduit for automatically generating test programs and retargeting them, i.e.,
moving them from one tester and/or test environment to another. Retargeting requires special
considerations that are not addressed by this standard. Testers X and Y run STIL as the native language.
Tester Z runs a proprietary language. Arrows from testers X and Y to ATPRG support incremental test
program development.

Figure 2 —Diagram: ATPRG STIL data flow

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

3
Copyright ©2018 IEEE. All rights reserved.

1.2 Scope

This standard specifies extensions to STIL.0 that define the description of certain test flow and binning
components of an integrated circuit (IC) test program in a test-hardware-independent manner. These
extensions provide language constructs and semantics necessary to describe both the test program flow and
the sequencing data needed to compose a test program to run on an automated test equipment (ATE)
platform. The language constructs defined include structures for specifying the following:

 Order of execution of test program components
 Hierarchical test flow structures to facilitate automated modification or maintenance
 Common interfaces between the test flow environment and test program components
 Test flow variables to facilitate concurrent and serial test flow interactions
 Binning or categorization of tested ICs

The following aspects integral to test execution are specifically not addressed by this standard:

 The standardization of the interface between the prober or handler and tester is beyond the scope of
STIL.4. STIL.4 requires that appropriate AsynchronousEvent signals shall be issued to the
TestProgram triggering the corresponding entry-points.

 Input/output operations and exception handling.
 The definition of TestMethods is beyond the scope of this standard.

1.3 Purpose

STIL is the standard for the interchange of digital test data from the test generation environment (where a
great deal of design information is used to generate device tests) to the test and manufacturing environment.
The initial STIL standard (IEEE Std 1450-1999) addresses the essential digital test description information
(i.e., signals, timing, vectors, and parameter specifications). Other aspects needed for testing devices are
provided in extension activities such as this standard, which addresses test flow extensions to STIL.

The flow and binning constructs in this extension allow for developing a test program description in a
common language; this common description can either be used as input to a test program generator that
translates the description into the native language of specific IC ATE systems or be run directly on IC ATE
systems that use IEEE 1450.4 as their native language.

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEEE Std 754™-2008, Standard for Floating-Point Arithmetic. 2,3

IEEE Std 1450™-1999, IEEE Standard Test Interface Language (STIL) for Digital Test Vector Data.4

2 The IEEE standards or products referred to in Clause 2 are trademarks owned by The Institute of Electrical and Electronics
Engineers, Incorporated.
3 IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).
4 This standard combined with IEEE Std 1450.2 and IEEE Std 1450.4 can be used to describe the minimum information required to
generate a test program, i.e., timing, levels, patterns, and flow.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

4
Copyright ©2018 IEEE. All rights reserved.

IEEE Std 1450.1™-2005, Extensions to STIL for Semiconductor Design Environments.

IEEE Std 1450.2™-2002, Extensions to STIL for for DC Level Specification.5

IEEE Std 1450.3™-2007, Extensions to STIL for Tester Target Specification.6

3. Definitions, abbreviations, and acronyms

3.1 Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary Online should be consulted for terms not defined in this clause.7

anonymous: A term to describe an element that has no name/identifier.

assign: To modify the value of an existing instantiation. Value none is not legal.

actions: A general term for a syntax subset constrained to specific test, flow, and flow-node sub-blocks.
The syntax controls flow via commands that assign, compare, or evaluate variables; set or clear soft bins;
and stop program execution.

argument: An expression used to initialize a parameter.

attribute: Ancillary information attached to an object or type describing a property.

buffer: A term to describe a chip interface design cell accessible via a pad.

channel: A physical conduit connecting a tester resource, usually via a tester pin. A channel provides
access to, e.g., power, ground, a driver, comparator, control bit.

chip: An instance of a device design on, or cut from, a wafer.

Components: When capitalized, a keyword referring to electrical components such as resistors or
capacitors usually mounted on a load-board.

Const: When capitalized, a keyword used as a modifier to denote a variable that represents a single value
during normal execution of the test program.

constraint: A special kind of attribute that narrows assignment options.

die: A device design that may be replicated on a wafer in the form of individual chips.

flow or Flow: A general term or, when capitalized, a keyword for a collection of FlowNodes. In
FlowExtended mode, a Flow can be viewed as a special kind of test.

flow-node: A general term for a node in a directed graph represented by keyword FlowNode.

5 This standard combined with IEEE Std 1450 and IEEE Std 1450.4 can be used to describe the minimum information required to
generate a test program, i.e., timing, levels, patterns, and flow.
6 This standard may be used to impose specific target tester limitations on timing, levels, and patterns.
7IEEE Standards Dictionary Online subscription is available at http://dictionary.ieee.org.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

http://dictionary.ieee.org/

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

5
Copyright ©2018 IEEE. All rights reserved.

flow-type: A general term for an instantiable flow description.

FlowNode: A keyword for a node in a directed graph.

FlowType: A keyword for a flow-type.

global: A term to describe identifiers visible across an entire test-program. Examples include a variable
defined in the unnamed top-level FlowVariables block or a variable defined in a named top-level
FlowVariables block that is referenced in the TestProgram block. Variables visible to patterns shall be
defined in the unnamed Variables block and require specific attributes.

inheritance: An object-oriented programming reuse mechanism applied to test-types. The new test-type,
known as the derived type, inherits attributes and behavior from the pre-existing type, referred to as the
base type. Multiple levels of inheritance give rise to an inheritance hierarchy. Only single inheritance is
supported, i.e., a test-type can inherit directly only from one other.

initialize: To set starting value(s) at instantiation. Value none is legal for variables and optional
parameters.

instantiate: To create an instance from a type.

library test-type: A predefined test (flow) type accessible to a Standard Test Interface Language (flow)
(STIL.4) test program.

literal: A constant value not represented by a variable, e.g., 1ms or "string literal".

multi-project wafer: A wafer that has multiple device (chip) types.

multi-site: A term to describe simultaneously testing multiple devices of the same type in parallel.

mutable variable: A variable that does not have type modifier keyword Const and may therefore assume
multiple values during the execution of a program.

native library test-type: A library test (flow) type whose TestExec is defined in the native tester language.

none: A sentinel value representing an uninitialized state.

object: An instantiation of a type.

parameter: A typed variable used to pass an argument for object instantiation or on a function call.

partition: A software partition of tester resources (channels).

post-actions: A general term for actions taking place after keyword TestExec in a test (flow) or flow-node
including the blocks denoted by keywords PostActions, PassActions, FailActions, and Port.

pre-actions: A general term for actions taking place in the PreActions block of a test or flow-node, i.e.,
before TestExec.

relational operator: One of operators < <= == != > >=.

resource: A tester resource such as a driver, comparator, parametric measuring unit, switching matrix, etc.,
accessed via one or more tester channels.

site: A numerical identifier for a device under test (DUT) location.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

6
Copyright ©2018 IEEE. All rights reserved.

standard library test-type: A library test-type whose interface and functionality are described in the
Standard Test Interface Language (flow) (STIL.4).

target tester: A general term for the tester into whose language the Standard Test Interface Language
(STIL) is to be translated.

test: A general term or, when capitalized, a keyword for the smallest executable Standard Test Interface
Language (flow) (STIL.4) object.

test-type: A general term for an instantiable test prototype that embodies a definitive procedure that
produces a test result.

TestType: A keyword for test-type.

tester: A keyword to identify a target tester. Syn: automated test equipment (ATE). Syn: target tester
[with regard to automatic test program generator (ATPRG)].

top-level: A term to describe the definition of a block outside of any other brace enclosed block.

translator: Software that translates the Standard Test Interface Language (vectors and timing/design/flow)
(STIL.0/2/4) input to a target tester language.

virtual function: A function whose behavior can be overridden by a derived test-type function of the same
name.

3.2 Acronyms and abbreviations

ATE automated test equipment

ATPRG automatic test program generator

BNF Backus-Naur format

DUT device under test

IC integrated circuit

LHS left-hand side

MCM multi-chip module

MCP multi-chip package

MPW multi-project/product wafer

PGA pin grid array (type of device package)

RHS right-hand side

STIL Standard Test Interface Language

STIL.0 IEEE Std 1450-1999 (vectors and timing)

STIL.1 IEEE Std 1450.1-2005 (design)

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

7
Copyright ©2018 IEEE. All rights reserved.

STIL.2 IEEE Std 1450.2-2002 (levels)

STIL.3 IEEE Std 1450.3-2007 (tester target)

STIL.4 IEEE Std 1450.4-2017 (flow)

4. Preface

4.1 General

STIL.4 is a language with object-oriented features, which describes a test flow designed to be translated
into various ATE native-language test flows and provides rudimentary ATPRG support.8 It may also be
used as a fully functional programming language capable of running on ATE.

To generate a test program, an ATPRG or translator input stream is expected to contain STIL.0 code for
patterns and timing, STIL.2 code for levels, and STIL.4 code for test flow and ancillary signal information,
not necessarily all in one file.

4.2 Word usage

In this document, the word shall is used to indicate a mandatory requirement. The word should is used to
indicate a recommendation. The word may is used to indicate a permissible action. The word can is used
for statements of possibility and capability.

4.3 Conventions

With the exception of the Flow statement (Clause 32) and vector labels, the syntax requires definition
before use. In FlowExtended mode, it is recommended that Flows created from FlowTypes be defined
before use. In this document, the following conventions are used for syntax definitions:

a) SMALL CAP text for user data
b) bold text for keywords
c) italic text for meta-types
d) () encloses optional syntax which may be used 0 or 1 time
e) ()+ encloses syntax which may be used 1 or more times
f) ()* encloses optional syntax which may be used 0 or more times
g) <> encloses multiple choice arguments or syntax separated by |

Code examples use Courier text. In this document, example lines may be prefaced by line numbers to
permit reference for purpose of explanation. Line numbers are not part of STIL.4 syntax. This example
illustrates the coding conventions used in this document:

x1 Enum BlueHues {
 2 LIGHT_BLUE,
 3 BLUE,
 4 DARK_BLUE
 5 }
 6 TestType MyType {
 7 Parameters {

8 See Signals stil4_sig_attrs in 8.2.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

8
Copyright ©2018 IEEE. All rights reserved.

 8 In BlueHues blueHues = DARK_BLUE;
 9 In Const Integer Index;
10 }
11 TestExec StdNoOp;
12 }

Figure 3 —Example: conventions

Here is a more formal description with references to the example in Figure 3:

a) Joined capitalized words are used for the following: constant and type identifiers, and keywords.
Note constant identifier Index on line 9, user-defined type identifiers BlueHues and MyType on
lines 1 and 6, and keywords Enum, TestType, Parameters, In, Const, Integer, and
TestExec.

b) Identifiers that begin with a lower case letter or word potentially followed by joined capitalized
words are used for mutable variables and functions. Note identifier blueHues on line 8.

c) Enumerations are all capital letters with words separated by underscore. Note lines 2–4.
d) Standard library test-types begin with the letters Std. Note line 11.

4.4 Semantics

This document does not dictate implementation details however on occasion it employs a particular
implementation as a vehicle for explaining the actions of and interactions between language elements in
concise and unambiguous terms.

STIL.4 compliant code shall be readable by a STIL.4 compliant reader in its entirety. A STIL.4 compliant
reader shall read all legal STIL.4 syntax including STIL.4 extensions to STIL.0 and STIL.2. Supported
syntax shall be handled in accordance with specified semantics.

5. Tutorial

5.1 General

The following examples describe test programs that may run on an ATE that supports STIL.4 or be directly
translated to a native target tester language.

5.2 Flow test program example

The key components of the STIL.4 language extension include Flow, FlowNode, Test, Bin, and
FlowVariable blocks. A Flow block may contain a collection of FlowNode blocks. Each FlowNode may
execute another Flow or a Test block and then make binning and/or flow navigation decisions at the
conclusion of the execution. A Test block defines parameter interface to the execution of the test and may
reference a TestMethod. The actual execution of the Test is beyond the scope of this standard.

Figure 4 is a block diagram illustratration of a simple Flow using STIL.4 concepts and terminology. The
illustration begins with an ‘On START’ entry point invoking a Flow named MainFlow. MainFlow contains
two FlowNodes named dc and ac. The FlowNode dc invokes a second Flow named dcFlow which contains
a single FlowNode named iil. The FlowNodes iil and ac invoke Tests. Each of the two Tests in Figure 4
reference a named TestMethod and pass parameter data to the TestMethod. The definition of TestMethod
execution and how they use the parameter data is beyond the scope of STIL.4.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

9
Copyright ©2018 IEEE. All rights reserved.

Figure 4 —Diagram: STIL flow

Figure 5 shows the corresponding STIL.4 syntax for the example in Figure 4.

STIL 1.0 {
 Flow 2017;
 DCLevels 2002;
}
DomainInclude Pat1 { Path "./Patterns/Pat1.stil"; }
FlowVariables {
 Amperes iilLimit='300nA';
}
Signals {
 in0 In; in1 In;
 io0 InOut; io1 InOut;
 out0 Out; out1 Out;
 vcore Supply;
}
SignalGroups {
 ins ='in0+in1';
 outs ='out0+out1';
 ios ='io0+io1';
 alldig ='ins+ios+outs';
 pwr ='vcore';
}
SoftBinDefs {
 Pass {
 Bin Bin1 { Number 1; Color “Green”; }

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

10
Copyright ©2018 IEEE. All rights reserved.

 }
 Fail {
 Bin failDC { Number 10; Color “Red”; }
 Bin failAC { Number 11; Color “Red”; }
 }
}
Test iilTest {
 TestMethod testCurrent;
 MethodParameters {
 In sigref_expr sigref = 'ins';
 In Volts forceV = '0V';
 In Amperes limit = 'iilLimit';
 }
}
Test funcTest {
 TestMethod testPattern;
 MethodParameters {
 In sigref_expr sigref = 'ios+outs';
 In PatternExec PatExec = Pat1::funcPatterns;
 }
}
Flow MainFlow {
 FlowNode dc {
 TestNumber 1;
 TestExec dcFlow;
 ExitPorts {
 Port 'True' { } Next;
 }
 }
 FlowNode ac {
 TestNumber 2;
 TestExec funcTest;
 ExitPorts {
 Port 'execResult==Pass' { SetBinStop Bin1; }
 Port 'True' { SetBinStop failAC; }
 }
 }
}
Flow dcFlow {
 FlowNode iil {
 TestNumber 11;
 TestExec iilTest;
 ExitPorts {
 Port 'execResult==Pass' { } Return;
 Port 'True' { SetBinStop failDC; }
 }
 }
}
TestProgram {
 EntryPoints {
 On START MainFlow;
 }
}

Figure 5 —Example: STIL.4 syntax overview

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

11
Copyright ©2018 IEEE. All rights reserved.

Figure 6 expands Figure 5 by revealing the content within the "./Patterns/Pat1.stil" include file. This
include file example defines a pattern execution inclusive of required components. The STIL.4 syntax as
shown in Figure 5 simply passes the PatternExec named funcPatterns as a MethodParameter from the Test
named funcTest to the TestMethod named patternMethod. How the PatternExec is used by the TestMethod
is beyond the scope of STIL.4.

STIL 1.0 {
 DCLevels 2002;
}
Signals {
 in0 In; in1 In;
 io0 InOut; io1 InOut;
 out0 Out; out1 Out;
 vcore Supply;
}
SignalGroups { all ='in0+in1+io0+io1+out0+out1'; }
DCLevels looseLevels {
 vcore { VForce '3V'; }
 all { VIL '0V'; VIH '3V'; VOL '1V'; VOH '2V'; }
}
Timing funcTiming {
 WaveformTable WFT1 {
 Period '100ns';
 Waveforms {
 all { 01LHX { '0s' D/U/Z/Z/Z; '50ns' X/X/L/H/X; } }
 }
 }
}
PatternBurst funcBurst {
 PatList {
 Pat1;
 }
}
PatternExec funcPatterns {
 Timing funcTiming;
 PatternBurst funcBurst;
 DCLevels looseLevels;
}
Pattern Pat1 {
 W WFT1;
 V { all=01XXLH; }
 V { all=01XXLH; }
 V { all=01XXLH; }
}

Figure 6 —Example: "./Patterns/Pat1.stil" include file

5.3 FlowExtended test program example

The program excerpt in Figure 7 (note the lack of STIL 1.0 statement) performs a single functional test and
sets the appropriate fail or pass soft bin. The bin-map contains no soft to hard bin mapping so no hard bin is
set. Line numbers are for reference only, not part of the syntax.

x1 Signals {
 2 VDD Supply;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

12
Copyright ©2018 IEEE. All rights reserved.

 3 GND Ground;
 4 A0 In; A1 In; A2 In; A3 In;
 5 B0 Out; B1 Out; B2 Out; B3 Out;
 6 }
 7 SignalGroups {
 8 INPUTS = 'A3 + A2 + A1 + A0';
 9 OUTPUTS = 'B3 + B2 + B1 + B0';
10 ALL = 'INPUTS + OUTPUTS';
11 }
12 Timing acloose {
13 WaveformTable wft {
14 Period '50ns';
15 Waveforms {
16 INPUTS {
17 01 { '0ns' ForceDown/ForceUp; }
18 }
19 OUTPUTS {
20 HLZ {
21 '0ns' ForceOff;
22 '25ns' CompareHigh/CompareLow/CompareOff;
23 }
24 }
25 }
26 }
27 }
28 DCLevels dcloose {
29 VDD {
30 VForce '3.3V';
31 IClamp '50mA';
32 }
33 INPUTS {
34 VIH '2.0V';
35 VIL '0.8V';
36 }
37 OUTPUTS {
38 VOH '2.7V';
39 VOL '0.4V';
40 IOH '-10mA';
41 IOL '10mA';
42 LoadVRef '1.5V';
43 }
44 }
45 PatternBurst burst1 {
46 PatList {
47 pat1;
48 }
49 }
50 SoftBinDefs softbindefs {
51 Pass {
52 Bin Passed;
53 }
54 Fail {
55 Bin LooseFunct;
56 }
57 }
58 BinMap binmap {
59 SoftBinDefs softbindefs;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

13
Copyright ©2018 IEEE. All rights reserved.

60 }
61 TestProgram basic {
62 BinMap binmap;
63 EntryPoints {
64 On START StdFunctional {
65 failBin = LooseFunct;
66 passBin = Passed;
67 patburst = burst1;
68 tim = acloose;
69 dclev = dcloose;
70 }
71 }
72 }
73 Pattern pat1 {
74 WaveformTable wft;
75 V { ALL=0000LLLL; }
76 V { ALL=1000HLLL; }
77 V { ALL=0100LHLL; }
78 V { ALL=0010LLHL; }
79 V { ALL=0001LLLH; }
80 }

Figure 7 —Example: FlowExtended test program

6. Extensions to STIL.0 Clause 6 (STIL syntax description)

6.1 General

All constructs and restrictions for STIL.0 Clause 6 are in effect here, with the following additions:

 Additional STIL reserved words specific within the context of this standard
 Additions to Table 3—SI units
 Extensions to 6.6 (token length)
 Extensions to 6.8 (user-defined name characteristics)
 Extensions to 6.12 (number characteristics)
 Extensions to 6.16 (STIL name spaces and name resolution)

6.2 Additional reserved words

Table 1, Table 2, and Table 3 list all STIL global and context-sensitive reserved words defined by this
standard. Subsequent clauses in this standard identify the use and context of each of these additional
reserved words. The keywords shown in those two tables shall not be used as identifiers in any context.

STIL.4 identifiers shall use simple_identifier syntax and rules described in 6.5. Some identifiers commonly
start with integers so that having to quote them would be a burden. Exceptions to the default are indicated
in this document where they apply and use alnum_id syntax. STIL.0 and STIL.2 identifiers use STIL.0
syntax and rules which is described as name_segment also described in 6.5. STIL.4 references to STIL.0
and STIL.2 objects by name shall recognize name_segment syntax and rules.

Additionally, TestType and FlowType names shall not be used as identifiers for any objects. See
Clause 7 for an explanation of the Flow and FlowExtended keywords.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

14
Copyright ©2018 IEEE. All rights reserved.

Table 1 —Additional global STIL.4 reserved words

Else
CurrentExec
execResult
Fail
False
Global
If
Local
None
Parent, Pass
TestNumber
True
Unnamed
While

Table 2 —Additional STIL.4 reserved words—Flow

Amperes, AsynchronousEvent
Base, BinAxes, BinAxis, BinMap, BinNumberIncrement, Bins, BinSpec, Boolean, Bypass
Categories, Channel, ClearBin, Color, Const
DCLevels, DCSequence, DCSets, Description, Disconnect, Duration
Enable, EndOfBurst, EndOfPattern, EntryPoints, Enum, ExecResult, ExitPorts
FailActions, Farads, Flow, FlowNode, FlowVariables
General
HardBinDefs, Henries, Hertz
In, Include, IncludeOnce, InOut, Integer
Limits, LotEnd, LotStart
Map, MapBinHighest, MapBinLowest, Max, Meas, Meters, MethodParameters, Min
Next, Number
Ohms, Out
Parameters, PassActions, Permissions, Port, PostActions, PreActions
ReadOnly, ReadWrite, Real, Return, RhsReadWrite
Seconds, Selector, SetBin, SetBinStop, SignalMap, sigref_expr, SoftBinDefs, Spec,
SpecVariable, StartBinNumber, Stop, String, Supply
Terse, Test, TestExec, TestMethod, TestProgram, Timing, Typ
Variable, VecLocation, Verbose, Volts
WaferEnd, WafermapChar, WaferStart, Watts, Window

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

15
Copyright ©2018 IEEE. All rights reserved.

Table 3 —Additional STIL.4 reserved words—FlowExtended

ADCtrl, Analog, AnalogDigital
BinGroup, Buffer
Capacitor, ChanDirection, ChannelMap, CheckResult, Chip, CktType, Components, Config, Connect,
Control, Coords, Ctap
Design, Device, DeviceSites, DiffNeg, DiffPos, Digital, Diode, DPDT, DPST, DUTBoard, Dynamic
Environment
FailMode, FlowType, ForceHi, ForceLo, Function
Ground, GroundRails
IIH, IIL, Inductor, Inherit, InLevelGrp, IOCtrl, IOType, IOH, IOL, IOZH, IOZL
Layout, Level, LevelGrp, Loadboard, LocType
NC, NO
Off, On, Open, OutLevelGrp
Package, Pad, Pads, Partition, PinList, PinMap, Plane, Power, PowerRails, Probecard, PullDown, PullUp
Rating, Requirement, Resistor
SignalGroup, SigType, Simulation, SPDT, SPST, StaticType, Switch
TestBase, Tester, TestHead, TestMode, TestType, Tolerance, Tristate, Type
Value, Vbreak, Vdrop, VIH, VIHD, VIL, VILD, VOH, VOHD, VOL, VOLD
Wire

6.3 Additions to STIL.0 Table 3 (SI units)

STIL.0 Table 3 is amended to include the units shown in Table 4. Degrees Celsius can be represented as
either Cel or oC. Ohms can be represented by Ohm or R.

Table 4 —Additions to STIL.0 Table 3

Unit Description
oC Degrees Celsius
dB Decibels
deg Phase shift or angle
units_expr General
R Ohms
none Real

units_expr contains either simple or combinatorial SI units. For an explanation of combinatorial SI units,
see Clause 13.

6.4 Extensions to STIL.0 6.6 (token length)

Tokens are defined to be the block of text between reserved characters, or reserved characters themselves
(other than whitespace and comment delimiters). STIL.4 imposes no constraints on token length however
STIL.0/1/2 tokens are limited to a maximum length of 1024 characters.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

16
Copyright ©2018 IEEE. All rights reserved.

STIL.0/1/2 character strings composed of longer sequences may be defined by segmenting the character
string into clauses and placing a period between the clauses.

Although not necessary for consideration of token length, note that STIL.4 strings are concatenated via the
plus (+) operator. STIL.4 identifiers shall not be concatenated. The period (.) operator is used in STIL.4 to
separate elements in a hierarchical reference.

6.5 Extensions to STIL.0 6.8 (user-defined name characteristics)

The following Backus-Naur format (BNF) forms are added to the forms shown in STIL.0 6.8:

double_quote ::= “"”
alnum_id ::= simple_characters | double_quote escaped_characters double_quote

NOTE—This document uses metatypes simple_identifier and name_segment, as defined in STIL.0.

6.6 Extensions to STIL.0 6.12 (number characteristics)

The following BNF forms are added to the forms shown in STIL.0 6.12:

number is extended to include the following forms:

signed_integer “e” signed_integer “.” integer |
signed_integer “.” integer e signed_integer “.” integer

pos_int ::= <1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9> (digit)*

6.7 Extensions to STIL.0 6.16 (STIL name spaces and name resolution)

BinMap, Chip, Device, FlowVariables, Package, SignalMap, SoftBinDefs, HardBinDefs, Spec,
TestProgram, TestType, FlowType, Test, and Flow blocks augment the STIL name space as defined in
Table 5. This table is incremental to STIL.0 Table 6 and IEEE Std 1450.2-2002 (STIL.2) Table 2. All
definitions present in those two tables remain unchanged.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

17
Copyright ©2018 IEEE. All rights reserved.

Table 5 —Namespaces

STIL block Type of name Domain restrictions
BinMap BinMap names Domain names are required and shall be unique

across all BinMap blocks.
Chip Chip names Domain names are required and shall be unique

across all Chip blocks.
Device Device names Domain names are required and shall be unique

across all Device blocks.
FlowVariables STIL.4 variable block

names
Supports a single unnamed top-level block and
domain name (restricted) blocks.

Package Package names Domain names are required and shall be unique
across all Package blocks.

SignalMap Signal-to-channel
mapping names

Supports a single unnamed top-level block and
domain name (restricted) blocks.

SoftBinDefs/HardBinDefs Bin definition names Each SoftBinDefs or HardBinDefs block defines an
entity. The domain name is required and shall be
unique.

TestMethod TestMethod names Domain names are required and shall be unique
across all TestMethod blocks.

TestProgram TestProgram names Domain names are required and shall be unique
across all TestProgram blocks.

TestType/FlowType/Test/Flow Test/Flow type and
instance names

Each TestType, FlowType, Test, or Flow block
defines an entity. The domain name is required and
the name space of all of these entities is shared.

6.8 Expressions

6.8.1 General

STIL.4 supports mathematical, Boolean, and string expressions. An expression may be as simple as a literal
value or include variables, operators, and function calls. As the elements within the expression change, the
value of the expression changes. For example, the value of expression '1 + var' changes whenever the
value of var changes. The function eval evaluates the expression to return a literal value. Single-quoted
and unquoted expressions are semantically identical. An expression, whether used directly or represented
by a variable, parameter, or spec variable, shall be evaluated whenever a literal value is required. See
Figure 8 and Figure 9 for expression assignment and evaluation for Flow and FlowExtended, respectively.

x1 FlowVariables {
 2 Integer var = 0; // Initializes var to 0
 3 Integer a = 1 + var; // Initializes a to expression 1+var
 4 Integer b = '1 + var'; // Same as above – quotes or not
 5 Integer c = 'eval(1+var)'; // Initializes c to 1
 6 Integer e = 0; // Initialize e to 0
 7 }
 8 Flow MAINFLOW {
 9 FlowNode {
10 TestNumber 1;
11 PreActions {
12 e=eval(a); // Evaluates a (1 + var) - sets e to value 1
13 var=2; // expressions using var will be affected.
14 e=b; // e is expression (1 + var)

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

18
Copyright ©2018 IEEE. All rights reserved.

15 e=e+1; // Evaluates e, then increments; e = 4
16 e=eval(a); // assign value of a; e = 3
18 e=c; // e = 1
18 }
19 }
20 }

Figure 8 — Flow expression assignment and evaluation

x1 FlowVariables {
 2 Integer var = 0; // Initializes to value 0
 3 Integer a = 1 + var; // Initializes to expression
 4 Integer b = '1 + var'; // Initializes to expression
 5 Const Integer c = 1 + var; // Initializes to value 1
 6 Integer e = eval(1 + var); // Initializes to value 1
 7 }
 8
 9 TestType MyType { // FlowExtended
10 FlowVariables {
11 Integer c = var; // Hides global c – local c is set to ‘var’,
12 // which will be evaluated when a value is
13 // needed (i.e., when the PreActions of a Test
14 // created from MyType are executed).
15 Boolean f = eval(var == 0); // Initialize to True
16 }
17 PreActions {
18 // Evaluations occur when needed during execution
19 // of PreActions - that is, when a Test created
20 // from this TestType is executed.
21 e = eval(c); // Assigns value 1
22 var = 2; // Assigns value 2
23 e = b; // Assigns expression b ('1+var') to e
24 e = e + 1; // Assigns value 4, not expr e+1.
25 e = eval(c); // Assigns value 2
26 }
27 }

Figure 9 — FlowExtended expression assignment and evaluation

6.8.2 Literal values

Literal values may be used in variable assignments or passed as parameters. The literal value type shall be
compatible with the variable or parameter it is assigned to. To be compatible, the literal value shall either
be of the same type as or convertible to the type of variable or parameter it is assigned to (see Table 11).
All literal values are constant.

Numeral 3, for example, is of type Integer. The same number with a decimal point, i.e., 3.0, is of type
Real, a floating point number with no units. 25e-9 is of type Real. Any number with units is of a type
associated with those units, e.g., 3s is of type Seconds, a floating point number with units. When the
units are combinatorial and not reducible to a simple type, e.g., 3nm:s2 (3 nanometers per second
squared), the type is General. When units are reducible to a simple type, they are of that type, e.g.,
1.0A2R (1 Ampere squared times Ohms) is of type Watts. See Table 4 for a listing of basic unit types,
STIL.0 Table 4 for engineering unit prefixes, and the function units() description in Table 14 for
additional information.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

19
Copyright ©2018 IEEE. All rights reserved.

Characters surrounded by double quotes, e.g., "silly putty", are of type String unless they’ve been
defined as quoted identifiers in the context of other STIL extension blocks and used in a STIL.4 context
that requires a type other than String. Double quotes, backslash, t for tab and n for newline shall be
escaped via backslash to be part of a string, e.g., string "\"C:\\Program Files\"\t\n" represents
windows path name C:\Program Files enclosed in quotes followed by tab and newline. It is
recommended that quoted identifiers not be used in STIL.0 and STIL.2 code when combined with STIL.4
code. Testers do not in general, support quoted identifiers. There is no separate type or literal that
represents a single character.

Keywords True and False are of type Boolean.

Keyword None signifies the value held by an uninitialized variable or parameter. None is also the result of
illegal or unresolvable operations such as dividing by zero or evaluating an expression containing an
undefined variable. While None may be a valid default initialization value, it may not be not be explicitly
assigned to a variable or passed as a parameter value. A variable or parameter may be tested for equality or
inequality to None.

6.8.3 Integer expressions (int_expr)

Integer expressions consist of integers, spec variables, flow variables, functions (see Table 6), and
operators (see Table 13). In FlowExtended, integer expressions may also include test or flow parameters.

An integer expression containing None or a variable that represents None, directly or indirectly, shall
evaluate to None.

Integer expressions may include run time variant components such as flow variables. Thus, the resolved
value of the expression shall change as the values of the components change. The eval function may be
used to force evaluation of an expression and return a literal value.

Examples:

1 // Integer literal
-2+3 // Integer literal with operator
max(2,50) // evaluation of integer function
risetime // Variable
(3 + risetime)/2 // Mathematical operations

6.8.4 Real expressions (real_expr)

Real expressions consist of integers, real numbers, exponential numbers, spec variables, flow variables,
functions (see Table 6), and operators (see Table 13). In FlowExtended, real expressions may also include
test or flow parameters. Exponential numbers may be expressed using real numbers or exponential
numbers, followed by engineering notation using the prefixes (see STIL.0 Table 4) and units (see STIL.0
Table 3 and, in this document, Table 4).

A real expression containing None or a variable that represents None, directly or indirectly, shall evaluate
to None.

Real expressions may include run time variant components such as flow variables. Thus, the resolved value
of the expression shall change as the values of the components change. The eval function may be used to
force evaluation of an expression and return a literal value.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

20
Copyright ©2018 IEEE. All rights reserved.

Examples:

1 // Integer literal
2.0 // Floating point literal
3ps // Floating point literal with units
risetime // Variable
(3ps + risetime)/2 // Mathematical operations

6.8.5 Boolean expressions (bool_expr)
A Boolean expression may be as simple as a literal or a predefined variable or it may contain operations
performed on literals and/or variables, for example:

True // Boolean literal
passed // Boolean variable
(3ps + risetime)/2 <= 5ps // Boolean expression
boolvar1 != None && boolvar2 == True // Boolean expression

A Boolean expression may use operators &&, ||, !, ==, !=, >, <, >=, <=, (, and).

Boolean operators &&, ||, and ! shall require Boolean operands.

Boolean operators == and != shall require two operands of the same type, either String, Boolean,
Integer, or floating point. One or both of the operands may be None. Two expressions are equal if they
evaluate to the same value.

Boolean operators >, <, >=, or <= shall require mathematical expression operands and evaluate to True,
False, or None. (shall evaluate to None if one or more of the operands is None).

Boolean operators with both an Integer and a Boolean operand, shall promote the Integer to
Boolean before the operation is performed (zero is False, non-zero is True).

6.8.6 String expressions (string_expr)
A string expression may be as simple as a literal or a predefined variable or it may contain operations
performed on literals and/or variables, for example:

"" // String literal: empty string
"Arbitrary string" // String literal
"\"\t\n\\" // String literal of supported escaped characters
str // String variable, presumably previously defined
"string " + str // Concatenating String expression

STIL.4 string expressions support operator plus (+) which performs concatenation. STIL.0 and STIL.2
portions of the input stream use operator period (.) for string concatenation. Operator period (.) is not a
valid concatenation operator for any identifiers used with STIL.4 constructs. However, it is still a valid
concatenation operator for any non-STIL.4 constructs.

For the following STIL.4 statement

if ("s" == s) Stop;

a STIL.4 compliant parser shall first look for identifier "s". That failing, the parser shall interpret "s" as a
literal of type String.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

21
Copyright ©2018 IEEE. All rights reserved.

Inside double quotes, the backslash is used as an escape character causing it and the next character to be
interpreted as follows:

Escaped character Translates to
\" Double Quote
\\ Backslash
\n Newline (Linefeed)
\t Horizontal Tab

6.8.7 SignalGroup (FlowExtended)

6.8.7.1 General

SignalGroup is a data type used to pass sigref_expr statements. The SignalGroup data type has two
member functions, size() and at().

6.8.7.2 SignalGroup functions syntax

The syntax for the SignalGroup data type functions is as follows:

Integer SignalGroup.size();
Signal SignalGroup.at(int_expr);

size: Returns an integer representing the number of ordered signals in the resolved expression.

at: Returns the ordered Signal in the SignalGroup indexed by int_expr. The int_expr index of 0
returns the first resolved Signal. The int_expr index of SignalGroup.size()-1 returns the last resolved
Signal. None is returned if int_expr is out of range, i.e. < 0 or >= SignalGroup.size().

6.8.7.3 SignalGroup functions example

The example in Figure 10 illustrates usage of the size() and at() functions.

Signals {
 SIG1 In;
 SIG2 In;
 SIG3 In;
 SIG4 In;
 SIG5 In;
}
SignalGroups {
 GRP1 = 'SIG3+SIG2+SIG1';
 GRP2 = 'GRP1+SIG4+SIG5'; // 'SIG3+SIG2+SIG1+SIG4+SIG5'
}
TestType TestType1 {
 Parameters {
 InOut Const SignalGroup grp1 = 'GRP1';
 InOut Const SignalGroup grp2 = 'GRP2';
 In SignalGroup grp3;
 In Signal sig;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

22
Copyright ©2018 IEEE. All rights reserved.

 }
 FlowVariables {
 Const SignalGroup empty = '';
 Integer int1 = grp1.size(); // Assigns 3 to int1
 Integer int2 = grp2.size(); // Assigns 5 to int2
 Integer int3 = empty.size(); // Assigns 0 to int3
 }
}
Test TestType1 test1 {
 grp1 = &GRP1;
 grp2 = &GRP2;
 grp3 = grp1.at(0); // SIG3
 sig = grp2.at(grp2.size()-1); // SIG5
}

Figure 10 —Example: SignalGroup functions

6.9 Functions

STIL.4 supports the functions shown in Table 6. All but function executed are globally accessible. The
return value shall be None or an array of None if one or more mathematical expression arguments perform
illegal operations or contain an undefined variable or None, directly or indirectly. Defined but uninitialized
variables evaluate to None.

Many of the functions in Table 6 and those described for FlowVariables in Table 11 (in 17.5) and Table 14
(in 17.7) accept one or more arguments of type math_expr, which is defined in Table 6 as either an int_expr
or a real_expr.

math_expr ::= < int_expr | real_expr >

Table 6 —Utility functions

Function Return type Description
abs(math_expr) If argument math_expr

evaluates to type Integer,
abs returns type Integer. If
argument math_expr evaluates
to a floating point type, abs
returns the corresponding
floating type.

Returns the absolute value of mathematical expression
math_expr or, if math_expr represents an array, an
array of absolute values.

eval(math_expr) Same as function abs. Directive replacing mathematical expression math_expr
with the result of its evaluation, either an unquoted
literal value or None. When used in initialization
statement, evaluation occurs at parse time. When used
in assignments, evaluation occurs at runtime.

(Table continues)

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

23
Copyright ©2018 IEEE. All rights reserved.

Table 6—Utility functions (continued)
Function Return type Description

executed() Integer Returns the number of times TestExec has run to
completion since asynchronous event START. The
actual number returned depends on context, i.e.,
CurrentExec.executed() counts the number of
times the CurrentExec reference_stmt’s
TestExec has run to completion from the flow-node.
Parent.executed()counts the parent test’s or
flow’s TestExec executions.
Local.executed(), same as unqualified
executed(), counts the test’s or flow’s TestExec
executions. Global.executed() shall be illegal.

max(math_expr,
math_expr, ...)

Integer if all arguments are
of type Integer, or a floating
point value if one or more
arguments are of floating point
types.

Returns a single literal maximum value from the
mathematical expression variable-length argument list.
Includes array elements in comparison if one or more
arguments represent an array. All arguments shall have
matching units.

NOTE—Argument list is not defined in STIL.0 or
STIL.1. If Flow extension appears in the STIL
statement, then STIL.0 and STIL.1 parsers shall use
this definition.

min(math_expr,
math_expr, ...)

Same as function max. Same as max but returns a single literal minimum
value.

pow(math_expr,
math_expr)

Floating point type Returns the base (1st argument) raised to the power
exponent (2nd argument) as a floating point number,
with units if appropriate. The exponent shall be unit
less. If the base is scalar then the exponent shall be
scalar, and the return value shall be a single literal
scalar. If base is an array and exponent is scalar, the
return value is an array with every element raised to
exponent. If base is an array and exponent is an array,
the return value is an array with every element raised to
the corresponding exponent, i.e., the arrays shall be of
the same size.

str2number(string, fp) Integer Converts as many of the initial characters in string as
possible to a floating point number, with units if
appropriate. No expression evaluation is performed.
Returns the converted character count as type
Integer. For example, string argument "10us*2"
sets argument fp to 10us and returns 4. String
argument "X" returns 0.

x1 FlowVariables {
 2 Integer i = -1; // Fodder for examples below
 3 Integer array[] = [2, 3, 4]; // Fodder for examples below
 4 Integer i0[] = array + i; // Set to 'array + i'
 5 Integer i2[] = eval(i0); // Set to [1, 2, 3]
 6 // Next line shows use of max() with a mix of scalar, array args
 7 Integer i3 = max(i, array, -2); // Set to 4
 8 Integer i4 = abs(-2); // Set to 2
 9 Integer i5 = abs(-2.5); // Set to 2 (truncate)
10 Real r0 = abs(-2.5); // Set to 2.5
11 General gen0 = pow(4, 0.5); // Set to 2.0 (Real)
12 }

Figure 11 —Example: mathematical functions

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

24
Copyright ©2018 IEEE. All rights reserved.

x1 FlowVariables {
 2 Boolean preConditionMet = False;
 3 }
 4
 5 TestType Fnc {
 6 Parameters {
 7 Out Boolean execdFnc = False { ReInitAt TEST_ENTRY; }
 8 }
 9 PreActions {
10 If (Parent.executed())
11 Bypass;
12 }
13 PostActions {
14 If (executed())
15 execdFnc = True;
16 }
17 }
18
19 Test Fnc fnc {
20 }
21
22 Flow StdFlow main {
23 TestExec {
24 FlowNode fn1 {
25 PreActions {
26 If (CurrentExec.executed() == 1)
27 preConditionMet = True;
28 }
29 TestExec fnc;
30 }
31 }
32 }

Figure 12 — Example: context-sensitive function executed

6.10 Enum

6.10.1 Enum syntax

Enum ENUM_NAME {
 (enum_stmt)+
}
enum_stmt ::= ENUMERATOR_NAME (=INITIALIZER),

Enum: Start of an enum block.

ENUM_NAME: Required name of the enum block. This name applies scope to the enumerator elements
within the enum block.

ENUMERATOR_NAME: Required name of the enumerator element. Each enumerator name within the enum
block shall be unique.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

25
Copyright ©2018 IEEE. All rights reserved.

INITIALIZER: Optional Integer assignment value for the enumerator. If the initializer is omitted, the
enumerator takes on the value of the previous enumerator + 1. The first enumerator, if not assigned with an
initializer, is assigned the starting value of 0.

6.10.2 Enum example

X1 Enum Color {
 2 BLACK, // 0
 3 RED, // 1
 4 YELLOW=4, // 4
 5 BLUE // 5
 6 }
 7 FlowVariables vars {
 8 Color c2 = RED; // Legal: assigns Color::RED
 9 Color c4 = Color::RED; // Legal
10 Color c5; // Legal: assigns None
11 Integer i2 = Color::BLUE; // Sets value to 5
12 }

Figure 13 —Example: Enum FlowVariables

6.11 Parameter, MethodParameter, and FlowVariable types

The following types and metatypes are used for definition of Test Parameters, MethodParameters, and
FlowVariable types.

real_var_type ::= Amperes | Celsius | Decibels | Degrees | Farads | General | Henries | Hertz | Meters |
 Ohms | Real | Seconds | Volts | Watts
boolean ::= True | False

The following definition of var_type applies when using Flow 2017 (Clause 7)

var_type ::= <
Boolean |
Enum |
Integer |
String |
real_var_type

>

The following definition of var_type applies when using FlowExtended 2017 (Clause 7)

var_type ::= (Const) <
Boolean |
Enum |
Integer |
Limits |
String |
VecLocation |
VecRange |
Window |
real_var_type

>

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

26
Copyright ©2018 IEEE. All rights reserved.

The following definitions of method_param_type and stil_object_expr are used when defining
MethodParameters (29.2)

method_param_type ::= <
var_type |
DCLevels |
DCSequence |
DCSets |
Pattern |
PatternBurst |
PatternExec |
Signal |
sigref_expr |
Timing

>

stil_object_expr ::= anything that evaluates to a method_param_type

The following definitions of param_type and stil_object_expr are used when defining Parameters
(27.1)

param_type ::= (Const) <
var_type |
BinSpec |
Category |
DCLevels |
DCSequence |
DCSets |
PatternBurst |
PatternExec |
Selector |
Signal |
SignalGroup | // Covers sigref_expr
Spec |
SpecVariable |
TestType |
Timing

>

stil_object_expr ::= anything that evaluates to a param_type

7. Extensions to STIL.0 Clause 8 (STIL statement)

7.1 General

To target intended use cases, this standard has been divided into a basic and extended set of language
syntax definitions. The extended set is a superset of the basic set.

Usage of the basic capability set is designated by the Flow 2017 keyword in the STIL statement block.
The basic set imposes minimal changes to usage of clauses defined in existing STIL standards.

Usage of the extended capability set is designated by the FlowExtended 2017 keyword in the STIL
statement block. The extended capability includes additional syntax/semantic changes to clauses in existing

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

27
Copyright ©2018 IEEE. All rights reserved.

STIL standards. Usage of these features may not be typical in the scope of a test program deployed at a
tester. Instead, these features are more likely to be used in offline test program generation applications.

Table 7 shows the STIL.4 clauses are available in both modes (Flow) or only in the extended mode
(FlowExtended). In the remainder of the document, the extended clauses include (FlowExtended) in
the clause header.

Table 7 — STIL.4 clauses by capability (Flow or FlowExtended)

Clause Clause title Flow or FlowExtended
6 Extensions to STIL.0 Clause 6 (STIL syntax description) Flow (6.2–6.7, 6.8.1–6.8.6,

6.9–6.11)
FlowExtended (6.8.7)

7 Extensions to STIL.0 Clause 8 (STIL statement) Flow
8 Extensions to STIL.0 Clause 14 (Signals block) FlowExtended
9 Extensions to STIL.0 Clause 15 (SignalGroups block) FlowExtended
10 Extensions to STIL.0 Clause 16 (PatternExec block) FlowExtended
11 Extensions to STIL.0 Clause 17 (PatternBurst block) FlowExtended
12 Extensions to STIL.0 Clause 18 (Timing and WaveformTable block) FlowExtended
13 Extensions to STIL.0 Clause 19 (Spec and Selector blocks) Flow
14 Extensions to STIL.2 Clause 10 (DCLevels block) FlowExtended
15 Extensions to STIL.2 Clause 12 (DCSequence) FlowExtended
16 Include enhancements Flow
17 FlowVariables Flow
18 Device to tester interface Flow
19 SignalMap Flow
20 Device FlowExtended
21 Binning Flow
22 SoftBinDefs Flow (22.1–22.3, 22.5)

FlowExtended (22.4, 22.6)
23 HardBinDefs Flow
24 BinMap Flow
25 Flow conceptual model Flow
26 Flow conceptual model FlowExtended
27 TestBase definition FlowExtended
28 TestType definition FlowExtended
29 Test Flow
30 FlowNode Flow
31 FlowType definition FlowExtended
32 Flow Flow
33 Actions and flow control Flow
34 TestProgram Flow
35 Standard definitions Flow (35.1.2)

FlowExtended (35.1.3,
35.2–35.7)

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

28
Copyright ©2018 IEEE. All rights reserved.

7.2 STIL syntax

A STIL statement of the following form is required at the top of each input file:9

STIL <STIL.0_version> {
 (< Flow | FlowExtended > <STIL.4_version>;)
}

7.3 STIL example

Keyword Flow refers to the standard being described in this document. For example, for a file containing
STIL.0, STIL.2, and STIL.4 basic syntax:

STIL 1.0 {
 Flow 2017;
 DCLevels 2002;
}

Keyword FlowExtended refers to the standard being described in this document. For example, for a
file containing STIL.0, STIL.2, and STIL.4 extended syntax:

STIL 1.0 {
 FlowExtended 2017;
 DCLevels 2002;
}

8. Extensions to STIL.0 Clause 14 (Signals block) (FlowExtended)

8.1 General

The STIL.4 Signals block syntax has the same general outline as STIL.0. STIL.4 supports an optional
name for the Signals block to support multi-project/product wafer (MPW) and mutli-chip package
(MCP) testing. For a single device, including multi-site testing, the unnamed Signals block is sufficient.
STIL.4 allows additional attributes represented by meta-types sig_type_stmt and stil4_sig_attrs.

8.2 Signals block syntax and examples

Signals (SIGNALS_NAME) {
 (SIG_NAME sig_type_stmt)*
 (SIG_NAME sig_type_stmt {
 (Termination < TerminateHigh | TerminateLow | TerminateOff | TerminateUnknown > ;)
 (DefaultState < U | D | Z | ForceUp | ForceDown | ForceOff > ;)
 (Base < Hex | Dec > waveform_char_list;)
 (Alignment <MSB | LSB> ;)
 (ScanIn (DECIMAL_INTEGER) ;)
 (ScanOut (DECIMAL_INTEGER) ;)

9 Potentially following the IncludeOnce statement (see Clause 16).

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

29
Copyright ©2018 IEEE. All rights reserved.

 (DataBitCount DECIMAL_INTEGER;)
 (stil4_sig_attrs)10
 })*
}

Signals: this keyword introduces a brace enclosed block used to define individual signal names and
properties. The optional SIGNALS_NAME shall comply with meta-type name_segment rules (see 6.5) with
one exception: STIL.4 shall not allow SIGNALS_NAME None, a keyword used to explicitly denote
uninitialized test parameters. Zero or more Signals blocks with domain names are allowed. All domain
names shall be unique across all Signals. A Signals block and SignalGroups block may have the
same name.

sig_type ::= < In | Out | InOut | Supply | Ground | Pseudo >

sig_subtype ::= < Analog | Digital | AnalogDigital | Open >

sig_type_stmt ::= sig_type (+ sig_subtype) (+Channel)

Meta-type sig_type_stmt provides options that do not exist under STIL.0 and slightly different
interpretations for existing STIL.0 options. It is syntactically compatible with STIL.0 syntax.
Explanations for sig_type_stmt elements are presented in alphabetical order:

Analog: analog signal. Augments signal types In, Out, InOut, Supply, or Ground.

AnalogDigital: dynamically switchable between analog and digital signal. Augments signal types
In, Out, or InOut.

Channel: a non-device-under-test (non-DUT) signal representing a tester channel, which may
control loadboard components, e.g., relays, or an alternate tester channel to be connected to a
device under test (DUT) signal via relay. Augments signal types In, Out, InOut, Supply, or
Ground (all but Pseudo).

Digital: digital signal. For compatibility with STIL.0, the default specification is Digital when
Analog, AnalogDigital, or Open is not specified. Augments signal types In, Out, InOut,
Supply, or Ground.

Ground: analog or digital ground, fixed at 0V.

Open: static high impedance, usually of type InOut, used to test unused package pins for
isolation. Augments signal types In, Out, or InOut.

STIL.4 requires a superset of STIL.0 signal types described in Table 8.

10 Although STIL.0 allows signal attributes to also be applied to groups in the SignalGroups block, stil4_sig_attrs shall be applied
ONLY to signals in the Signals block. For explanation of STIL.0 attributes, please refer to the STIL.0 documentation.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

30
Copyright ©2018 IEEE. All rights reserved.

Table 8 —Signal type/subtype combinations

Signal type Signal subtype Interpretation
In Digital Digital input.
 Analog Analog input.
 AnalogDigital Input switchable between analog and digital.
 Open Open package pin wanting a drive capable channel.
Out Digital Digital output.
 Analog Analog output.
 AnalogDigital Output switchable between analog and digital.
 Open Open package pin wanting a compare capable channel.
InOut Digital Digital signal switchable between input and output.
 Analog Analog signal switchable between input and output.
 AnalogDigital Signal switchable between input and output, analog and digital.
 Open Open package pin wanting a drive and compare capable channel.
Ground Digital Digital ground.
 Analog Analog ground.
Supply Digital Digital power supply.
 Analog Analog power supply.
Pseudo Digital Digital Pseudo Signal.

Part of that superset merits special attention in that it produces three conceptual categories of signals:

 This signal category, most closely aligned with the STIL.0 notion of a signal, is associated with the
chip interface. It is part of this category in that its sig_type_stmt includes neither Pseudo, Open,
or Channel. Its name performs a dual function. It appears on one or more pads as a chip signal. In
the test environment, it also serves as an alias for a tester channel as specified in the context of a
ChannelMap (see 20.5). This second function facilitates specifying timing, waveforms, and
levels on the tester channel in terms of the signal name.

 This signal category is associated with a package pin that has no connection to the chip. It is of type
Open. It shall not appear on any pad. Its function is to provide provide a signal name that we can
associate with a tester channel in the ChannelMap in order to specify timing, waveforms, and
levels. Typical usage is to perform an isolation test on the corresponding open package pin.

 This signal category is associated with a tester channel. It is of type Channel. It may or may not
also be associated with a pad. Its function is to provide a signal name alias for a tester channel. That
signal name may then be used to specify timing, waveforms, and levels on that channel. Uses
include relay control and associating multiple tester channels with a pin or pad. Signal type
Channel may be added to all type/subtype combinations except Pseudo.

stil4_sig_attrs ::=
(< Pads (PAD_COUNT) { < (Pad (PAD_NUMBER) pad_attributes)* | (pad_attributes)* > } |
 Pad (PAD_NUMBER) pad_attributes >)
(Function function_stmt;)
(CktType { cktype_stmt })
(Requirement reqmnt_stmt;)
(Environment env_stmt)

Meta-type stil4_sig_attrs can only be applied to signals in the Signals block.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

31
Copyright ©2018 IEEE. All rights reserved.

CktType cktype_stmt

cktype_stmt ::= (Tristate;)
 (Dynamic;)
 (Config SIG_NAME (NODE_NAME) (, SIG_NAME (NODE_NAME))*;)*

Config: a signal whose programmable buffer instance properties are configured by one or more
Function Control, Function IOCtrl, or Function ADCtrl signals. The configuration is
controlled by one or more signals indicated by SIG_NAME which uses name_segment syntax. Optional
NODE_NAME may be used to identify exceptions to the Function Control specification indicating
which buffer-type node is controlled by which signal. See Figure 19.

Tristate: pad, output, or output portion of ioput is tri-statable.

Dynamic: circuit output state deteriorates over time.

Environment: a variable size list of literal values that describe the electrical environment this output signal
was designed to operate in (as opposed to the environment it is being tested in), e.g.:

env_stmt ::= Design value(, value); (Simulation value(, value);)

Design: this describes the environment this signal was designed to operate in.

Simulation: this describes the simulation environment for this signal, i.e., timing may have been
generated with a specific tester environment in mind. If this specification is omitted, the assumption is
that simulation was done with Design value specs.

Here’s an example Environment specification:

Signame Out { Environment { Design 2pF,50R; Simulation 9pF,50R; } }

Function function_stmt

function_stmt ::= < (ADCtrl (NODE_NAME) (= <ForceHi|ForceLo>)) |
 (IOCtrl (NODE_NAME) (= <ForceHi|ForceLo>)) |
 (Control (NODE_NAME (, NODE_NAME)* (= <ForceHi|ForceLo>)) |
 (DiffNeg) | (DiffPos) |
 (Power VOLTS (+TOL) (–TOL) (CURRENT (ACCURACY)))
 >
ADCtrl: control signal that switches AnalogDigital buffers between Analog and Digital.
CktType Config specifies the controlled signal(s). An ATPRG requires a buffer-type library in
order to know whether logic 1 maps to Analog or Digital. Buffer-type library format and content
specification is beyond the scope of STIL.4. NODE_NAME refers to a node on a buffer-type.

Control: this signal controls one or more programmable buffer attributes, e.g., tri-state, voltage levels,
or drive current capability. A programmable buffer is one whose CktType is Config. Control may
be one of the following:

 static (tied either high or low) or dynamic (controlled by pattern)
 internal (sig_type Pseudo) or external (accessible by tester channel).

Control parameter(s) NODE_NAME refer to a node on a buffer-type. NODE_NAME specifies the buffer-
type node that controls the configuration of the buffer-type. CktType Config offers the
opportunity to override control connections on a per buffer instance basis if necessary.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

32
Copyright ©2018 IEEE. All rights reserved.

ForceHi or ForceLo is used to permanently lock the programmable buffer-type into a particular
state.

DiffNeg: Negative side of differential pair. Pairing is deduced from buffer instance name.

DiffPos: Positive side of differential pair. Pairing is deduced from buffer instance name.

IOCtrl: control signal that switches InOut buffers between In and Out. CktType Config
specifies the controlled signal(s).

Power: this optional keyword may only be applied to signals of type Supply. Its purpose is to help an
ATPRG generate levels or configure power channels. VOLTS shall be a literal nominal value with units
of volts. TOL optionally indicates either the positive or negative tolerance in percent of the nominal
voltage or absolute values in volts. Optional CURRENT and ACCURACY represent the maximal current
draw and the most lenient accuracy to which it may be measured; both shall be literal values with units
of amperes. Optional ACCURACY shall be preceded by CURRENT. Examples:

 Power 3.3V; // Minimal specification
 Power 3.3V +5% -5%; // More accurate tolerance values
 Power 3.3V 3.47V 3.14V; // Less accurate tolerance values
 Power 3.3V 300mA 20mA; // CURRENT and 20mA accuracy
 Power 3.3V +5% -5% 300mA 20mA;// Complete specification

Requirement reqmnt_stmt

reqmnt_stmt ::= <
(Ctap FARADS) |
(Level (VOLTS)) |
(PullDown OHMS) |
(PullUp OHMS)

 >

Ctap: low-voltage differential input signals require center tap capacitor to ground as shown in Figure
14, e.g.:

Signame In { Requirement Ctap 0.1uF; }

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

33
Copyright ©2018 IEEE. All rights reserved.

Figure 14 —Diagram: LVDS center tap

Level: input requires low current static level such as a reference voltage. Although the following two
statements differentiate between analog and digital levels, there is no difference in application other
than to indicate a preference for the type of tester resource to use should the ATPRG have the option:

Signame In + Analog { Requirement Level 0.8V; }
Signame In + Digital { Requirement Level 0.8V; }

PullDown: output requires pulldown resistor, e.g.:

Signame Out { Requirement PullDown 50R; }

PullUp: output requires pullup resistor, e.g.:

Signame Out { Requirement PullUp 50R; }

Pads: this optional keyword associates information about one or more pads with a signal. It is usually
applied to signals which appear on multiple pads such as Supply or Ground. Optional parameter
PAD_COUNT shall be of meta-type pos_int. It describes the number of pads associated with the signal. This
keyword shall not be applied to signals of type Channel, Open, and Pseudo (by definition, signals of
this type are not associated with pads). For signal type Open, connectivity is defined in the ChannelMap
block, a sub-block of Device (see 20.5).

Pad: this optional keyword associates information about one pad with a signal. It provides the opportunity
to manually number the pad and associate coordinates and/or buffer information. This keyword shall not be
applied to signals of type Channel, Open, and Pseudo (by definition, signals of this type are not
associated with a pad). The optional PAD_NUMBER shall be of meta-type pos_int. Zero or more tester signals
may be associated with that same pad.11 When multiple channels are associated with a pad, they should act

11 A chip signal is one whose sig_type_stmt includes neither Pseudo, Open, nor Channel. A tester signal is one whose
sig_type_stmt includes Channel.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

34
Copyright ©2018 IEEE. All rights reserved.

as a single electrical node either by being ganged or by being constrained to a high impedance (no drive)
state. Ganging and high impedance may be specified in ChannelMap via the chan_stmt plus operator and
the chan_config ChanDirection Out specification respectively (see 20.5).

pad_attributes ::= (Coords X_LOC Y_LOC) buf_stmt

buf_stmt ::=
< ; | // Use Semicolon to omit buffer information
 < Buffer INSTANCE_NAME; |
 Buffer (INSTANCE_NAME) {
 < Type TYPE_NAME(.NODE_NAME); | Type (TYPE_NAME(.NODE_NAME)) { (buf_attributes) } >
 }
 >
>

NODE_NAME: for single-pad buffer-types, this keyword is optional. For multi-pad buffer-types, it is
required. Identifier NODE_NAME selects one of its pads.

Coords: this optional keyword’s parameters X_LOC and Y_LOC represent x and y pad center
coordinates respectively, specified in units of Meters, e.g., -3430.22um 3260.39um. Locations
are in relation to an arbitrary origin on the chip die. Usually, there is one pad and therefore one set of
coordinates per signal. A signal of type Supply or Ground, however, may have many pads
associated with it and therefore many sets of coordinates per signal. Coords may optionally be paired
with the Pad number. Use Pads PAD_COUNT to specify the number of pads when neither pad
numbers nor coordinates are available.

Buffer: this optional keyword introduces the buffer instance name. The buffer INSTANCE_NAME shall
be required for a multi-pad buffer but is optional for a single pad buffer. INSTANCE_NAME shall
conform to meta-type alnum_id. When the INSTANCE_NAME is keyword None, it signifies an
unbuffered pad, i.e., electrical characteristics are unknown.

Type: this optional keyword subordinate to keyword Buffer associates the buffer-type name
with the signal and may be used to introduce the buffer attributes block. TYPE_NAME shall conform
to meta-type alnum_id. NODE_NAME is optional for a single pad buffer-type. A multi-pad buffer-
type shall require NODE_NAME to distinguish one pad from another.

buf_attributes ::= (InLevelGrp <LEVELGRP_ITEM>;)
 (OutLevelGrp <LEVELGRP_ITEM>;)
 (PowerRails PWR_SIG_NAME (,PWR_SIG_NAME)*;)
 (GroundRails GND_SIG_NAME (,GND_SIG_NAME)*;)
 (IIH AMPERES (, AMPERES)*;)
 (IIL AMPERES (, AMPERES)*;)
 (IOH AMPERES (, AMPERES)*;)
 (IOL AMPERES (, AMPERES)*;)
 (IOZH AMPERES (, AMPERES)*;)
 (IOZL AMPERES (, AMPERES)*;)
 (VIH VOLTS (, VOLTS)*;)
 (VIL VOLTS (, VOLTS)*;)
 (VOH VOLTS (, VOLTS)*;)
 (VOL VOLTS (, VOLTS)*;)
 (VIHD VOLTS (, VOLTS)*;)
 (VILD VOLTS (, VOLTS)*;)
 (VOHD VOLTS (, VOLTS)*;)
 (VOLD VOLTS (, VOLTS)*;)

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

35
Copyright ©2018 IEEE. All rights reserved.

buf_attributes: the purpose of buffer-type attributes is to provide values that on a per pad basis,
override corresponding values expected to be found in a buffer type description library. These
keywords shall be applicable only to signals that are not of type Supply or Ground. The
number of values associated with these keywords shall match the number of PowerRails
signals. There is positional correspondence so for the following statements:

 PowerRails VDD5, VDD33;
 VOH 2.5V, 1.5V;

so for a dual rail programmable buffer, the VOH specification is 2.5V when power supply rail
VDD5 is active, the VOH specification is 1.5V when power supply rail VDD33 is active.

GroundRails: specifies the ground signal(s)/rail(s) associated with the buffer. Usually only one
is necessary but it is possible that a buffer may switch between analog and digital ground.
GND_SIG_NAME is a reference to a previously defined signal of type Ground, i.e., it uses
name_segment syntax. This attribute shall not be applicable to signals of type Supply or
Ground.

InLevelGrp: specifies an input level group to which this buffer instance belongs. LEVELGRP_ITEM
refers to an item in the extensible standard-defined Enum LevelGrp (35.1). Explicit
specification of a specific level (e.g. VIL or VIH) overrides this implied value.

OutLevelGrp: specifies an output level group to which this buffer instance belongs.
LEVELGRP_ITEM refers to an item in the extensible standard-defined Enum LevelGrp (35.1).
Explicit specification of a specific level (e.g. VOL or VOH) overrides this implied value. Current
capabilities shall be specified separately on a per-buffer or buffer-type basis in a buffer-type
library.

PowerRails: specifies the power signal(s)/rail(s) associated with the buffer. Programmable buffers
for example may have multiple rails. Only one is expected to be active at any given point in time.
PWR_SIG_NAME is a reference to a previously defined signal of type Supply, i.e., it uses
name_segment syntax. This attribute shall not be applied to signals of type Supply or Ground.

x1 Signals CHIP1 {
 2 vdd Supply + Digital;
 3 vss Ground + Digital;
 4 vdda Supply + Analog;
 5 vssa Ground + Analog;
 6 sig1 In;
 7 sig2 In + Digital;
 8 sig3 In + Analog;
 9 sig4 In + AnalogDigital;
10 sig5 InOut;
11 sig6 InOut + Digital;
12 sig7 InOut + Analog;
13 sig8 InOut + AnalogDigital;
14 sig9 Out;
15 sig10 Out + Digital;
16 sig11 Out + Analog;
17 sig12 Out + AnalogDigital;
18 sig13 Pseudo;
19 }

Figure 15 —Example: mixed signal Signals block

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

36
Copyright ©2018 IEEE. All rights reserved.

The examples in Figure 17 and Figure 18 are of a Signals block describing the theoretical inverter chip
shown in Figure 16.

Figure 16 —Diagram: inverter chip

The example in Figure 17 includes pad numbering.

x1 Signals Inverter {
 2 vdd Supply {
 3 Pads 2 {
 4 Pad 1 Coords -100um 100um Buffer X1 { Type X; }
 5 Pad 2 Coords 100um 100um Buffer X2 { Type X; }
 6 }
 7 }
 8 vss Ground {
 9 Pads {
10 Pad 4 Coords 100um -100um Buffer X3 { Type X; }
11 Pad 5 Coords -100um -100um Buffer X4 { Type X; }
12 }
13 }
14 in In { Pad 6 Coords -100um 0um Buffer Y3 { Type Y; } }
15 out Out { Pad 3 Coords 100um 0um Buffer Z3 { Type Z; } }
16 }

Figure 17 —Example: inverter signals block with pad numbers and coordinates

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

37
Copyright ©2018 IEEE. All rights reserved.

The following text points out salient syntactical features in the example of Figure 17:

 Line 3: indicates that signal vdd is associated with 2 pads. That number may be used to cross-
check the number of Pad entries in the brace enclosed block.

 Line 4: indicates the pad number, pad coordinates, buffer instance name X1 and buffer type X. The
buffer-type X node name is optionally unspecified indicating that the buffer-type has only one pad,
i.e., it would be required for a multi-pad buffer type as, e.g., X.a (letter a is the node name).

 Line 9: indicates that signal vss is associated with the pads listed in the brace enclosed block, i.e.,
lines 10 and 11. There can be no cross-check on the number of Pad entries since the optional pad-
count following keyword Pads was omitted.

The example in Figure 18 omits pad numbers and coordinates but adds other attributes.

x1 Signals Inverter {
 2 vdd Supply {
 3 Pads 2 {
 4 Buffer X1 { Type X.a; }
 5 Buffer X2 { Type X.a; }
 6 }
 7 Function Power 5V +5% -5% 500mA 20mA;
 8 }
 9 vss Ground {
10 Pads 2 {
11 Buffer X3 { Type X.a; }
12 Buffer X4 { Type X.a; }
13 }
14 }
15 in In { Pad Buffer Y3 { Type Y.a {
16 InLevelGrp TTL;
17 } } }
18 out Out { Pad Buffer Z3 { Type Z.a {
19 OutLevelGrp TTL;
20 } } }
21 }

Figure 18 —Example: inverter signals block, no pad numbers or coordinates

The following text points out salient syntactical features in the example of Figure 18:

 Line 4: within the Pads block the optional keyword Pad is not employed hence the pad number
remains unspecified. Each line still represents a pad. Unlike in the example of Figure 17, the
buffer-type X node-name is specified, i.e., the name is a.

 Line 7: specifies a nominal 5V level, a tolerance of ±5%, a maximal expected dynamic current draw
of 500mA, and desired measurement accuracy to within 20mA.

 Line 16: specifies InLevelGrp, one of various buffer attributes specified in this document as
meta-type buf_attributes. This specification applies only to buffer instance Y3. A buffer library
may be used to look up buffer-type Y, node a, to find this and other specifications. Buffer attributes
specified in this context override those found in a buffer library.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

38
Copyright ©2018 IEEE. All rights reserved.

Figure 19 shows three multi-pad programmable buffers whose output characteristics are affected by signals
on nodes a and b.

Figure 19 —Diagram: programmable buffers

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

39
Copyright ©2018 IEEE. All rights reserved.

The Signals block example in Figure 20 corresponds to Figure 19.

x1 Signals CHIP2 {
 2 vdd Supply;
 3 vss Ground;
 4 ctla In { Function Control a; } // Norm
 5 ctlb In { Function Control b; } // Norm
 6 tied_hi Pseudo { Function Control a, b = ForceHi; } // Tied high
 7
 8 p1 Out {
 9 Config ctla, ctlb; // Follows norm
10 Pad { Buffer 1 { Type X.c; } }
11 }
12
13 p2 Out {
14 Config ctla b, ctlb a; // Specifies exception
15 Pad { Buffer 2 { Type X.c; } }
16 }
17
18 p3 Out {
19 Config tied_hi;
20 Pad { Buffer 3 { Type X.c; } }
21 }
22 }

Figure 20 —Example: programmable buffers

9. Extensions to STIL.0 Clause 15 (SignalGroups block) (FlowExtended)

STIL.4 allows for multiple named top-level Signals blocks. The unnamed top-level Signals and
SignalGroups blocks form a single namespace, i.e., no signal may have the same name as a signal-
group. Identically named Signals and SignalGroups blocks also form a single namespace. When in a
SignalGroups block, a signal-group is defined in terms of one or more references to a signal or signal-
group on the right-hand side by name, each reference is resolved in the following order:

a) The current SignalGroups block is searched for the name. A match resolves to the references
contained in that name.

b) A reference is matched against the names defined in the top-level unnamed SignalGroups
block. A match resolves to the references contained in that name.

c) A reference is matched against the names defined in the Signals block of the same name as the
SignalGroups block.

d) A reference is matched against the names defined in the top-level unnamed Signals block.

When named Signals or SignalGroups blocks are specified in the Device/Package block
directly, or Device/Chip block indirectly, those named blocks shall in effect augment the top-level
unnamed blocks with regard to the name pooling and name resolution mechanisms described above. For
consistent behavior between named and unnamed blocks, STIL.4 shall not permit signal names to be
overridden by signal group names.

NOTE—STIL.0 and STIL.2 permit references to SignalGroups definitions at lower levels which take precedence
inside the block where that reference is made. Blocks that permit this are of type PatList, PatternBurst,
Timing, DCLevels, or DCSequence. STIL.4 signal and signal-group resolution lookup order: individual local
(e.g., Timing) block SignalGroups, Device block SignalGroups, including those brought in via Chip, i.e.,
the named SignalGroups and Signals blocks and/or unnamed SignalGroups and Signals blocks.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

40
Copyright ©2018 IEEE. All rights reserved.

10. Extensions to STIL.0 Clause 16 (PatternExec block) (FlowExtended)

10.1 General

A PatternExec is not executable from within STIL.4 however a user or ATPRG may instantiate
FlowExtended test-type StdPatternExec passing in PatternExec as a parameter or
FlowExtended test-type StdFunctional passing in some or all elements of PatternExec as
parameters.

The PatternExec block syntax shown in 10.2 is a composite of STIL.0 and STIL.2 specifications.
STIL.4 additionally sanctions specifying Category by including SPEC_BLOCK_NAME:

10.2 PatternExec block syntax

PatternExec (PAT_EXEC_NAME) {
 (Category (SPEC_BLOCK_NAME.)CATEGORY_NAME;)*
 (Selector SELECTOR_NAME;)*
 (DCLevels (DC_LEVELS_NAME);)
 (DCSets (DC_SETS_NAME);)
 (Timing TIMING_NAME;)
 (PatternBurst PAT_BURST_NAME;)
}

11. Extensions to STIL.0 Clause 17 (PatternBurst block) (FlowExtended)

11.1 General

STIL.4 shall accept PatternBurst block syntax as defined in STIL.1 Clause 12 without requiring the
Design 2005 statement in the STIL block. As per STIL.0 7.1, references to pattern names are expected
to be forward references. These references need to be resolved but not necessarily within STIL.4 code.12

11.2 Extensions to STIL.0 17.1 (PatternBurst block syntax)

This clause augments STIL.0 syntax. It allows the user to make device or chip associated signal and signal
group definitions visible from within the Timing, DCLevels, DCSequence, and Pattern blocks, i.e.,
a change made at the device or chip level is automatically reflected within all the aforementioned blocks.

PatternBurst PAT_BURST_NAME {
 (Device DEVICE_NAME; | Chip CHIP_NAME;) // STIL.4: tracks changes made to Device or Chip
 (SignalGroups GROUPS_DOMAIN;)* // STIL.0: error prone, tracks neither Device nor Chip
 •
 •
 •
 (PatList {

12 Two separate processes are likely used, one for and patterns, the other for timing, levels, and flow. See Figure 1 where the pattern
translator is first process and the ATPRG bundled with the program translator is the second, respectively.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

41
Copyright ©2018 IEEE. All rights reserved.

 (PAT_NAME_OR_BURST_NAME ;)*
 (PAT_NAME_OR_BURST_NAME {
 (Device DEVICE_NAME; | Chip CHIP_NAME;) // STIL.4: tracks changes made to Device or Chip
 (SignalGroups GROUPS_DOMAIN;)* // STIL.0: error prone, tracks neither Device nor Chip
 •
 •
 •
 })* // End of PAT_NAME_OR_BURST_NAME
 })+ // End of PatList
} // End of PatternBurst

Chip: makes the signal and signal group definitions gathered under the Chip block available for
subsequent sigref_expr statements.

CHIP_NAME: reference to a previously defined Chip block.

Device: makes the signal and signal group definitions gathered under the Device block available for
subsequent sigref_expr statements.

DEVICE_NAME: reference to a previously defined Device block.

SignalGroups: makes named signal group definitions available for subsequent sigref_expr statements. For
STIL.4, it is preferable to use Device or Chip or the unnamed Signals and SignalGroups blocks.
As in STIL.0, signals and signal groups defined in unnamed Signals and SignalGroups blocks are
visible everywhere.

GROUPS_DOMAIN: reference to a previously defined SignalGroups block.

STIL.0 timing and pattern lists, and STIL.2 DC levels do not support testing multiple devices in a single
environment. Using keyword Device or Chip instead of SignalGroups accomplishes the following:

 Makes signal and signal group definitions gathered under the Device or Chip block available for
subsequent sigref_expr statements. Signal definitions include chip signals and potentially signals
representing, e.g., unused package pins (isolation tests) and tester channels (loadboard relay
control).

Timing, pattern lists, and DC levels track signal and signal group changes made at the Chip or Device
level.

12. Extensions to STIL.0 Clause 18 (Timing and WaveformTable block)
(FlowExtended)

12.1 General

This clause augments STIL.0 syntax. It allows the user to make device or chip associated signal and signal
group definitions visible from within the Timing, DCLevels, DCSequence, and Pattern blocks, i.e.,
a change made at the device or chip level is automatically reflected within all the aforementioned blocks.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

42
Copyright ©2018 IEEE. All rights reserved.

12.2 Timing and WaveformTable syntax

Timing (TIM_DOMAIN_NAME) {
 (Device DEVICE_NAME; | Chip CHIP_NAME;) // STIL.4: tracks changes made to Device or Chip
 (SignalGroups GROUPS_DOMAIN;)* // STIL.0: error prone, tracks neither Device nor Chip
 •
 •
 •
}

Chip: makes the signal and signal group definitions gathered under the Chip block available for
subsequent sigref_expr statements.

CHIP_NAME: reference to a previously defined Chip block.

Device: makes the signal and signal group definitions gathered under the Device block available for
subsequent sigref_expr statements.

DEVICE_NAME: reference to a previously defined Device block.

SignalGroups: makes named signal group definitions available for subsequent sigref_expr statements. For
STIL.4, it is preferable to use Device or Chip or the unnamed Signals and SignalGroups blocks.
As in STIL.0, signals and signal groups defined in unnamed Signals and SignalGroups blocks are
visible everywhere.

GROUPS_DOMAIN: reference to a previously defined SignalGroups block.

STIL.0 timing and pattern lists, and STIL.2 DC levels do not support testing multiple devices in a single
environment. Using keyword Device or Chip instead of SignalGroups accomplishes the following:

 makes signal and signal group definitions gathered under the Device or Chip block available for
subsequent sigref_expr statements. Signal definitions include chip signals and potentially signals
representing, e.g., unused package pins (isolation tests) and tester channels (loadboard relay
control).

Timing, pattern litsts, and DC levels track signal and signal group changes made at the Chip or Device
level.

13. Extensions to STIL.0 Clause 19 (Spec and Selector blocks)

13.1 General

Assignment of an initial value to the Meas field of a Spec variable is now explicitly allowed. STIL.0
describes the existence of the Meas field, but states that assignment of a value to the Meas field occurs
during test program execution. This is still the case; however, the initial value syntax, together with the
ReInitAt statement, permits the assignnment of an initial value to the Meas field and allows re-initialization
of the Meas field to that value when the specified ASYNC_EVENT_NAME event occurs.

Spec expressions follow the characteristics defined for timing expressions in STIL.0 6.13 and for DC
expressions in STIL.2 5.2.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

43
Copyright ©2018 IEEE. All rights reserved.

Spec expressions are enclosed in single quotes and contain the same entities as timing, DC, or real
expressions. Expressions that compute to any units shown in IEEE 1450-1999, Table 3, including the
additions shown in Table 4, may be used in a spec expression. In addition, complex expressions that are
expressed as a ratio of two values (e.g., a slew rate of “1V/1ns”) may be used in a spec expression.

Spec expressions occur only as part of a spec variable definition in the Spec block.

Keyword None can be used a sentinel value to indicate that a spec variable not initialized.

The colon (:) operator can be used to represent combinatorial units; i.e., 3.5V:ns means "3.5 volts per
nanosecond (3.5V/ns)". Further, one can specify an unsigned integer or unitless real number following a
units-symbol (both before and after the colon operator) to indicate exponentiation of units, e.g., 1V:s2
means "1 volt per second squared". These extensions shall apply to time_expr, dc_expr, and real_expr.

Syntax rules for combinatorial units: all units, before or after the colon operator, shall have an implicit
superscript of 1 or shall be followed by an unsigned integer or real number (a number that includes decimal
point) indicating exponentiation of the preceding units. Products of units can be specified by listing the
units and exponents in sequence both before and after the colon operator, where positive exponents come
before and negative exponents after. See Table 9 for examples of combinatorial units.

Table 9 —Example: combinatorial units

Expression Description
V:s Volts per second, Volts raised to the power of 1 divided by seconds raised to the power of 1, implicit
V1:s1 Volts per second, Volts raised to the power of 1 divided by seconds raised to the power of 1, explicit
V:s2 Volts per second squared
:A2 Amperes raised to the power of -2
A0.5 Amperes raised to the power of ½, i.e., the square root
A2R:mCel Watt per meter-degree Celsius (thermal conductivity)

13.2 Spec block syntax

spec_expr ::= time_expr | dc_expr | real_expr

Spec (SPEC_NAME) { // this block statement defines variable values for a given category
 (Category CAT_NAME {
 (VAR_NAME = spec_expr;)* | // Defines only Typ value
 (VAR_NAME {
 ((Min spec_expr;) (Typ spec_expr;) (Max spec_expr;) (Meas spec_expr;)) | (Units "units_expr";)
 (ReInitAt ASYNC_EVENT_NAME;)
 })*
 })+
}

Spec (SPEC _ NAME) {
 // this block statement defines category values for a given variable
 (Variable VAR _ NAME {
 (CAT _ NAME = spec_expr;)* | // defines only the Typ value
 (CAT _ NAME {
 ((Min spec_expr;) (Typ spec_expr;) (Max spec_expr;) (Meas spec_expr;)) | (Units "units_expr";)
 (ReInitAt ASYNC_EVENT_NAME ;)

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

44
Copyright ©2018 IEEE. All rights reserved.

 })*
 })+
}

The units of any Min, Typ, Max, or Meas field values specified shall be the same. If no values are
specified for any of the fields or if all that are specified are explicitly initialized to None, then Units
"units_expr" may be specified in order to provide for error checking of the units of values assigned to the
Meas field during program execution.

If no units are specified via either method above, then the first assignment to the Meas field that occurs in
the program flow shall assign units (including no units).

Specifying ReInitAt ASYNC_EVENT_NAME has no effect on any Min, Typ, or Max selector fields, but
allows the Meas field to be re-initialized upon the occurrence of the specified asynchronous event.

14. Extensions to STIL.2 Clause 10 (DCLevels block) (FlowExtended)

14.1 General

STIL.4 requires STIL.2 to perform functional and related tests.

When parsing STIL.2 input, a STIL.4 compliant parser accepts STIL.4 units, a superset of STIL.0/STIL.2
units (see Table 4).

This clause augments STIL.0 syntax. It allows the user to make device or chip associated signal and signal
group definitions visible from within the Timing, DCLevels, DCSequence, and Pattern blocks, i.e.,
a change made at the device or chip level is automatically reflected within all the aforementioned blocks.

14.2 DCLevels block syntax

DCLevels (DC_LEVELS_NAME) {
 (Device DEVICE_NAME; | Chip CHIP_NAME;) // STIL.4: tracks changes made to Device or Chip
 (SignalGroups GROUPS_DOMAIN;)* // STIL.0: error prone, tracks neither Device nor Chip
 •
 •
 •
}

Chip: makes the signal and signal group definitions gathered under the Chip block available for
subsequent sigref_expr statements.

CHIP_NAME: reference to a previously defined Chip block.

Device: makes the signal and signal group definitions gathered under the Device block available for
subsequent sigref_expr statements.

DEVICE_NAME: reference to a previously defined Device block.

SignalGroups: makes named signal group definitions available for subsequent sigref_expr statements. For
STIL.4, it is preferable to use Device or Chip or the unnamed Signals and SignalGroups blocks.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

45
Copyright ©2018 IEEE. All rights reserved.

As in STIL.0, signals and signal groups defined in unnamed Signals and SignalGroups blocks are
visible everywhere.

GROUPS_DOMAIN: reference to a previously defined SignalGroups block.

STIL.0 timing and pattern lists, and STIL.2 DC levels do not support testing multiple devices in a single
environment. Using keyword Device or Chip instead of SignalGroups accomplishes the following:

 Makes signal and signal group definitions gathered under the Device or Chip block available for
subsequent sigref_expr statements. Signal definitions include chip signals and potentially signals
representing, e.g., unused package pins (isolation tests) and tester channels (loadboard relay
control).

Timing, pattern litsts, and DC levels track signal and signal group changes made at the Chip or Device
level.

15. Extensions to STIL.2 Clause 12 (DCSequence) (FlowExtended)

15.1 General

This clause augments STIL.0 syntax. It allows the user to

 Make device or chip associated signal and signal group definitions visible from within the
Timing, DCLevels, DCSequence, and Pattern blocks, i.e., a change made at the device or
chip level is automatically reflected within all the aforementioned blocks.

 Control, within a DCSequence, the opening or closing of a switch as defined in the Components
subblock of the Device block, and the time relative to other events in that DCSequence when the
opening or closing occurs.

STIL.4 supports per tester/testhead specific definitions for DCSequence InitialSetup,
PowerRaise, PowerLower, EndOfProgram, and User in addition to top-level namespace
definitions specified in STIL.2 Clause 18. For a DCSequence defined under the Device block,
STIL.4 ignores the optional SignalGroups statement. This is because the Device block already
has the relevant signals and signal groups imported into its environment via its Chip, Signals, and
SignalGroups statements. The use of DCSequence blocks under the Device block hides any
DCSequence top-level blocks with the same name.

STIL.4 requires STIL.2 to perform functional and related tests.

When parsing STIL.2 input, a STIL.4 compliant parser accepts STIL.4 units, a superset of STIL.0/STIL.2
units (see Table 4).

15.2 DCSequence block syntax

DCSequence (DC_SEQ_NAME) {
 (Chip CHIP_NAME;) // STIL.4: tracks changes made to Chip
 (SignalGroups GROUPS_DOMAIN;)* // STIL.0: error prone, tracks neither Device nor Chip
 •
 •
 •

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

46
Copyright ©2018 IEEE. All rights reserved.

 time_expr13 { (Switch relay_name < On | Off >;)+ }
}

Chip: makes the signal and signal group definitions gathered under the Chip block available for
subsequent sigref_expr statements.

CHIP_NAME: reference to a previously defined Chip block.

SignalGroups: makes named signal group definitions available for subsequent sigref_expr statements. For
STIL.4, it is preferable to use the Chip block or the unnamed Signals and SignalGroups blocks. As
in STIL.0, signals and signal groups defined in unnamed Signals and SignalGroups blocks are
visible everywhere.

GROUPS_DOMAIN: reference to a previously defined SignalGroups block.

STIL.0 timing and pattern lists, and STIL.2 DC levels do not support testing multiple devices in a single
environment. Using keyword Chip instead of SignalGroups accomplishes the following:

 Makes signal and signal group definitions gathered under the Chip block available for subsequent
sigref_expr statements. Signal definitions include chip signals and potentially signals representing,
e.g., unused package pins (isolation tests) and tester channels (loadboard relay control).

Timing, pattern lists, and DC levels track signal and signal group changes made at the Chip or Device
level.

Note that the DCSequence block only has syntax to track Chip. This is because for DC sequences
defined at the top level, the Device and DCSequence blocks would be mutually dependent were
keyword Device an option inside the DCSequence block. When DCSequence blocks are defined
inside the Device block, the device is known eliminating the need for a Device, Chip, or
SignalGroups reference to make signal and signal group definitions visible inside the DCSequence
block. Test-type default parameters or test instantiation parameter may reference top-level DC sequences.

For Switch actions, the sigref_expr normally present on other lines (as specified in STIL.2) is absent. This
is because the loadboard relay is hardwired hence, specifying a signal is meaningless.

15.3 DCSequence block example

For controlling a loadboard relay, STIL.4 recognizes the following format inside the DCSequence block:

time_expr14 { (Switch relay_name < On | Off >;)+ }

Switch off is in the normal default position. Switch on is the other position. For example:

 1 DCSequence InitialSetup { // Beginning of program
 2 ’0s’ ’VDD+VDDA’ { // T0
 3 Apply ’0V’;
 4 }
 5 ’1ms’ ’VDD+VDDA’ { // Wait 1ms, then connect
 6 Connect Supply;
 7 }

13 This is time_expr as used in STIL.2.
14 This is time_expr as used in STIL.2.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

47
Copyright ©2018 IEEE. All rights reserved.

 8 ’1ms’ { // Wait 1ms, then switch
 9 Switch S1 On; // Closes normally open relay
10 }
11 }

16. Include enhancements

16.1 IncludeOnce

IncludeOnce: this is an optional semicolon terminated instruction that shall precede any STIL language
statement in the file. If this statement is present in file FILE_NAME, and statement Include
"FILE_NAME" (see STIL.0 10.1) appears multiple times in the input stream, only the first Include
"FILE_NAME" statement shall be honored, the rest are ignored.

The following example illustrates the use of IncludeOnce:

File tap_timing.stil:
IncludeOnce; // Precedes any STIL language statement in the file
.
Timing Tap {...}
.

File dc_param_timing.stil:

.
Include “tap_timing.stil”;
Timing DC_Param {...}
.

File main.stil:

.
Include “tap_timing.stil”;
Include “dc_param_timing.stil”;
.

File tap_timing.stil contains timing blocks for a test access port. File dc_param_timing.stil contains timing
blocks for setting up DC parametric tests, but includes tap_timing.stil for completeness. Assuming that file
main.stil is opened as the STIL input stream, tap_timing.stil is only included once, i.e., the Include
tap_timing.stil statement in file dc_param_timing.stil is ignored during the insert of
dc_param_timing.stil by main.stil.

16.2 DomainInclude

16.2.1 General

A DomainInclude statement allows STIL blocks defined in other files to be referenced while avoiding
name conflicts.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

48
Copyright ©2018 IEEE. All rights reserved.

16.2.2 DomainInclude syntax

The DomainInclude statement takes the following form:

DomainInclude DOMAIN_NAME {
 Path “FILE_NAME”;
}

The domainreference_stmt, referred to in other parts of this document takes the following form:

domainreference_stmt =
 < DOMAIN_NAME::BLOCK_NAME |
 DOMAIN_NAME::BLOCK_TYPE >

DOMAIN_NAME is the namespace assigned to the included file.

BLOCK_NAME is the user assigned name to the STIL syntax block within the included file. This can only
apply to named STIL syntax blocks.

BLOCK_TYPE is the STIL statement type of the syntax block within the included file. This can only apply to
unnamed STIL syntax blocks or to blocks where there is only one object of that type.

The domainreference_stmt may be used anywhere in the STIL.4 language that a local file reference to a
STIL block can be used.

16.2.3 DomainInclude example

Figure 21 shows an example usage of the DomainInclude statement.

STIL 1.0 { Flow 2017; DCLevels 2002; }
DomainInclude Pat1 {
 Path "./Patterns/Pat1.stil";
}
Signals {
 in0 In; in1 In; io0 InOut; io1 InOut; out0 Out; out1 Out;
 vcore Supply;
}
PatternBurst funcBurst {
 PatList { Pat1::Pattern; } // reference to one and only Pattern
}
PatternExec Exec1 {
 Timing Pat1::Timing; // reference to unnamed Timing block
 DCLevels Pat1::looseLevels; // reference to named DCLevels block
 PatternBurst funcBurst;
}
Test funcTest {
 TestMethod testPattern;
 MethodParameters {
 In PatternExec PatExec = Exec1;
 }
}
—Example: Main test program file
STIL 1.0 {
 DCLevels 2002;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

49
Copyright ©2018 IEEE. All rights reserved.

}
Signals {
 in0 In; in1 In; io0 InOut; io1 InOut; out0 Out; out1 Out;
}
SignalGroups { all ='in0+in1+io0+io1+out0+out1'; }
DCLevels looseLevels {
 all { VIL '0V'; VIH '3V'; VOL '1V'; VOH '2V'; }
}
Timing {
 WaveformTable WFT1 {
 Period '100ns';
 Waveforms { all { 01LHX { '0s' D/U/Z/Z/Z; '50ns' X/X/L/H/X; } } }
 }
}
Pattern func_pat {
 W WFT1;
 V { all=01XXLH; }
 V { all=01XXLH; }
 V { all=01XXLH; }
}
—Example: "./Patterns/Pat1.stil" include file

Figure 21 —Example: domainInclude statement

17. FlowVariables

17.1 General

FlowVariables blocks contain variables and constants. Typical uses for these variables and constants
are to control flow of execution and to provide meaningful names for values.

Only one unnamed FlowVariables block may be defined at the top level. All other FlowVariables
blocks shall be uniquely named. An unnamed FlowVariables block may be defined for any object
derived from TestBase.

TestProgram block FlowVariables refererences are to named top-level variables blocks. Variables
in the referenced blocks are global to the test program. The unnamed variables block is referred to
implicitly and shall be read before named blocks which are read in the order specified. It shall be an error
for defined variable or constant names to conflict with Signals, SignalGroups, or Spec variable
names accessible in the same context.

17.2 FlowVariables syntax

(FlowVariables (VAR_DOMAIN) { (ReInitAt ASYNC_EVENT_NAME;) var_elements_stmt* })*

The optional ReInitAt statement specifies the default re-initialization event for all variables in this
block. ASYNC_EVENT_NAME is an enumeration from type AsynchronousEvent defined in 35.1. If this
statement is absent, the default initialization event is START.

var_elements_stmt ::= <

var_type var_definition_stmt | // Individual form

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

50
Copyright ©2018 IEEE. All rights reserved.

var_type { (var_definition_stmt)+ } // Block form
>

var_type is defined in 6.11
var_definition_stmt ::= <

// Uninitialized scalar variable, optional type matching units allowed for real_var_type only
VAR_NAME (= None(units)); |
VAR_NAME (= None(units)) { (var_attributes)* } |

// Initialized scalar variable.
VAR_NAME = value_expr; |
VAR_NAME = value_expr { (var_attributes)* } |

// Unintialized array variable
// optional type matching units allowed for real_var_type only
VAR_NAME[int_expr] (= None(units)); |
VAR_NAME[int_expr] (= None(units)) { (var_attributes)* } |

// Initialize array elements to distinct values
VAR_NAME[(int_expr)] = [value_list]; |
VAR_NAME[(int_expr)] = [value_list] { (var_attributes)* } |

// Initialize all array elements to same value
VAR_NAME[int_expr] = value_expr; |
VAR_NAME[int_expr] = value_expr { (var_attributes)* }

>

The following definition of value_expr applies when using Flow 2017 (Clause 7)

value_expr ::= <

int_expr | // Allowed for variable of type Integer, Boolean, and real_var_type
sigref_expr | // Allowed for scalar variable of type sigref_expr
bool_expr | // Allowed for variable of type Boolean
string_expr | // Allowed for variable of type String
real_expr | // Allowed for variable of type Integer (truncated), and real_var_type

>

The following definition of value_expr applies when using FlowExtended 2017 (Clause 7)

value_expr ::= <

int_expr | // Allowed for variable of type Integer, Boolean, and real_var_type
sigref_expr | // Allowed for scalar variable of type SignalGroup or sigref_expr
bool_expr | // Allowed for variable of type Boolean
string_expr | // Allowed for variable of type String
real_expr | // Allowed for variable of type Integer (truncated), and real_var_type
limits | // Allowed for variable of type Limits
vecloc | // Allowed for variable of type VecLocation
vec_range | // Allowed for variable of type VecRange
window // Allowed for variable of type Window

>

var_attributes ::= <

Description string; // Default is: empty string, i.e. "".
| ReInitAt ASYNC_EVENT_NAME;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

51
Copyright ©2018 IEEE. All rights reserved.

| Units "units_expr"; // Useful for type General with initial value of None
| Permissions <ReadWrite | RhsReadWrite | ReadOnly>;
| SiteSharePer <Tester | TestHead | Partition>; // Default is: not shared.
| Usage< Pgm | Test>

>

value_list ::= < value_expr | value_list, value_expr >

var_assignment_stmt ::= <

VAR_NAME = value_expr; | // Scalar variables
VAR_NAME[int_expr] = value_expr; | // Array variables
VAR_NAME = [value_list]; // Array variables

>

Variable definition and initialization has individual and block forms. The individual form requires
repeating type information for each variable, while the block form extracts the common denominator type
information.

Both scalar and array variables may be defined. Arrays may be single-dimensional or multi-dimensional.
Multi-dimensional arrays have additional sets of brackets, each representing a dimension, i.e., an array axis.
Any mathematical expression inside these brackets, quoted or unquoted, used to define a dimension size
shall immediately be evaluated to an integer, 0 or greater, at the instantiation of the array. If the
initialization value on the right-hand side is a fully defined array, the sets of brackets on the left-hand side
need not contain dimensions. Left- and right-hand side dimensions shall be required to match if both are
specified unless the right-hand side is explicitly or implicitly None. The type of each array element shall
match type_name. All array elements shall have identical units15 even when type_name is General. Array
dimensions and units shall remain fixed once the array is initialized, i.e., assigned a value other than None.

Note that initialization and assignment rules and behaviors are the same except that the ability to specify
attributes/constraints and the ability to set the value None are reserved for initialization only. Figure 23
shows legal initialization code and further clarifies which statements are legal and what the results of these
operations are.

When a constant variable is instantiated with an expression containing one or more mutable
variables, mutable variables on the right-hand side are replaced with their values at the time of
instantiation. Figure 24 illustrates this behavior.

17.3 FlowVariables examples

x1 FlowVariables {
 2 String StdChipType = "B2509" {
 3 Permissions RhsReadWrite;
 4 ReInitAt LOAD;
 5 Description "Chip type identifier";
 6 }
 7 Seconds hold = 1ns;
 8 }
 9 FlowVariables globals {
10 Seconds delay = 0s;
11 }
12 TestProgram pgm {
13 FlowVariables globals;
14 }

Figure 22 —FlowVariables example

15 Units only apply to floating-point types.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

52
Copyright ©2018 IEEE. All rights reserved.

x1 Enum Colors { // Defined for use in examples below
 2 NO_COLOR; // 0
 3 RED; // 1
 4 YELLOW; // 2
 5 BLUE; // 3
 6 }
 7 FlowVariables legal {
 8 Integer i = -3;
 9 Integer ir = 3/2; // ir = 1; integer división

 // ie = 2; automatic conversion from Enum to Integer conversion.
 // Colors:: qualifier needed since assigning to type than Colors
10 Integer ie = Colors::YELLOW;
11 Integer ir = 3/2; // ir = 1; integer division
12 Boolean b = True;
13 Boolean b0 = 0; // b0 = False

 // c = Colors::RED. Assigning to vartype Colors; hence, no
 // need for Colors:: qualifier on RHS value Red
14 Colors c = RED;
15 Integer i3 = c; // i3 = 1
16 String s1; // s1 = None
17 String s3 = ""; // s3 = <empty string> (!= None)
18 String s4 = "How now brown cow";

 // Variables g1, g2 and, g3 are constrained to units of s after
 // initialization by various means
19 General g1 { Units "s"; } // Value of g1 is None
20 General g2 = None; // Value of g2 is None
21 General g3 = 0s; // Value of g3 is 0s
22 Real r = 2; // Value of r is 2.0
23 Seconds delay = 2ns;

 // The literal Limits value on RHS requires parentheses
 // delimiters
24 Limits lims = (0s <= .I. <= delay);
25 Const Limits {
 // Uninitialized variable open; default constraints,
 // attributes
26 open;
27 volts = None { Units "V"; }
28 pos_seconds = (0s <= .I. < None);
29 }
30 }

Figure 23 —Example: scalar variable initialization

When assigning expressions to variables, be they constant or mutable, the intent is to retain as much of the
original expression as possible. This informs the user that a value may have several constituent parts and
helps with tracing the origin of those parts. This second example illustrates such initialization behavior.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

53
Copyright ©2018 IEEE. All rights reserved.

x1 FlowVariables {
 2 Seconds prdm = '10ns'; // Stores 10ns
 3 Seconds prdc = 20ns; // Stores 20ns
 4 Seconds strb1 = '0.9*prdm'; // Stores '0.9*prdm' (eval deferred)
 5 Seconds strb3 = eval(strb1); // Stores 9ns (force evaluation)
 6 }

Figure 24 —Example: scalar variable initialization

Integer array[] = [1, 2, 3]; // Size 3
Integer array[3] = [1, 2, 3]; // Size 3, both sides match
Integer array[3] = 0; // Size 3, elements initialized to 0
Integer array[] = None; // Unknown size one dimensional array
Integer array[]; // Same as above

Figure 25 —Example: array initialization

Integer array[2][3] = 0;
Integer array[2][3] = None;
Integer array[2][3]; // Initialized to None, same as above

Figure 26 —Example: array initialization, all elements set to the same value

Integer array[2][3] = [// Dimensions match right-hand side
 [11, 22, 33],
 [21, 22, 23],
];

Figure 27 —Example: multi-dimensional array, per element initialization

Integer i = array[0][0];
array[0][0] = 5;
array = 4; // All elements set to 4

Figure 28 —Example: array element access and assignment

17.4 FlowVariable access

The unnamed top-level FlowVariables block is implicitly referenced by the TestProgram block
hence, a variable in that block may be accessed simply by its name. A variable in a named top-level
FlowVariables block is accessible by its name only if the TestProgram block references that
FlowVariables block by name. The TestProgram block shall not reference variable blocks with
conflicting variable names.

A variable defined in a TestType's FlowVariables block shall be accessible to that test-type only,
i.e., a derived test-type shall not access base-type variables. Each instance of a particular test type shall
have its own copy of variables. For code within the scope of a test, a test parameter or variable identifier,
e.g., period, shall hide a top-level variable of the same name. Operators Global and Local may be
used to select the scope. For example, Global.period shall refer to the top-level variable period
even when a local definition is present. The same applies to FlowType.

Global: used to unambiguously refer to a top-level variable, e.g., Global.period.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

54
Copyright ©2018 IEEE. All rights reserved.

Local: used to indicate and/or insure that a local test parameter or variable is being referred to. For
example: after removing a variable, e.g., period, from a test-type definition, usage of that variable may
unintentionally find top-level period. Specifying Local.period insures that a compile time error
locates the unintentional use.

Note that a flow-node does not have its own scope hence a reference to Local.period in a flow-node is
a reference to variable or parameter period in the test or flow that contains the flow-node.

17.5 FlowVariable types

Variable types represent a data structure, real, integer, Boolean, or string. Specific types may represent a
further specialization of one of these classifications. All variable types have identifiers, constraints,
attributes, functions, and operators. See 6.5 for constraints on identifier names.

Constraints are either intrinsic or user-settable. Intrinsic constraints are implied by the variable type, e.g.,
type Seconds can only be initialized to or assigned a value of type Seconds whereas type General
may be initialized to any numeric value. User settable constraints may occur in several locations. Type-
modifier keyword Const occurs before the type-name and constrains a variable or parameter to be
immutable. Other constraints, located between braces along with attributes, restrict legal assignments to a
subset of what might otherwise be legal.

Variables are defined in blocks preceded by keyword FlowVariables which can occur at the global
level and/or inside test-type definitions.16

During initialization, the right-hand side, i.e., the value, of a variable to be assigned may be a reference to
another that has already been initialized.

Table 10 shows the types that represent floating point values and shows the units for each type.

16 One global variable block may optionally be unnamed. The unnamed global variable block and the global named variable blocks
specified in the TestProgram block shall be accessible to STIL.4. Variable blocks inside test-type definitions shall be unnamed.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

55
Copyright ©2018 IEEE. All rights reserved.

Table 10 —Real types

Type name Units Measure of …
Amperes A Current
Celsius oC | Cel Temperature
Decibels dB Logarithmic Ratio
Degrees deg Phase shift or angle
Farads F Capacitance
General units_expr various
Henries H Inductance
Hertz Hz Frequency
Meters m Distance
Ohms R | Ohm Resistance
Real none Magnitude
Seconds s Time
Volts V Potential
Watts W Power

Table 11 shows STIL.4 FlowVariable types and the literal values that may be associated with them.

Table 11 —FlowVariable types

Type
name

Legal
values

Automatic
conversion

User-settable
constraints

Type-specific
member
functions

Boolean None | True | False |
int_expr | bool_expr |
ENUMERATOR

Enum ENUMERATOR To Integer: Uses
ENUMERATOR value

To Boolean:
ENUMERATOR value
0 to False, all other
values to True

size(), string()

Real a See Table 10. Truncated when
assigned to type
Integer

Type General:
Units
"units_expr";
All others: implied
by type

units()

Integer None | int_expr To Real: None to
None, integer to real

To Boolean: None
to None, 0 to False,
others to True

String None | "char*" |
string_expr

To Enum size()

(Table continues)

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

56
Copyright ©2018 IEEE. All rights reserved.

Table 11—FlowVariable types (continued)
Type
name

Legal
values

Automatic
conversion

User-settable
constraints

Type-specific
member functions

FlowExtended only
Limits None | math_expr, <=,

<
 Units

"units_expr";
units(),
check(math_expr),
hi(), lo()

VecLocation None|vecloc LocType:None|
LABEL;

locType()

VecRange None|vecloc LocType:None|
LABEL;

locType()

Window None|vecloc|sigref_expr LocType:None|
LABEL;

locType()

a Types are enumerated in Table 4: they include Real, Seconds, General, etc.

Automatic single step conversion occurs between types as indicated.

Boolean: a small structure representing a Boolean literal or expression that when evaluated, shall reduce to
either True or False unless it performs an illegal operation or directly or indirectly contains None, in
which case it shall evaluate to None. A Boolean may be set to None if not initialized to another value but
may not be assigned None thereafter.

Enum: a standard or user-defined integral type symbolically representing integers. It supports functions
size() and string(). See 6.10.

Integer: a small structure representing an integer literal or expression that when evaluated, shall reduce to
an integer unless it performs an illegal operation or directly or indirectly contains None, in which case it
shall evaluate to None. An Integer may be set to None if not initialized to another value but may not be
assigned None thereafter.

Limits: a small structure used to represent measurement or search limits. With the exception of keyword
None, which is recognized in a context unambiguously expecting type Limits as open limits, literal
limits are of general form:

 limits ::= (LoLim Op ResultPlaceHolder Op HiLim)

e.g., (0s <= .I. < 10ns),17 where the enclosing parentheses are an integral part. LoLim and HiLim,
the low and high limits, respectively, are mathemetical expressions. A high limit less than the low limit
shall result in undefined behavior. With the exception of keyword None, a high limit with different units
than the low limit shall be illegal.

Comparison operators, Op in the general form, shall be constrained to either <= or <.

ResultPlaceHolder may be either.I. or .O., for inside or outside limits respectively. Function check()
takes a mathematical expression argument, a measurement result whose units shall match the limits’. When
function check() is executed its argument, presumably a measurement result, replaces
ResultPlaceHolder.

For ResultPlaceHolder .I., the common usage, function check() returns PASS when the measurement
result falls inside specified limits or both limits are set to None. Otherwise check() returns one of
FAIL_UNITS (measurement result units mismatch), FAIL_HILIM, FAIL_LOLIM, or

17 The Limits syntax is not a Boolean expression hence each limit, lower and upper, is an independent mathematical expression, either
of which may or may not be quoted.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

57
Copyright ©2018 IEEE. All rights reserved.

INDETERMINATE (measurement result is None), defined by STIL.4 via enumerated type CheckResult
(see 35.1). The following is an example showing literal Limits and the Boolean equivalent:18

 Literal Limits: (0.4V <= .I. <= 2.4V)
 Boolean equivalent: 0.4V <= result && result <= 2.4V

For ResultPlaceHolder .O., the rare usage, function check() returns PASS when the measurement
result lies either above or below specified limits. Otherwise check() returns one of FAIL_UNITS,
FAIL_BOTHLIM, or INDETERMINATE. Valid lower and upper limits, i.e., values other than None are
required. The following is an example showing literal Limits and the Boolean equivalent:

Literal Limits: (0.4V <= .O. <= 2.4V)
Boolean equivalent 1: !(0.4V <= result && result <= 2.4V)
Boolean equivalent 2: (0.4V > result || result > 2.4V)

Limits shall not be reassigned after instantiation to a value other than None.

User-settable constraint Units restricts acceptable units, potentially to no units. Function units()
returns the units as a string which shall be empty if there are no units.

x1 FlowVariables {
 2 Limits lims = (0s < .I. < 10ns);
 3 }
 4
 5 TestType ParametricAC {
 6 Inherit StdFunctional;
 7 Parameters {
 8 In Limits lims = None { Units "s"; }
 9 Out Seconds result;
10 }
11 TestExec; // Assigns "failMode", and "result"
12 PostActions {
13 if (lims.check(result) != PASS)
14 failMode = FAIL_PRM;
15 }
16 }

Figure 29 —Example: limits function "check"

The following text points out salient syntactical features in the example of Figure 29:

 Line 2: defines a variable called lims which represents literal limits (0s <= .I. < 10ns).
 Line 5: defines a test-type called ParametricAC. Parameters are initialized when this type is

instantiated. Actions are carried out when the instantiation is executed.
 Lines 7–9: defines parameters to illustrate Limits usage.
 Line 11: in this example, TestExec represents non-STIL.4 code that performs a parametric

timing test, assigns a FailMode value to parameter failMode, and places the measurement
result in parameter result.

 Line 13: This statement tests if TestExec ran and passed but the limits check failed. Executing
check(result) in effect replaces Limits character .I. with result and returns

18 There are differences: the Boolean equivalent may be either single-quoted or unquoted in its entirety and returns True or False
for pass or fail respectively. The return value of Limits function check is tested for equality to CheckResult::PASS to yield the
same Boolean result.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

58
Copyright ©2018 IEEE. All rights reserved.

CheckResult enumeration PASS if result falls within limits lims. The argument, result
in this example, shall match lims unit constraints.

 Line 14: Alters the contents of failMode to indicate a parametric test failure, assuming that is
preferable to the contents of failMode set by TestExec, e.g., FAIL_SETUP or FAIL_FNC.

x1 FlowVariables {
 2 Seconds delay = 3ns; // Used in subsequent example
 3 Const Limits lims1 = None;
 4 Const Limits lims2 = None { Units "V"; }
 5 Const Limits lims3 = NoneV;
 6 Const Limits lims4 = (0s <= .I. < 10ns);
 7 Limits lims5 = lims4;
 8 Const Limits lims6 = (0s <= .I. < None);
 9 Limits lims7 = (0s <= .I. <= 'delay – 1ns');
10 Const Limits lims8 = lims7;
11 Limits lims9 = None { Units ""; }
12 }

Figure 30 —Example: FlowVariables block limits definitions

When the argument to Limits function check() is None, it returns INDETERMINATE. The following
line comments for Figure 30 hold true when the argument value is other than None:

 Line 2: variable delay is defined for use in a subsequent Limits example.
 Line 3: limits are open and unconstrained in terms of units. When limits are set to None function

check() returns True.
 Line 4: limits are open and constrained to type Volts. Function check() returns True when

limits are set to None. It shall be illegal to pass a value to function check() that does not match
the constraint, units of volts in this example.

 Line 5: is the same as line 4 in effect.
 Line 6: limits are imposed and constrained to type Seconds.
 Line 7: copies lims4 but unlike lims4, lims5 may be reassigned at runtime.
 Line 8: single ended limits are imposed and constrained to type Seconds.
 Line 9: limits are imposed and constrained to type Seconds. Because lims7 is a mutable

variable, the upper limit shall track delay. Were lims7 defined as a constant, expression
delay – 1 would be evaluated at the instantiation of lims7.

 Line 10: copies lims7; however, because lims7 is mutable and lims8 is constant, expression
delay – 1 is transformed to 3ns – 1ns or 2ns, at the tool providers’ discretion, for the
instantiation of lims8 (expression remains unchanged for lims7).

 Line 11: lims9 is constrained to be initialized by a number without units, e.g., one of type Real.

String: a small structure that behaves like an array of characters which may be assigned a literal value, i.e.,
zero or more characters enclosed in double quotes or an expression. String expressions may be formed
using operator + for concatenation. STIL.4 shall impose no limits on string length. An uninitialized
String shall be set to None but may not be assigned None thereafter. Accessing a non-existent string
element shall return None.

VecLocation: a small structure used to pass a STIL.4 vector location. Parameters of this type, when
assigned a value other than None, override PatternBurst Start and/or Stop locations for the
duration of the test. Attribute LocType constrains the location format via qualifiers None or LABEL. The
form for the right-hand side value of an assignment of initialization is as indicated in the “Legal values”
column of Table 11 where

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

59
Copyright ©2018 IEEE. All rights reserved.

vecloc ::= None | EndOfBurst | EndOfPattern | veclabel

Keywords EndOfBurst and EndOfPattern may be used to specify stop locations regardless of the
location format. EndOfPattern stops at the end of the first pattern in the PatternBurst.19

Except for keywords EndOfBurst and EndOfPattern, when the location type is LABEL, the
VecLocation parameter shall match the STIL.0 Pattern label verbatim including quotation marks.20
The start or stop label shall be unique in the set of patterns referenced in the PatList/PatSet.

1 VecLocation vloc = None { Optional; LocType LABEL; }

Figure 31 —Example: FlowVariables block VecLocation definitions

The following text points out salient syntactical feature in the example of Figure 31:

 Line 1: constrains legal assignment values to labels. None is an optional initialization value for any
location type.

The examples in Figure 32 are literal initialization value alternatives that may be passed to a test that has a
parameter type VecLocation named vloc provided the values do not violate parameter definition
constraints.

1 vloc = EndOfBurst; // Keyword
2 vloc = IDDQ1; // Unquoted vector label
3 vloc = "Q"; // Quoted vector label

Figure 32 —Example: VecLocation parameter initializations

The following text points out salient syntactical features in the example of Figure 32:

 Line 1: initializes vloc to the last vector in the test’s associated PatternBurst via keyword
EndOfBurst.

 Lines 2 and 3: initializes vloc to label IDDQ1 and "Q" respectively, i.e., any right-hand side that
begins with an alphabetic character or a quote shall be interpreted as a label, not a string.

VecRange: a small structure consisting of two vector locations (vecloc) which inclusively indicate a range
of vectors. The right-hand side of a VecRange initialization or assignment has the following form:

vec_range ::= (from_vecloc, to_vecloc)

where from_vecloc and to_vecloc use the vecloc definition in variable type VecLocation above. Pattern
location from_vecloc shall precede or be equal to_vecloc. The syntax shall not permit reference by name to
a previously defined VecLocation since the name would be indistinguishable from a pattern label.

Window: a small structure used to pass a STIL.4 pattern window. The simplest form is a single pane, i.e.,
rectangle, whose dimensions are signal count and vector count. A window may be thought of as a
VecRange combined with a sigref_expr. When the signal columns in the pattern are not adjacent, the
window may be thought of as composed of multiple horizontal panes. The right-hand side of a Window
initialization or assignment has the following form:

19 See Clause 11 for additional information on VecLocation/PatternBurst Start/Stop location interplay.
20 The label is a reference to a pattern memory location, not a string, i.e., assigning a vector location via a variable of type String is
illegal.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

60
Copyright ©2018 IEEE. All rights reserved.

window ::= (from_vecloc, to_vecloc, sigref_expr)

where from_vecloc and to_vecloc use the vecloc definition in variable type VecLocation above. Pattern
location from_vecloc shall precede or be equal to_vecloc. The syntax shall not permit reference by name to
a previously defined VecLocation since the name would be indistinguishable from a pattern label.

Among other things, type Window may be used to select a subset of a pattern or patternburst to which
strobes are to be applied or from which fail data is collected (the TestType specifies how its parameters
are used). Figure 33 shows alternate definition examples:

1 Window win = None;
2 Window win { Optional; } // Parameter, not FlowVariable
3 Window win = (patlabel1, EndOfPattern, databus);

Figure 33 —Example: FlowVariable window definitions

Table 10 shows the variable types that represent real values. A type listed in this table may be referenced as
meta-type real_var_type elsewhere in this document. When a type definition is assigned a literal value, the
units shall either match or reduce to the indicated units, e.g., statements Watts w = 1W and Watts w
= 1A2R are both legal.

Real values shall have double precision (binary 64-bit) as defined by IEEE Std 754-2008 or better. In
mathematical expressions, keyword None shall be an alias for not a number (NaN) and behave as defined
by IEEE Std 754-2008. In addition to type() and name(), all real variable and parameter types support
functions magnitude() and units().

STIL.0 Table 4 shows unit prefixes and corresponding e-notation recognized by STIL.0 and extensions
including STIL.2 and STIL.4. A literal value with units may use either prefix or e-notation. A literal value
without units may use e-notation. For example, 0.002V, 2mV, 2e-3V, and 20e-4V are legal and
equivalent. Literal expressions 2m and 2mm shall be interpreted as 2 meters and 2 milli-meters respectively.

Type General is unique in that it may take on any units, combinatorial or otherwise, including no units.
However, once initialized to a value other than None or assigned a value (None is not a legal
assignment value), it shall remain constrained to the units of that value for the remainder of its existence.
See Figure 34.

General g = None; // unconstrained until assigned
General g = None { Units "A2"; } // restricts g to amperes squared
General g = 1; // restricts g to no units
General g { Units ""; } // restricts g to no units
Seconds s = None; // restricts s to seconds
Seconds s; // same as above
Seconds s = 1s; // set value and units

Figure 34 —Example: real FlowVariable definitions

17.6 FlowVariable attributes

Variable attributes (see Table 12) appear following a definition statement, enclosed in braces. A variable
attribute is specified by its name followed by zero or more context specific arguments and terminated by a
semicolon. For example:

1 FlowVariables { // Global variables

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

61
Copyright ©2018 IEEE. All rights reserved.

2 Volts vdd = 3.3V
3 { Permissions RhsReadWrite; Description "Device power"; }
4 }

An attribute, if not explicitly specified, takes on its default value.

Table 12 —Variable attributes

Attribute Argument Default Purpose
Description string Empty

string
Declare intended use.

Permissions ReadWrite | RhsReadWrite
| ReadOnly

ReadWrite

Describe safe editing operations for variables: a
ReadWrite permits edits or deletion,
RhsReadWrite permits right-hand side value edits
only, ReadOnly permits neither edits nor deletion.

ReInitAt ASYNC_EVENT_NAME START Describe which asynchronous event reinitializes this
variable. All variables shall be initialized on LOAD.

SiteSharePer Tester | TestHead |
Partition

Not shared Variables with this attribute shall be shared across all
sites on that unit and implicitly be replicated per
specified unit. Variables without this attribute shall
implicitly be replicated per site.

Usage Pgm | Test Pgm Top-level variable access: test program only or
memory shared between test program and pattern
bursts, respectively.

Units string unspecified Constrain to units.
a A tool may use Permissions to mark variables on whose presence and/or value a test program depends so that a GUI for the tool that
reads STIL.4, may warn a user requesting deletion of a required variable or the changing of a required value. This differs from Const
which affects variable behavior at runtime.

STIL.1 and STIL.4 need to control access to global variables across independently executing programs,
STIL.1 for communication between PatternBursts and patterns, STIL.4 potentially for communication
between the test program and pattern-bursts/patterns.

Some of these needs are addressed by standard variables in 35.2. STIL.4 keyword Usage options shall be
constrained to sharing memory with patterns or not, for type Integer only. STIL.4 controls global
variable access for variables using the following variacounble attribute syntax:

Usage Pgm | Test;

Pgm: the variable is accessible to TestProgram only, the STIL.4 default.

Test: the variable is shared between the TestProgram and each PatternBurst or Pattern if all of
the following conditions are met:

 Both the STIL.4 and STIL.1 variable shall be of type Integer.
 Both the STIL.4 and STIL.1 variable shall use the same identifier.
 Both the STIL.4 and STIL.1 variable shall have attribute Usage Test.
 The STIL,4 variable shall not have attribute Const
 The STIL.4 variable and the STIL.1 variable shall both be in scope in their respective context, i.e.,

the STIL.4 variable shall be either in the unnamed top-level FlowVariables block or a named

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

62
Copyright ©2018 IEEE. All rights reserved.

top-level FlowVariables block referenced by TestProgram, and the STIL.1 variable shall
be in the unnamed Variables block.21

Shared variables are initialized via STIL.4 code and then potentially altered by STIL.1 code. STIL.1
InitialValue syntax shall override STIL.4 initial values of None only. STIL.1 and STIL.4 set initial
values with different syntax as shown in the FlowVariables and Variables blocks in Figure 35.

x1 FlowVariables { // STIL.4
 2 Const Integer i1 = 1;
 3 Const Integer i2 = 2 { Usage Test; }
 4 Integer i3 { Usage Test; }
 5 Integer i4 = 4 { Usage Pgm; }
 6 Integer i5 = 5 { Usage Test; } // Shared
 7 Integer i6 = 6 { Usage Test; } // Shared
 8 Integer i7 { Usage Test; } // Shared
 9 Integer i8 { Usage Test; } // Shared
10 }
 1 Variables { // STIL.1
 2 IntegerConstant i1 := 10;
 3 IntegerConstant i2 := 20;
 4 Integer i3 { InitialValue 30; }
 5 Integer i4 { Usage Test; }
 6 Integer i5 { Usage Test; } // Shared
 7 Integer i6 { InitialValue 60; Usage Test; } // Shared
 8 Integer i7 { InitialValue 70; Usage Test; } // Shared
 9 Integer i8 { Usage Test; } // Shared
10 }

Figure 35 —Example: Variables shared between Pattern and Flow

The following line comments related to Figure 35 refer to both Variables and FlowVariables
blocks:

 Lines 2 and 3: STIL.1 type IntegerConstant cannot be shared because in STIL.1, it cannot
have attribute Usage Test.

 Line 4: variable i3 is not shared because only the FlowVariables block entry associates
attribute Usage Test. The STIL.1 variable is initialized to zero by default. The STIL.4 variable
is set to None by default

 Line 5: variable i4 is not shared because only the Variables block entry associates attribute
Usage Test. The STIL.1 variable is initialized to zero by default.

 Line 6: variable i5 is shared because both the FlowVariables and the Variables block
entries associate attribute Usage Test. Since the variable memory is first set aside in the test
program via STIL.4 syntax, it is initialized to 5 and retains that value until altered from within an
executing test or pattern.

 Line 7: variable i6 is shared because both the FlowVariables and the Variables block
entries associate attribute Usage Test. Since the variable memory is first set aside in the test
program via STIL.4 syntax, it is initialized to 6 and retains that value until altered from within an
executing test or pattern.

 Line 8: variable i7 is shared because both the FlowVariables and the Variables block
entries associate attribute Usage Test. Since the variable memory is first set aside in the test
program via STIL.4 syntax, it is initialized to None until the start of the first pattern execution
imposes the STIL.1 initial value of 70.

21 Named STIL.1 Variables blocks become local to each context they are referenced from, PatternBurst or pattern reference
block, and are reinitialized each time that context is executed.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

63
Copyright ©2018 IEEE. All rights reserved.

 Line 9: variable i8 is shared because both the FlowVariables and the Variables block
entries associate attribute Usage Test. It is not initialized in the FlowVariables block, i.e.,
set to None. It is set via the Variables block where the absence of an InitialValue
statement causes default initialization to 0.

17.7 FlowVariable operators and member functions

Table 13 —Operator precedence and associativity

Operator Associativity Application
Global. left to right Scope resolution: global as per TestProgram block
Parent. left to right Scope resolution: test or flow that contains current test object
Local. left to right Scope resolution: current test object

CurrentExec. left to right Scope resolution: current FlowNode’s TestExec test object
:: left to right Scope resolution: Enum definition enumerations and size()
() left to right Expression grouping and function call argument delimiter
[] left to right Array access and definition
. left to right Object member selector
! right to left Unary Boolean NOT operator
+ right to left Unary PLUS operator
- right to left Unary MINUS operator
* left to right Binary MULTIPLY operator
/ left to right Binary DIVIDE operator

% left to right Binary MODULO operator (integer division remainder)
+ left to right Binary ADD operator: addition or string concatenation
- left to right Binary SUBTRACT operator
< left to right Binary LESS THAN operator

<= left to right Binary LESS THAN or EQUAL operator
> left to right Binary GREATER THAN operator

>= left to right Binary GREATER THAN or EQUAL operator
== left to right Binary Boolean EQUAL operator
!= left to right Binary Boolean NOT EQUAL operator

&& left to right Binary Boolean AND operator
|| left to right Binary Boolean OR operator

= right to left Assignment operator
?: right to left Conditional expression operator. Predicate shall be Boolean. Colon operator

separates two int_expr, bool_expr, string_expr, real_expr, or enum_expr. The last
two shall have matching units or types respectively.

, left to right A function argument and grouped expressions separator a
.. left to right Signal range operator

a Exception: Limits grouped arguments are separated by relational operator < or <=.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

64
Copyright ©2018 IEEE. All rights reserved.

Table 14 —FlowVariable member functions

Function Return type Purpose Member function
of type(s)

at(int_expr) Signal Returns the Nth signal in a signal
group as specified by int_expr.

SignalGroup

check(math_expr) CheckResult Compares the mathematical
expression argument to limits
and returns an enumeration of
type CheckResult.

Limits

description() String Returns attribute
Description.

All variables

hi() math_expr Returns upper limit. Limits

lo() math_expr Returns lower limit. Limits

locType() LocType Returns vector location type as
enumerated type LocType.

VecLocation

magnitude() Real Returns real value stripped of
units. Requires evaluation of
mathematical expression.

All real variables (see Table 4)

max() math_expr Returns mathematical expression
contained in Max.

SpecVariable

meas() math_expr Returns mathematical expression
contained in Meas.

SpecVariable

min() math_expr Returns mathematical expression
contained in Min.

SpecVariable

name() String Returns the variable/parameter
instance identifier. For InOut
parameters (references), returns
the name of the object being
referenced, not the local
parameter name.

All variables and Parameters

size() Integer Usually paired with function at
or operator [] for indexing limits.

Spec, Category, SignalGroup,
Enum, String, BinSpec (when
appropriate)

string() String Returns enumerated type name
as a string.

Enum

typ() math_expr Returns mathematical expression
contained in Typ.

SpecVariable

type() String Returns the variable/parameter
type.

All variables

units() String Returns canonical form such that
when the units of two symbols
are equal, their unit strings are
equal. Each type’s return value is
shown in Table 4, e.g., for a
variable of type Amperes, the
function returns "A", for a
variable with no units, "", the
empty string.

SpecVariable, Limits, and all
real variables (Table 4)

BinSpec may represent a Pass or Fail bin grouping, a Bin, or a BinAxis; for related functions
see 22.1, 22.3,22.5, and 22.6.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

65
Copyright ©2018 IEEE. All rights reserved.

A mutable SpecVariable's Meas selector may serve as the target of an assignment. A
SpecVariable's meas() function, although it returns the Meas value, shall not be the legal target of
an assignment (see Figure 36).

1 specvar.Meas = 100ps;
2 specvar.Meas = specvar.typ();

Figure 36 —Example: SpecVariable field assignment

17.8 FlowVariable array operations

Array operations include the following:

a) Initialization/assignment operator (=)
b) Index operator ([]), index constrained from 0 to array size – 1
c) Mathematical, Boolean, String, and None relational operators (== !=)
d) Mathematical relational operators (> < >= <=)
e) Mathematical operators (+ - * /)
f) Mathematical functions min, max, abs, and pow
g) Boolean operators (! && ||)
h) String operator (+)
i) Array member function size()

For array on array operations, element operates on corresponding element; therefore, left-hand side and
right-hand side shall have matching dimensions. For relational operators, e.g., <, all element comparisons
shall yield True to yield scalar True. Functions min and max also return a scalar. Functions abs and
pow and the remaining operators return an array.

For operations involving scalar and array, the scalar shall operate on each element. For relational operators,
e.g., <, all element comparisons shall yield True to yield scalar True. Functions min and max also return
a scalar. Functions abs and pow and the remaining operators return an array.

Scalar or array mathematical operations involving None, shall evaluate to None.

size(): returns a single dimensional array containing one element per dimension, each an integer indicating
the size of the corresponding dimension, e.g.:

1 FlowVariables { // Array definitions
2 Real real[4] = [4.1, 4.2, 4.3, 4.4];
3 Seconds seconds[2][3] = [
4 [11ns, 22ns, 33ns],
5 [21ns, 22ns, 23ns],
6];
7 }

1 TestType Example
 2 {
 3 Inherit TestBase;
 4 Parameters {
 5 InOut Const Real r[4]; // Cannot change contents of r
 6 InOut Const Seconds s[2][3];
 7 InOut Integer i[][] { Optional; }
 8 InOut Amperes a[][2] { Optional; }
 9 }

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

66
Copyright ©2018 IEEE. All rights reserved.

10 FlowVariables {
11 Const Boolean idef = i == None;
12 Const Integer rdims[] = r.size(); // rdims.size=1, rdims[0]=4
13 Const Integer sdims[] = s.size(); // sdims[0]=2, sdims[1]=3
14 Const Integer idims[] = i.size(); // depends on actual dims of I
15 Integer adims[] = a.size(); // depends on actual dims of a
16 }
17 }

Figure 37 —Example: array size

18. Device to tester interface

This clause covers two alternative methods of describing the device to tester interface, SignalMap and
Device block:

 The SignalMap describes the interface between one device and one tester, single or multi-site. It
is described in Clause 19. When one or more SignalMap blocks are defined, the TestProgram
block may refer to one of them. The reference, a SignalMap statement, specifies which
SignalMap block shall be used to map the device signals to tester channels.22

 The Device block describes the interface between one device and one or more testers, single or
multi-site. Multiple device blocks may specify multiple test programs to execute in parallel on the
same tester, e.g., on different test-heads and/or software partitions. It is described in Clause 20. The
Device block represents a superset of SignalMap block information. It may be employed by
ATE as an alternative to SignalMap. Device block information organization is also suitable for
retargeting and ATPRG which can use it to output a SignalMap block for each target tester. If a
TestProgram block does not refer to a SignalMap and one or more Device blocks are
defined, each Device block shall choose which test-program to run on a specific tester, test-head,
or test-head partition.

22 A Device block, even if it contains an applicable ChannelMap, shall not be used when the TestProgram block contains the
SignalMap statement.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

67
Copyright ©2018 IEEE. All rights reserved.

Table 15 — SignalMap/Device block comparison

Support SignalMap Device Comment
Components  May specify simple hardware components, e.g., capacitors,

relays, resistors.
DCSequence per test-head  May specify unique initialization sequence per hardware

configuration.
Device families  A single test-program may be used to test a device family,

e.g., a set of scalable devices
Multi-chip module (MCM)
or multi-chip package (MCP)

  Keyword Package may be used to specify the unit
containing multiple chips.

Multi-partition  A test-head may be divided into partitions by tester
software, each partition potentially testing a different
device

Multi-project wafer  A wafer may have two or more chip types to be tested in
parallel.

Multi-site   Multiple chip or package sites of the same type may be
tested in parallel

Multi-tester  Ability to specify how device is to be tested on more than
one platform.

Multi-test-head  Ability to specify how one or more devices are to be tested
on more than one test-head on a single tester.

19. SignalMap

19.1 General

A SignalMap block maps device signals to one or more tester channels (where tester channels include,
but are not limited to, digital channels or power supply channels, for instance) and optionally, to one or
more package pins or chip pads. It is possible to map multiple device pins to a single tester channels, and to
map a single device pin to multiple tester channels (e.g., power supply or channel ganging).

The SignalMap block maps signals to tester channels for one site, or for multiple sites. When mapping
for multiple sites, the SiteMap statement shall be used; when used, the association between elements of
the list of tester channels in sig_map_stmt, site identifiers (in the list of sites) and site layout positions is
one-to-one, left-to-right.

Only one unnamed SignalMap block shall be allowed in STIL. Zero or more named SignalMap blocks
are allowed. All SIG_MAP_NAMEs shall be unique across all SignalMap blocks (STIL.0 6.9: “All domain
names for a single type of block shall be unique”). Note, in other words, that domain name reuse for
different types of blocks is allowed (i.e., one can use the same domain name for SignalMap blocks as is
used for a PatternBurst block, for instance). See STIL.0 6.9 and 6.16 for details on domain names and
domain name conflict resolution.

A named SignalMap block is used in a TestProgram by including the statement

SignalMap SIG_MAP_NAME;

within the TestProgram block, as shown below:

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

68
Copyright ©2018 IEEE. All rights reserved.

TestProgram myTestProgram {
 SignalMap mySingleSiteSignalMap; . . .
}

The unnamed SignalMap block can be specified in the TestProgram block by using the statement
SignalMap Unnamed. If the TestProgram block contains a SignalMap statement, the SignalMap
shall be used even if a Device block with its associated PinMap statement also exists.

19.2 SignalMap syntax

SignalMap (SIG_MAP_NAME) {
 (SiteMap site_map_stmt)
 (sig_map_stmt)*
}+

site_id ::= integer
site_id_range ::= site_id..site_id
site_list_stmt ::= site_id | site_id_range(,site_id | site_id_range)*
site_map_stmt ::= site_list_stmt; | site_list_stmt { (Layout (SITE_LAYOUT_NAME) (: site_layout);) }
sig_map_stmt ::= (SIG_NAME ((P_NAME (, P_NAME)*)) chan_stmt (,chan_stmt)*;
chan_stmt ::= CHAN_ID | CHAN_ID (+CHAN_ID)+;

SignalMap: the start of a block defining device-signal-to-tester-channel mappings (where tester channels
include, but are not limited to, digital channels or device power supplies).

SIG_MAP_NAME: optional name of a SignalMap block.

SiteMap: an optional statement that defines how many sites are used and the numbers of those sites. If the
SiteMap statement is omitted, then single-site operation is assumed. The total number of sites specified in
the SiteMap statement determines the number of sites being used, and the number of tester resources
which shall be specified for each signal mapping statement. For instance, with a list of sites such as
1,3,7..10,12,14,16..18,20, a total of 12 sites are specified.

site_id: an integer zero or greater.

site_list_stmt: a comma-separated list of site_ids or site_id ranges. site_id ranges are specified by two
ellipsis-separated integers (i.e., integer1..integer2), where integer1 shall be less than integer2.

site_map_stmt: a site_list_stmt, either semi-colon-terminated, or including an optional site layout statement.
See Clause 20 for keyword Layout and Figure 47 for details of the Layout statement. The number of
site grid positions listed in the Layout statement shall be the same as the number of sites listed in the
site_list_stmt, and the association of site number listed in the site_list_stmt to the grid position of a site in
an MxN grid shall be 1 to 1, left to right.

sig_map_stmt: each signal mapping statement is an individual signal name followed (optionally) by
package pin information, and tester channels(s) to which the signal is mapped. The tester channel(s) can be
either a single channel statement (chan_stmt) (for single-site testing) or a comma-separated list of channel
statements (for multi-site testing). If multi-site testing is specified, the number of channel statements in the
comma-separated list shall be the same as the number of sites specified in the SiteMap statement, and the
association of tester resources to sites shall be 1 to 1, left to right.

SIG_NAME: a valid STIL signal name as defined in the unnamed Signals blocks (see STIL.0 6.10).

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

69
Copyright ©2018 IEEE. All rights reserved.

P_NAME: optional parentheses-enclosed physical name or comma separated list of physical names. If used,
these names shall have the characteristics of alnum_id.

chan_stmt: a single CHAN_ID or a list of CHAN_IDs. A single channel is specified via CHAN_ID (see below).
Ganged channels,23 usually power supplies, may be specified by separating two or more CHAN_IDs with a
plus sign.

CHAN_ID: a tester channel identifier as specified by the ATE manufacturer. A channel identifier may take
one of the following forms:

 Keyword None, which means that no tester resource is connected to the signal.
 Metatype alnum_id as defined in 6.5, meaning that double quotes may be used to include otherwise

unacceptable characters in the channel name, e.g., "MCB231,11,o". Note that unlike in
STIL.0 6.10, which states that there is a distinction between quoted and unquoted signal names, in
this case, the quotes are NOT part of the actual channel name.

 An at-sign followed by an unsigned integer may be used to specify that a previously listed channel
is used, e.g., mappings

 sig_a 1f16, 1f16, 1f22, 1f22;

and

 sig_a 1f16, @1, 1f22, @3;

are equivalent.

The at-sign notation unequivocably states the intention: field 2 is connected to the same channel as field 1
and field 4 is connected to the same channel as field 3.

23 A ganged channel specification enumerates channels, each with a separate physical conduit a.k.a. a pogo pin. Channels that are
ganged within the tester by software and whose interface is a single conduit shall be specified by a single channel identifier,
presumably the master channel.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

70
Copyright ©2018 IEEE. All rights reserved.

19.3 SignalMap examples

Signals {
 DIR In;
 OE_ In;
 A0 InOut;
 A1 InOut;
 A2 InOut;
 A3 InOut;
 A4 InOut;
 A5 InOut;
 A6 InOut;
 A7 InOut;
 B[0..7] InOut;
 VCC Supply;
 VSS Supply;
}

// Single site – FOR BREVITY, NOT ALL SIGNALS ARE SHOWN
SignalMap mySingleSiteSignalMap {
 DIR ("1") 1;
 OE_ ("19") 10202;
 A0 ("2") A2;
 A1 ("3") "1609.115"; // MUST be quoted; CHAN_ID contains a period (.)

 . . .

 A6 ("8") "8"; // Quoted – but same channel resource ID as if unquoted
 A7 ("9") None;// No connection to tester channel
 B[0] (18) 20;
 B[1] (17) 21;

 . . .

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

71
Copyright ©2018 IEEE. All rights reserved.

 B[6] (12) 26;
 B[7] (11) None; // No connection to tester channel
 VCC ("20") DPS1;
 VSS ("10") GND;
}

Figure 38 —Diagram: single-site SignalMap with Signal names

and device pins assigned to tester resources

1
A2

1609.115
4
5
6
7
8

NC
GND

DPS1
10102
20
21
22
23
24
25
26
NC

Tester
Resource

Name

Device
Signal
Name

Package
Pin

Name

Site 1

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

72
Copyright ©2018 IEEE. All rights reserved.

// Multi site – FOR BREVITY, NOT ALL SIGNALS ARE SHOWN
SignalMap myDualSiteSignalMap {
 SiteMap 1,2;
 DIR ("1") 1, 101;
 OE_ ("19") 10202, 20202;
 A0 ("2") A2, B2;
 A1 ("3") "1609.115", "2609.115";

 . . .

 A6 ("8") "8", "108";
 A7 ("9") "9", "109";
 B[0] (18) 20, 120;
 B[1] (17) 21, 121;

 . . .

 B[6] (12) 26, 126;
 B[7] (11) 27, 127;
 VCC ("20") DPS1+DPS3, DPS2+DPS4;
 VSS ("10") GND, GND;
}

Figure 39 —Diagram: multi-site SignalMap with Signal names and
device pins assignments to tester resources

Site 1
Tester

Resource
Name

Device
Signal
Name

Package
Pin

Name

DPS1+DPS2
10102
20
21
22
23
24
25
26
27

1
A2

1609.115
4
5
6
7
8
9

GND

74245

A0
B0

Site 2
74245

DPS3+DPS4
20102
120
121
122
123
124
125
126
127

101
B2

2609.115
10410

105
106
107
108
109

GND

A0
B0

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

73
Copyright ©2018 IEEE. All rights reserved.

// Single site, showing multiple device pins (pads) connected to a
// single device signal and tester resource
SignalMap {
 DIR ("1") 1;
 OE_ ("19") 10202;
 A0 ("2") A2;
 A1 ("3") "1609.115"; // MUST be quoted; CHAN_ID contains a period (.)
 . . . // Remainder of signals not shown
 A6 ("8") "8";
 A7 ("9") "9";
 B[0] (18) 20;
 B[1] (17) 21;

 . . . // Remainder of signals not shown

 B[6] (12) 26;
 B[7] (11) 27;
 VCC ("20","22") DPS1; // Two pads, connected to one tester resource
 VSS ("10","21") GND;
}

// Multi site, showing multiple device pins (pads) connected to a
// single device signal and tester resource
SignalMap {
 SiteMap 1,2;
 DIR ("1") 1, 101;
 OE_ ("19") 10202, 20202;
 A0 ("2") A2, B2;
 A1 ("3") "1609.115", "2609.115";

 . . . // Remainder of signals not shown

 A6 ("8") "8", "108";
 A7 ("9") "9", "109";
 B[0] (18) 20, 120;
 B[1] (17) 21, 121;

 . . . // Remainder of signals not shown

 B[6] (12) 26, 126;
 B[7] (11) 27, 127;
 // Two VCC pads, connected to a ganged tester resource on each site
 // (Signal VCC, pins 20 and 22, is connected to DPS1+DPS3 for site 1
 // and DPS2+DPS4 for site 2). Resources for 2nd site are quoted, but
 // the meaning is the same as if they were unquoted.
 VCC ("20","22") DPS1+DPS2, "DPS3"+"DPS4";
 // (Signal VSS, pins 10 and 21, is connected to GND for site 1
 // and GND for site 2).
 VSS ("10","21") GND, GND;
}

// Multi site, showing various forms of the site_map_stmt, with comma-
// separated lists of sites and site ranges in SiteMap statement.

// Site list with lists and ranges
SignalMap {
 // Sites 1,2,4,6,7,8,11,13,14,15 – 10 sites total

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

74
Copyright ©2018 IEEE. All rights reserved.

 SiteMap 1,2,4,6..8,11,13..15;
 . . .
}

// Multi site with site layout specified
// Site layout name (QuadDiagLR) is optional.
SignalMap myQuadDiagSiteSignalMap {
 SiteMap 1,2,3,4 {

Layout QuadDiagLR: A1, B2, C3, D4;
}

 DIR ("1") 1, 101, 201, 301;
 OE_ ("19") 10202, 20202, 30202, 40202;
 A0 ("2") A2, B2, C2, D2;

 . . . // Remaining signals not shown

 VCC ("20") DPS1, DPS2, DPS3, DPS4;
 VSS ("10") GND, GND, GND, GND;
}

 1 2 3 4
A Site 1
B Site 2
C Site 3
D Site 4

Figure 40 —Diagram: multi-site SignalMap with diagonal site layout specified,
showing assignment of sites to grid positions in 4x4 grid

// Multi site with site layout specified
SignalMap myQuadDiagSiteSignalMap {
 SiteMap 1,2,3,4 { Layout QuadSquareCCW: A1, B1, B2, A2; }
 // Site 1 maps to grid position A1, site 2 to grid position B1,
 // site 3 to grid position B2, and site 4 to grid position A2.
 DIR ("1") 1, 101, 201, 301;
 OE_ ("19") 10202, 20202, 30202, 40202;
 A0 ("2") A2, B2, C2, D2;

 . . . // Remainder of signals not shown

 VCC ("20") DPS1, DPS2, DPS3, DPS4;
 VSS ("10") GND, GND, GND, GND;
}

 1 2
A Site 1 Site 4
B Site 2 Site 3

Figure 41 —Diagram: multi-site SignalMap with counterclockwise (CCW) site layout
specified, showing assignment of sites to grid positions in 2x2 grid

Mapping of site to site grid layout position to tester
channel mapping is one-to-one, left-to-right

(mapping for signal DIR shown below)
Site 1: grid layout position A1, tester channel 1
Site 2: grid layout position B2, tester channel 101
Site 3: grid layout position C3, tester channel 201
Site 4: grid layout position D4, tester channel 301

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

75
Copyright ©2018 IEEE. All rights reserved.

20. Device (FlowExtended)

20.1 General

A device may consist of a single chip or a package containing one or more chips including chip-to-package
connections. This clause describes a device and its connections to one or more testers. The syntax described
here may be used by an ATPRG or as an alternative to SignalMap when STIL.4 is used as the run-time
language on a tester.

Figure 42 —Diagram: Device block overview

A Chip block defines per-chip signals and signal groups by reference to top-level named or unnamed
Signal and SignalGroup blocks. The reference to unnamed Signal and SignalGroup blocks is
implicit. The effect of having both named and unnamed blocks is additive. A Package block defines per
package pins and planes. A Device block describes a device in terms of its composition, i.e., one or more
chips possibly packaged. Among other things, a Device block may specify the following:

 Signal-to-channel mapping
 Signal-to-package-pin or -plane mapping
 The test program used to test the device
 Per tester or test-head DCSequences
 Limited per test-head loadboard components
 Multi-site, MPW, and MCP testing

Chip, Package, and Device blocks are defined at the top level. At least one Chip and one Device
block is required to run a test program. Tester specific information is stored under the Device block in a
hierarchy that consists of Tester, TestHead, and Partition. Of these, Tester and TestHead
refer to hardware. Partition refers to the software partitioning of a TestHead. Each Partition
may run a different test-program (MPW or MCP) controlling a subset of test-head channels. A
Partition may test one or more devices (multi-site).

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

76
Copyright ©2018 IEEE. All rights reserved.

(Device DEVICE_NAME {
 (Chip CHIP_NAME;)+ // One chip or 1+ chips in a package or on a MPW
 (Package PACKAGE_NAME;)
 (Signals SIGNALS_NAME;) // Usually for open pin signals
 (SignalGroups SIGNAL_GROUPS_NAME;) // Usually for open pins signal group
 (PinMap { (SIG_NAME <PIN_NAME | PLANE_NAME>(,<PIN_NAME | PLANE_NAME>)*;)+ })
 (Components { (mounted_on { (element_stmt)* })* })*
 (Tester TESTER_NAME {
 (Components { (mounted_on { (element_stmt)* })* })*
 (DCSequence DCSEQ_NAME { … })*
 (TestHead (TESTHEAD_NAME) {
 (Components { (mounted_on { (element_stmt)* })* })*
 (DCSequence DCSEQ_NAME { … })*
 (Partition (PARTITION_NAME) {
 TestProgram TEST_PROGRAM_NAME;
 DeviceSites SITE_NR (, SITE_NR)* { // Per Tester site numbers
 (Layout (SITE_LAYOUT_NAME) (: site_layout);)
 channelmap_def // See 20.5
 } // End DeviceSites
 })+ // End Partition
 })+ // End TestHead
 })+ // End Tester
})+ // End Device

mounted_on ::= < Loadboard | Probecard | DUTBoard >);
A specific mounted_on keyword shall only be used once in the Components block, e.g., having two
Components sub-blocks labeled Loadboard is illegal.

element_stmt ::=
Capacitor NAME { Connect sigs; Value FARADS; (Tolerance (FARADS|PERCENT);) (Rating VOLTS;) } |
Diode NAME { Connect sigs; (Rating AMPERES;) (Vdrop VOLTS;) (Vbreak VOLTS;)} |
Inductor NAME { Connect sigs; Value HENRIES; (Tolerance PERCENT;) (Rating AMPERES;) } |
Resistor NAME { Connect sigs; Value OHMS; (Tolerance PERCENT;) (Rating WATTS;) } |
Switch NAME { Connect sigs; Type NO|NC,SPST|SPDT|DPST|DPDT; } |
Wire NAME { Connect sigs; }
sigs ::= (signal_name|.C.)+
PERCENT in this case signifies tolerance, e.g., 5% means ±5%.

Of the names used in the Device block BNF syntax description, the following shall use the alnum_id
syntax described in 6.5: CHAN_ID, CHIP_NAME, DEVICE_NAME, PACKAGE_NAME, PARTITION_NAME,
SITE_LAYOUT_NAME, and TESTHEAD_NAME. Previously defined objects adhere to the naming conventions
defined in their respective standards hence references to them via DCSEQ_NAME, SIGNALS_NAME,
SIGNAL_GROUPS_NAME, and SIG_NAME shall use name_segment syntax, whereas TEST_PROGRAM_NAME
shall use simple_identifier syntax24. TESTER_NAME although a STIL.4 construct, shall use name_segment
syntax for reasons described below under Tester.

channelmap_def: this metatype refers to the ChannelMap syntax described in 20.5.

24 Complexity arising from the fact that STIL.4 supports strings (characters surrounded by double quotes) is greatly reduced by
avoiding double quoted STIL.0/2/4 identifiers when possible. The addition of STIL.4 naming syntax alnum_id reduces the need for
enclosing identifiers in double quotes.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

77
Copyright ©2018 IEEE. All rights reserved.

Chip: one or more Chip statements, each representing an instance of a chip, shall be present.

When followed by keyword Package, the device consists of a package containing all previously listed
chips, be they the same or different.

When keyword Package is absent, the Chip statement shall refer to a chip on a wafer. Multi-site testing
of a single chip type requires only one Chip statement. Sites are specified via keyword DeviceSites
under Device/Tester/TestHead/Partition. Multi-project wafer test shall be specified via multiple
Chip statements. The first Chip statement represents device site 1, the second site 2, etc.

CHIP_NAME: a reference to a previously defined Chip block. This block carries with it Signals and
SignalGroups definitions which become visible to any TestProgram (including program related
timing and levels) specified within the Device block. To permit, e.g., two chips in one package with
both having VDD tied to a single package plane, identically named signals from two or more chips
shall be permitted provided they are electrically and functionally equivalent. Physical signal attribute
differences such as pad count, pad number, coordinates, and buffer instance names are not a factor in
establishing electrical and functional equivalency.

Components: this keyword introduces an optional block describing simple loadboard, probecard, or DUT-
board component connections. This block appears in three places. Via context, one is device specific, one is
tester specific, and one is test-head specific. For a particular test-head, these blocks are additive. Each block
specifies simple circuits, i.e., each device under test (DUT) signal may have one or more components
connected in parallel. The other side of the component connection may be another signal, e.g., a pull-up
resistor, or the channel associated with the signal, e.g., a series capacitor. For series connections, syntax
element .C. is used instead of the signal name to specify the connection to the tester-channel associated
with the signal via the ChannelMap. More complicated circuits, i.e., multiple components connected in
series and parallel, quickly lead to the need for a netlist which is outside the scope STIL.4. Allowing no
components would prevent ATPRGs from accounting for common simple circuits like resistors, capacitors,
and relays hence STIL.4 offers this middle-ground light-weight syntax.

The number of sigs specified for each component should match the number of terminals and are
positionally significant as shown in Figure 43, Figure 44, Table 16, and Figure 45.

Figure 43 —Diagram: relay terminals, normally open positions

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

78
Copyright ©2018 IEEE. All rights reserved.

Figure 44 —Diagram: component terminals

Table 16 —Component-dependent connect statement positional significance

Capacitor Connect Pos Neg;
Diode Connect P N;
Inductor Connect Pos Neg;
Resistor Connect A B;
Switch(SPST) Connect Lpos Lneg P T;
Switch(SPDT) Connect Lpos Lneg P T1 T2;
Switch(DPST) Connect Lpos Lneg P1 T1 P2 T2;
Switch(DPDT) Connect Lpos Lneg P1 T1a T1b P2 T2a T2b;
Wire Connect A B;

x1 Components {
 2 Loadboard {
 3 Capacitor C1 { Connect .C. sig_o; Value 8pF;
 4 Tolerance 0.05pF; Rating 50V; }
 5 Diode D1 { Connect GND sig_qb;
 6 Rating 100mA; }
 7 Inductor L1 { Connect sig_qb sig_o; Value 1mH;
 8 Tolerance 10%; Rating 100mA }
 9 Resistor R1 { Connect sig_q .C.; Value 50R;
10 Tolerance 10%; Rating 0.25W; }
11 Switch S1 { Connect sig_control GND sig_qb .C. alt_chan;
12 Type NO,SPDT; }
13 Wire W1 { Connect sig_q sig_o; }
14 }
15 }

Figure 45 —Example: loadboard components

The following text points out salient syntactical features in the example of Figure 45:

 Line 1: the Components block describes loadboard components and their connections.
 Line 2: this is a keyword indicating the components in the following brace enclosed block are

connected on the loadboard.
 Line 3: capacitor C1’s contact point Pos is connected to the tester-channel(s) associated with

device signal sig_o. Contact point Neg is connected to device signal sig_o. A channel per site
is associated with a signal in the ChannelMap block.

 Line 5: diode D1’s contact point P is connected to signal GND, presumably ground, and contact
point N is connected to device signal sig_qb.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

79
Copyright ©2018 IEEE. All rights reserved.

 Line 7: the inductor connects two signals on the device.
 Line 9: resistor R1’s contact point A connects to device signal sig_q and contact point B connects

to the channel(s) associated with device signal sig_q.
 Line 11: loadboard relays are controlled via the DCSequence block Switch statement explained

in Clause 14. For control on a per test basis, see DCSequence in 35.6.
 Line 13: a wire is treated as an easily distinguishable 0 Ohm resistor. In this case resistor W1’s

contact point A connects to device signal sig_q and contact point B connects to the channel(s)
associated with device signal sig_o.

DCSequence: this keyword introduces a power up/down sequence definition as specified in STIL.2. A
DCSequence may be defined at the top (global), Tester, and TestHead levels. Of these, the one
closest to the local scope shall apply.

DCSEQ_NAME: represents one of standard names InitialSetup, EndOfProgram, PowerRaise,
PowerLower,25 or user-defined User USER_DEFINED_NAME. All standard named DC-sequences
shall be applied via the execution sequence emanating from entry-point On START. InitialSetup
shall be applied before the first DCLevels. EndOfProgram shall be applied after entry-point On
START relinquishes control. PowerRaise/PowerLower shall be applied if any power-supply levels
rise/fall in absolute value of programmed voltage. PowerRaise/PowerLower shall be applied
before the DC levels that would cause that rise/fall are set. If some power supply levels rise while
others fall, PowerRaise/PowerLower shall not be applied. Application of a user-defined sequence
shall be specified on a per test basis via its DCSequence parameter.

Device: the device name represents one or more chips or a combination chip(s), package, and wire
bonding. Multiple device blocks may be specified for the purpose of parallel testing, e.g., on separate test-
heads. No two device blocks may have the same name. At the user's discretion the device name may be the
same as the chip name, presumably for wafer test. The presence of more than one chip in a device
specification indicates a multi-project/product wafer (MPW), multi-chip package (MCP), or multi-chip
module (MCM).26

DeviceSites: this keyword refers to one or more device sites by number. At wafer test, device sites are chip
sites. For multi-project wafers, different chips may occupy individual sites. At package test, device sites are
package sites. Although all packages are identical, each package may contain one or more potentially
different chips.

SITE_NR: an integer zero or greater. Each site number listed is tested via test program
TEST_PROGRAM_NAME. Each device site number shall be unique within the Tester block. See
ChannelMap for signal-to-channel mapping statements.

Layout: this keyword introduces physical, single-layer, tiled, multi-site layout information.

SITE_LAYOUT_NAME: an arbitrary name, normally optional, shall be required to distinguish between
two or more DeviceSites statements that have the same site count and layout. Examples: horizontal,
vertical, diagonal, or probecard or loadboard name.

25 Even though DCSequence statements are optional, it is good practice to define at least InitialSetup and EndOfProgram.
Without these, target tester default behavior shall be invoked. InitialSetup/EndOfProgram definitions should be paired.
PowerRaise/PowerLower definitions should be paired. Top-level DCSequence definitions are discouraged because they apply
to every tester that does not have a local definition regardless of its architecture or capabilities.
26 When multiple cores are wrapped in a hardware structure such as defined by IEEE Std 1500, they should collectively be defined as a
single chip. When multiple cores are not wrapped in a hardware structure, they may be defined as individual chips, one per core type.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

80
Copyright ©2018 IEEE. All rights reserved.

site_layout: a comma-separated list of site locations each specified using the pin grid array (PGA) pin
naming convention (top view). For example, the statement in Figure 46 maps sites 1 and 3 to A1 and B2,
i.e., A1 in 1st position maps to site 1, B2 in 2nd position maps to site 3, etc.

DeviceSites 1, 3 {
 Layout DiagonalLR: A1, B2;
 ...
}

Figure 46 —Example: device site layout

The syntax of Figure 46 describes the layout depicted in Figure 47.

 1 2

A
Site

1

B
Site
 3

Figure 47 —Diagram: device site layout

Partition: this keyword is used to enumerate software partitions on a test-head. Each partition executes a
test-program that controls the channels specified under the DeviceSites block active at runtime.

Package: this keyword specifies a package27 containing all chips previously listed in the Device block.
The brace enclosed block contains PinMap which offers syntax for specifying Signal-to-package-pin
connections, part of the chip-to-tester connectivity. A semicolon terminated package specification is
incomplete however a tool may import these connections from a non-STIL.4 source.

PACKAGE_NAME: a reference to a previously defined Package block.

PinMap: this keyword introduces one or more chip-signal-to-package-pin or -package-plane mappings
using syntax shown under meta-type pkg_attributes. This map facilitates including the package in an
ATPRG’s Device chip-to-tester connectivity.

SIG_NAME: the signal name shall be drawn from the unnamed STIL.0 Signals block, Signals
block(s) referenced by the chip(s) named in the Device block, or Signals block referenced in the
Device/Package block. No one of these Signals blocks is required but at least one shall be
present to have a pool of signal names to draw from.

PIN_NAME: a reference to a package pin name as defined in a top-level Package block. Only pin
names from the package referenced in the Device block shall be used. Keyword None may be used
to specify a chip signal that is not connected to any package pin.

Package composition and individual mapping statements correlate like this:

 When the package is composed of one chip, a SIG_NAME maps to a PIN_NAME or PLANE_NAME.
 When the package is composed of multiple chips of the same kind, one SIG_NAME maps to two or

more PIN_NAME or PLANE_NAME separated by commas. The first PIN_NAME or PLANE_NAME

27 The package referred to by name may have been defined by the user earlier in the input stream or by an ATPRG library‘s package
description library.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

81
Copyright ©2018 IEEE. All rights reserved.

corresponds to the first Chip statement, the second PIN_NAME or PLANE_NAME corresponds to the
to the second Chip statement, etc.

 Exception: a SIG_NAME of signal subtype Open28 always maps to one PIN_NAME or PLANE_NAME.

Signals: this optional keyword introduces a reference to a named Signals block usually used to define
signals representing package pins not connected to the chip. These signals may be used to test for electrical
isolation on unused pins. An ATPRG may deduce this information given the chip’s signals and the package
PinMap. All identifiers within the SignalGroups and Signals blocks shall share the signal
namespace within the Device block where they are used. That namespace shall be visible to the
TestProgram specified lower in the Device block hierarchy. Refer to 8.2 for signal details.

SignalGroups: this optional keyword introduces a reference to a named SignalGroups block usually
used to define signal groups representing package pins not connected to the chip.29 These signal groups
may be used to test for electrical isolation on unused pins. An ATPRG may deduce this information given
the chip’s signals and the package PinMap. All identifiers within the SignalGroups and Signals
blocks brought together here shall share the Device block’s signal namespace. That namespace shall be
visible to the TestProgram specified lower in the Device block hierarchy. It is recommended that signal
attributes be defined only in the corresponding signals block. Refer to 8.2 for signal details.

Tester: this keyword is used to introduce information which is generally repeated on a per target tester
basis to describe, e.g., tester-specific loadboard components, which test-head to use and how it is
partitioned.

When more than one configuration of an ATE manufacturer's tester model is available, TESTER_NAME
represents one of those configurations. TESTER_NAME shall be unique among tester names within the
Device block. This allows an ATPRG to determine the resources and constraints behind each tester-
channel, presumably from its own database, possibly via STIL.3.30

To provide a disciplined method for mapping TESTER_NAME to STIL.3 test resource constraints (TRC) and
maximum portability between ATPRGs, the following convention is suggested for TESTER_NAME:

"VENDOR_NAME, MODEL_NAME, CONFIGURATION_NAME"

Since TESTER_NAME uses name_segment syntax, the quoted id containing comma field separators is legal.
The VENDOR_NAME allows an ATPRG targeting that vendor’s tester to ignore all other vendor’s tester
descriptions in its database. The MODEL_NAME allows an ATPRG to target a specific language and implies
some generic limitations. An ATPRG may be able to generate a test program on the basis of VENDOR_NAME
and MODEL_NAME alone, albeit with limited error checking. The CONFIGURATION_NAME may specify the
configuration of a specific tester or a group of testers of which this configuration is emblematic. The
CONFIGURATION_NAME is the least portable of the three however it alone is sufficient for test program
generation with maximal error checking. Although not recommended, TESTER_NAME containing only the
CONFIGURATION_NAME would be two commas followed by the name like this:

",,CONFIGURATION_NAME"

If a model name has major and minor components, separate them with a colon like this:

"VENDOR_NAME, MAJOR_MODEL_NAME : MINOR_MODEL_NAME, CONFIGURATION_NAME"

28 The signal name in this case is an alias for the package pin that is not bonded to a pad. That signal name may then be used to test the
pin to be sure it is isolated.
29 The norm is to define a single signal-group representing unconnected pins. A signal-group definition in this context may also be
used for scalable devices, e.g., a group named DATABUS may contain 32 signals for one device and 64 for another. Both devices
may then use the same levels and timing associated with DATABUS.
30 STIL.4 does not include tester resource and constraint description syntax.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

82
Copyright ©2018 IEEE. All rights reserved.

TestHead: this keyword introduces one or more test-head usage descriptions, i.e., the block contains one or
more software partitions, each of which controls a set of tester-channels located on that test-head.
TESTHEAD_NAME shall be unique among test-head names within the Tester block, i.e., when testing the
same type of device on multiple test-heads. TESTHEAD_NAME shall be unique among different Device
blocks when it applies to different devices tested in parallel on different test-heads on the same tester.

TestProgram: this keyword introduces forward reference TEST_PROGRAM_NAME which specifies the test
program to use in this context.

20.2 STIL.2: DC levels

STIL.4 supports per tester/testhead specific definitions for DCSequence InitialSetup,
PowerRaise, PowerLower, EndOfProgram, and User in addition to top-level namespace
definitions specified in STIL.2 Clause 12. For a DCSequence defined under the Device block,
STIL.4 ignores the optional SignalGroups statement. This is because the Device block already has
the relevant signals and signal groups imported into its environment via its Chip and Package
statements. The use of top-level DCSequence definitions is discouraged because different testers likely
require different sequences.

20.3 Chip

(Chip CHIP_NAME; | Chip CHIP_NAME { (chip_attributes) })+

Chip: this keyword introduces a required block defining a chip type/design.

CHIP_NAME: this name shall be used to distinguish one chip type/design from another.

chip_attributes ::=
 (Signals SIGNALS_NAME;)
 (SignalGroups SIGNAL_GROUPS_NAME;)

The signals associated with Chip shall be the sum of the signals defined in the unnamed Signals
block and the signals defined in the named Signals block, which may optionally be referenced.
Similar logic applies to SignalGroups.

SignalGroups: this optional keyword introduces a reference to a previously defined SignalGroups
block named SIGNAL_GROUPS_NAME. All identifiers within the SignalGroups and Signals
blocks shall share the signal namespace within the Device block where they are used including the
unnamed SignalGroups and Signals blocks. That namespace shall be visible to the
TestProgram specified lower in the Device block hierarchy. It is recommended that signal
attributes be defined only in the signals block. Refer to 8.2 for signal details.

Signals: this optional keyword introduces a reference to a previously defined Signals block named
SIGNALS_NAME. All identifiers within the SignalGroups and Signals blocks shall share the
signal namespace within the Device block where they are used including the unnamed
SignalGroups and Signals blocks. That namespace shall be visible to the TestProgram
specified lower in the Device block hierarchy. Refer to 8.2 for signal details.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

83
Copyright ©2018 IEEE. All rights reserved.

For example, the following statement associates the sum of definitions from the unnamed Signals
block, the unnamed SignalGroups block, and the SignalGroups block named B2809 with chip
B2809:

 Chip B2809 { SignalGroups B2809; }

20.4 Package

(Package PACKAGE_NAME { pkg_attributes })*

Package: this keyword introduces an optional block defining a package or MCM type.

PACKAGE_NAME: this name shall be used to distinguish one package type from another, e.g.,
196_BGA. Specific identifier rules are defined by metatype stil4_ alnumid (6.5)

pkg_attributes ::= PinList (PIN_COUNT) { pinlist_expr }
 (Plane PLANE_NAME { pinlist_expr })*

pkg_attributes: enumerates pin and plane names and provides for signal-to-pin mappings. All pin and
plane names shall be unique for the package, i.e., they exist in the same namespace. These optional
attributes help an ATPRG keep track of connections and generate signals for unused package pins
should the need arise to test them for isolation. The user may choose to define unused package pin
signals within the Device block.

pinlist_expr ::= PIN_NAME | pinrange_expr (,PIN_NAME | ,pinrange_expr)*
PIN_NAME ::= pos_int | upcase_letter+ pos_int
pinrange_expr ::= number_range |
 upcase_letter+ [number_range] |
 [letter_range] [number_range] |
 [letter_range] pos_int
letter_range ::= upcase_letter+..upcase_letter+
number_range ::= pos_int..pos_int

PinList: optional keyword names all pins associated with the package. The word pins is used
figuratively to denote contact points, be they actual pins, balls, or something else. Shorthand notation
may be used for listing pin names, e.g., A[1..2] yields PGA pin names A1 and A2;
[A..C][1..3] yields PGA pin names A1, A2, A3, B1, B2, B3, C1, C2, and C3. Bracket enclosed
ranges shall be ordered alphabetically or numerically from low to high. Range [Z..AB]1 generates
Z1, AA1, AB1, etc. Pins that are enumerated in PinList but not associated with a signal are deemed
to be unconnected unless mentioned under Plane in which case they are connected only to each
other. Signal-to-pin association shall be specified in block Device/Package/PinMap.

PIN_COUNT: an optional unsigned integer indicating the total number of package pins. This integer
may be used as a cross-check for the number of individual pins specified via pinlist_expr.

pinlist_expr: one or more pins. The pins are either named individually or generated by a
pinrange_expr, or a combination of the two.

PIN_NAME: either an integer greater than zero, or upper-case letter(s) followed by an unsigned
integer.

pinrange_expr: a range of two or more pin names, each of which shall conform to the PIN_NAME
definition.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

84
Copyright ©2018 IEEE. All rights reserved.

letter_range: range shall be from low to high. The first range element shall be lexically less than
the second.

number_range: range shall be from low to high. The first range element shall be numerically less
than the second.

Plane: lists pins, a subset of PinList, tied together to form a single electrical node usually for power
or ground. The shorthand notation used for PinList may be used to enumerate pins in the plane.

PLANE_NAME: a meta-type simple_identifier conforming identifier, unique within the Package
block, e.g., A, B, PWR1, or GND.

pinlist_expr: the format is the same as pinlist_expr as defined for PinList but only pin names from the
package PinList shall be used. No pin shall appear in more than one plane.

20.5 Channel map

This structure maps signal names to tester-channel names for a particular tester, test-head, and test-head
partition.

channelmap_def ::=
 ChannelMap {
 (SIG_NAME chan_stmt (,chan_stmt)*; |
 SIG_NAME chan_stmt (,chan_stmt)* { (chan_config)* } |
 SIG_NAME [chan_stmt (,chan_stmt)*] ([chan_stmt (,chan_stmt)*])*; |
 SIG_NAME [chan_stmt (,chan_stmt)*] ([chan_stmt (,chan_stmt)*])* { (chan_config)* })*
 }

chan_stmt ::= CHAN_ID | CHAN_ID (+CHAN_ID)+ | CHAN_ID[num_list];

num_list ::= < pos_int | pos_int..pos_int > (,< pos_int | pos_int..pos_int >)*

chan_config ::= ChanDirection < In | Out | InOut >;

chan_config: distinguishes signal attributes from channel attributes. See ChanDirection below.

ChannelMap: this keyword introduces a block defining signal-to-tester-channel mappings. One map per
DeviceSites block may be defined.

Each mapping is a signal name followed by comma separated channels where the number of channels shall
correspond to the number of signals to be mapped. For example, a simple device consisting of one chip in
one package requires one channel per signal. Dual site testing usually requires two channels per signal. The
first channel corresponds to the first SITE_NR of the DeviceSites statement, the second to the second,
etc. The mapping may be terminated by a semi-colon or a brace-enclosed block containing a channel
configuration.

For wafer test, the Device block has one or more Chip specifications and no Package specification. If
there is only one Chip statement in the Device block, then instances of that chip are automatically
replicated to accommodate specified site numbers. If there is more than one Chip statement in the
Device block, then the first Device block Chip statement represents site 1, the second site 2, etc. When
mapping a signal, ChannelMap associates a channel name with each site number by position. For
example, given statement DeviceSites 1,3 the first CHAN_ID applies to site 1, the second to site 3.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

85
Copyright ©2018 IEEE. All rights reserved.

For package test, the Device block has one or more Chip specifications and one Package specification.
If there is only one Chip statement in the Device block, then the package contains that one chip. If there
is more than one Chip statement in the Device block, then the packaged device is composed of the chips
listed. The chips listed may all be of the same type or not. In this context, statement DeviceSites 1,3
refers to package sites. To better visualize grouping, an optional alternative mapping syntax enclosing
comma separated channel names in brackets is offered. Each set of brackets encloses channels for a single
package site. For statement DeviceSites 1,3 the first set of brackets shall contain channels for
package site one, the second set, channels for package site three. The Device block specified package and
chips are automatically replicated to match the number of sites.

SIG_NAME: the signal name shall be drawn from the unnamed STIL.0 Signals block, the Signals
block(s) referenced by the chip(s) named in the Device block, or the Signals block referenced in
the Device block. No one of these Signals blocks is required but at least one shall be present to
have a pool of signal names to draw from.

chan_stmt: this statement specifies one or more tester-channels. A single channel is specified via
CHAN_ID. Ganged channels,31 usually power supplies, may be specified by separating two or more
CHAN_IDs with a plus sign. Alternatively, ganged channels may be specified by a bracketed expression
suffix that expands into multiple identifiers, e.g., PWR[1,3..5] is equivalent to
PWR1+PWR3+PWR4+PWR5. Bracketed numeric values shown in metatype num_list as pos_int, shall
be greater than 0 listed in ascending order.32

CHAN_ID: a tester-channel identifier as specified by the ATE manufacturer.33 A channel identifier may
take one of the following forms:

 Keyword None means that no tester-channel is connected to the signal.
 A alnum_id as defined in 6.5 means that double quotes may be used to include otherwise

unacceptable characters in the channel name, e.g., "MCB231,11,o". Unlike in STIL.0, the
quotes are not part of the actual channel name.

 An at-sign followed by an unsigned integer may be used to specify that a previously listed
channel is used, e.g., mappings sig_a 1f16, 1f16, 1f22, 1f22; and sig_a
1f16, @1, 1f22, @3; are equivalent. The at-sign notation unequivocably states the
intention: field 2 is connected to the same channel as field 1 and field 4 is connected to the
same channel as field 3. The preceding field numbers are equivalent to site numbers if the
channel map is enclosed by block DeviceSites 1,2,3,4, since each field corresponds
to its respective enumerated site.

ChanDirection: this per-signal attribute should be used only when tester-channel directionality (In, Out,
InOut) is different from the device signal directionality.34 Unnecessary use may introduce unintentional
errors. Even though this attribute specifies channel direction, its parameter is from a device point of view,
i.e., In implies that the channel may drive, Out implies that channel may compare. This is in keeping with
how most testers label the direction of the associated SIG_NAME.

31 A ganged channel specification enumerates channels, each with a separate physical conduit a.k.a. a pogo pin. Channels that are
ganged within the tester by software and whose interface is a single conduit shall be specified by a single channel identifier,
presumably the master channel.
32 For simplicity’s sake, metatype num_list BNF permits a single member list, e.g., PWR[1]; however, ganging a single channel
should be flagged as an error.
33 Each tester may have a unique naming scheme. CHAN_ID names the conduit, the physical manifestation of which is the pogo pin.
The distinction is made because in some cases the tester resource behind the channel may be switched at runtime.
34 This attribute may be used to constrain a channel to operate in Out (comparator) mode for an InOut device signal. Alternatively,
some testers require that a channel be configured as InOut for a particular test-type whereas signal directionality is In or Out. The
separation facilitates retention of device signal directionality information.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

86
Copyright ©2018 IEEE. All rights reserved.

20.6 Multi-site/MPW testing

By default all mutable (non-const) objects are implicitly replicated per site. For example, for a tester with
one testhead divided into two partitions, both partitions running the same test program, one with 2 sites, the
other with 1, each mutable object has 3 instances in effect. The set of mutable objects includes variables,
spec-variables, tests, and soft and hard bins.

Variable attribute SiteSharePer may be used to define variables that are shared across sites on a per-
tester, test-head, or partition basis.

For MPWs, a Device block with multiple chips and no package may be defined.

20.7 Device block examples

The Signals, SignalGroups, Chip, and Package blocks in Figure 48 are defined for reference
by subsequent Device block examples:

x1 Signals {
 2 IN0 In;
 3 IN1 In;
 4 IO[0..1] InOut;
 5 OUT Out;
 6 VDD Supply;
 7 VSS Ground;
 8 }
 9 SignalGroups {
10 IOS = 'IO[0] + IO[1]';
11 ALLSIGS = 'IN0 + IN1 + IO[0] + IO[1] + OUT';
12 }
13 Chip B35 {} // Uses unnamed Signals and SignalGroups blocks
14 // ---
15 Package 16DIP {
16 PinList { 1..16 } // Pin names 1 through 16
17 Plane A { 5, 8; } // Plane A connects pins 5 and 8
18 Plane B { 12, 16; } // Plane B connects pins 12 and 16
19 }
20 Signals TWO_B35_IN_16DIP {
21 open3 InOut+Open; // No internal connections on package pin 3
22 open4 InOut+Open; // No internal connections on package pin 4
23 open11 InOut+Open; // No internal connections on package pin 11
24 open13 InOut+Open; // No internal connections on package pin 13
25 }
26 SignalGroups TWO_B35_IN_16DIP {
27 opens = 'open3 + open4 + open11 + open13';
28 }
29 // ---
30 Package 6DIP {
31 PinList { 1..6 } // Pin names 1 through 6
32 }
33 SignalGroups B35_IN_6DIP {
34 opens = '';
35 }

Figure 48 —Example: Signals, SignalGroups, chip, and package definitions

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

87
Copyright ©2018 IEEE. All rights reserved.

The following text points out salient syntactical features in the example of Figure 48:

 Lines 1–8: defines signals for every chip due to the fact that the Signals block is unnamed. The
unnamed Signals block can be used to define common denominator signals for a chip family.

 Lines 9–11: defines signal groups for every chip due to the fact that the SignalGroups block is
unnamed. The unnamed SignalGroups block can be used to define common denominator signal
groups for a chip family.

 Line 12: defines fictional chip B35. Chip signals and signal groups come from the unnamed
Signals and SignalGroups blocks. Were there a reference to a named Signals block
within the associated Chip block braces, chip signals would be the sum of signals in the unnamed
and named Signals blocks. The summing would apply also were there a reference to a named
SignalGroups block.

 Lines 14–18: block defines fictional package 16DIP. Keyword Package can also be used to
define a MCM.

 Line 15: enumerates package pin names 1 through 16 via an expandable expression.
 Lines 16–17: defines package planes A and B where plane A is connected to pins 5 and 8 and plane

B is connected to pins 12 and 16.
 Lines 19–24: arbitrarily named signals block for subsequent reference.
 Lines 25–27: arbitrarily named signal groups block for subsequent reference.
 Lines 29–31: block defines fictional package 6DIP.
 Line 33: there are no internally unconnected package pins. Timing and levels associated with

empty signal group opens are not applied; therefore. the same timing and levels can be used for
chip B35 at wafer or enclosed in different packages.

Figure 49 shows a diagram of a single-side wafer test.

Figure 49 —Diagram: single-site wafer test

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

88
Copyright ©2018 IEEE. All rights reserved.

The Device block example in Figure 50 is for single-site testing of a chip.

x1 Device B35_WAFER {
 2 Chip B35;
 3 Tester "Verigy, 93000, standard_digital" {
 4 DCSequence InitialSetup { // Beginning of program
 5 '0s' VDD { Apply '0V'; }
 6 '1ms' VDD { Connect Supply; }
 7 '100us' VDD { Apply; }
 8 '1ms' ALLSIGS { Connect Load; Connect Driver Comparator; }
 9 }
10 DCSequence EndOfProgram { // End of program
11 '0s' 'VDD+ALLSIGS' { Ramp '5ms' '0V'; }
12 '6ms' ALLSIGS { Disconnect Driver Comparator; }
13 '1ms' VDD { Disconnect Supply; }
14 }
15 TestHead {
16 Partition {
17 TestProgram B35_WAFER;
18 DeviceSites 1 {
19 ChannelMap {
20 IN0 10101;
21 IN1 10102;
22 OUT 10103;
23 IO[0] 10104;
24 IO[1] 10105;
25 VDD 10106;
26 VSS gnd;
27 } // End ChannelMap
28 } // End DeviceSites
29 } // End Partition
30 } // End TestHead
31 } // End Tester
32 } // End Device

Figure 50 —Example: Device block for single-site wafer test

The following line comments refer to Figure 50:

 Line 2: reference to a previously defined chip.
 Lines 4–5: these are two DCSequence blocks, each followed by a standard id and brace enclosed

block. The id and ellipses represent code specified by STIL.2. Both sequences apply to the
following TestHead statement since overrides, sequences of the same name, are not defined in
the TestHead block.

 Line 8: keyword TestProgram is followed by a forward reference to the test program that is to
be executed by this partition. Program TWO_B35_IN_16DIP is omitted from this example in
order to focus on the device/tester interface.

 Lines 10–18: keyword ChannelMap is followed by a brace enclosed block of signal-to-tester-
channel mappings. All signals shall be accounted for, i.e., all unnamed Signals block signals and
any signals from named Signals blocks referenced in the Chip and Device/Package blocks.
Channel names used in this example represent different tester naming conventions to point out
syntax usage.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

89
Copyright ©2018 IEEE. All rights reserved.

Figure 51 shows a diagram of a single-side package test.

Figure 51 —Diagram: single-site package test

The Device block example in Figure 52 is for single-site testing of a chip in a package:

x1 Device B35_IN_6DIP {
 2 Chip B35;
 3 Package 6DIP;
 4 SignalGroups B35_IN_6DIP;
 5 PinMap { // Signal-to-package-pin map
 6 IN0 1;
 7 IO[0] 2;
 8 IO[1] 4;
 9 OUT 5;
10 VDD 6;
11 VSS 3;
12 }
13 Tester "Verigy, 93000, standard_digital" {
14 DCSequence InitialSetup { // Beginning of program
15 '0s' VDD { Apply '0V'; }
16 '1ms' VDD { Connect Supply; }
17 '100us' VDD { Apply; }
18 '1ms' ALLSIGS { Connect Load; Connect Driver Comparator; }
19 }
20 DCSequence EndOfProgram { // End of program
21 '0s' 'VDD+ALLSIGS' { Ramp '5ms' '0V'; }
22 '6ms' ALLSIGS { Disconnect Driver Comparator; }
23 '1ms' VDD { Disconnect Supply; }
24 }

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

90
Copyright ©2018 IEEE. All rights reserved.

25 TestHead {
26 Partition {
27 TestProgram B35_IN_6DIP;
28 DeviceSites 1 { // Device (package) site number
29 ChannelMap {
30 IN0 10101, @1, @1, @1{ ChanDirection InOut; }
31 IN1 None, None, None, None;
32 OUT 10103;
33 IO[0] 10105;
34 IO[1] 10107;
35 VDD 11,13;
36 VSS gnd;
37 } // End ChannelMap
38 } // End DeviceSites
39 } // End Partition
40 } // End TestHead
41 } // End Tester
42 } // End Device

Figure 52 —Example: Device block for single-site package test

The following line comments refer to Figure 52:

 Line 2: reference to a previously defined chip.
 Line 3: reference to a previously defined package.
 Lines 4–12: package information specifically for this device, i.e., this chip/package/wire-bonding

combination.
 Line 14: keyword Tester is followed by a quoted string conforming to the suggested convention,

i.e., identifying vendor, model, and configuration, in that order.
 Lines 15–16: these are two DCSequence blocks, each followed by a standard id and brace

enclosed block. The id and ellipses represent code specified by STIL.2. Both sequences apply to
the following TestHead statement since overrides, i.e., sequences of the same name, are not
defined in the TestHead block.

 Lines 21–29: keyword ChannelMap is followed by a brace enclosed block of signal-to-tester-
channel mappings. All signals shall be accounted for, i.e., all unnamed Signals block signals and
any signals from named Signals blocks referenced in the Chip and Device/Package blocks.

Figure 53 shows a diagram of a dual chip package (dual site testing).

The Device block example in Figure 54 is for a 2 chip package with individual chips bonded directly to
package pins, i.e., no wrapper.35

35 If the two chips were enclosed in a hardware wrapper, they should be treated as though they were one.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

91
Copyright ©2018 IEEE. All rights reserved.

Figure 53 —Diagram: dual chip package, dual site testing

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

92
Copyright ©2018 IEEE. All rights reserved.

x1 Device TWO_B35_IN_16DIP {
 2 Chip B35; // 1st chip in package
 3 Chip B35; // 2nd chip in package
 4 Package 16DIP;
 5 Signals TWO_B35_IN_16DIP;
 6 SignalGroups TWO_B35_IN_16DIP;
 7 PinMap { // Signal-to-package-pin map
 8 IN0 1, 6; // 1st, 2nd chip associated pin numbers
 9 IO[0] 2, 7;
10 IO[1] 9, 14;
11 OUT 10, 15;
12 open3 3;
13 open4 4;
14 open11 11;
15 open13 13;
16 VDD B; // Maps signal to plane-name
17 VSS A; // Maps signal to plane-name
18 }
19 Tester "Verigy, 93000, standard_digital" {
20 DCSequence InitialSetup { // Beginning of program
21 '0s' VDD { Apply '0V'; }
22 '1ms' VDD { Connect Supply; }
23 '100us' VDD { Apply; }
24 '1ms' ALLSIGS { Connect Load; Connect Driver Comparator; }
25 }
26 DCSequence EndOfProgram { // End of program
27 '0s' 'VDD+ALLSIGS' { Ramp '5ms' '0V'; }
28 '6ms' ALLSIGS { Disconnect Driver Comparator; }
29 '1ms' VDD { Disconnect Supply; }
30 }
31 TestHead {
32 Partition {
33 TestProgram TWO_B35_IN_16DIP;
34 DeviceSites 1,2 { // Device (package) site numbers
35 ChannelMap {
36 IN0 10101, @1, @1, @1{ ChanDirection InOut; }
37 IN1 None, None, None, None;
38 OUT [10103, 10104][10201, 10202];
39 IO[0] [10105, 10106][10203, 10204];
40 IO[1] [10107, 10108][10205, 10206];
41 open3 10109, 10110;
42 open4 10111, 10112;
43 open11 10113, 10114;
44 open13 10115, 10116;
45 VDD 11,13;
46 VSS gnd;
47 } // End ChannelMap
48 } // End DeviceSites
49 } // End Partition
50 } // End TestHead
51 } // End Tester
52 } // End Device

Figure 54 —Example: Device block for dual chip package, dual site testing

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

93
Copyright ©2018 IEEE. All rights reserved.

The following line comments refer to Figure 54:

 Line 1: keyword Device is followed by an id representing a chip/package/wire-bond combination.
 Lines 2–3: the two references to a previously defined chip imply that there are two chips in this

device. Were there no following package reference, these two lines would not make sense because
the chip names are the same.

 Lines 4–18: block refers to a previously defined package and adds information unique to this
device.

 Lines 5–6: refers to previously defined signal and signal group blocks. Their contents describe
signals and signal groups that are applicable to this device, i.e., chip/package/wire-bonding
combination only.

 Lines 8–17: maps signals to package pins or planes. Note that signals open3, open4, open11,
and open13 from the named Signals block are mapped and that signals VDD and VSS are
mapped to their respective planes.

 Line 20: keyword Tester is followed by a quoted string conforming to the suggested convention,
i.e., identifying vendor, model, and configuration, in that order.

 Lines 21–22: these are two DCSequence blocks, each followed by a standard id and brace
enclosed block. The id and ellipses represent code specified by STIL.2. Both sequences apply to
the following TestHead statement since overrides, sequences of the same name, are not defined
in the TestHead block.

 Line 23: keyword TestHead requires no name since there is only one. If more than one test-head
is used, unique names shall be required. TestHead represents a physical entity.

 Line 24: keyword Partition is unnamed since there is only one partition. Multiple partitions
divide the test-head into separately programmable entities, e.g., for a multi-project wafer. If more
than one partition is used, names unique to TestHead shall be required. A channel may be
controlled by one partition only.

 Line 25: keyword TestProgram is followed by a forward reference to the test program that is to
be executed by this partition. Program TWO_B35_IN_16DIP is omitted from this example in
order to focus on the device/tester interface.

 Line 26: keyword DeviceSites defines sites 1 and 2. Site numbers shall be greater than zero
but need not be sequential or contiguous.

 Line 27: keyword ChannelMap is followed by a brace enclosed block of signal-to-tester-channel
mappings. All signals shall be accounted for, i.e., all unnamed Signals block signals and any
signals from named Signals blocks referenced in the Chip and Device/Package blocks.
Channel names used in this example represent different tester naming conventions to point out
syntax usage.

 Line 28: signal IN0 is mapped to a channel name quoted to include otherwise illegal id characters.
Two channels are listed for packaged device site 1, and two for site 2. The at-sign notation
indicates that all four connections are to the channel named in channel field one. Keyword
ChanDirection is used to indicate that the tester-channel configuration does not match the
signal direction, i.e., In, InOut, or Out. Some testers may insist that in order to perform a certain
kind of test, the tester-channel configuration shall be InOut even though the signal is of type In.
In this way we maintain the signal type.

 Line 29: signal IN1 is mapped to no tester-channel, twice for site 1 and twice for site 2.
 Line 30: signal OUT is mapped to one tester-channel for site 1 and another for site 2. This line uses

an alternative notation offered for packaged devices that encloses each site in brackets for easier
visualization. Channel field numbers are in the same sequence they would be without brackets.

 Lines 31–32: these are mappings for signals originally defined as IO[0..1].
 Lines 33–36: these are mappings for unconnected package pin signals.
 Line 37: signal VDD is mapped to one power supply per site.
 Line 38: signal VSS is mapped to the ground channel. The tester only has one. Most testers do not

require this specification but it helps portability.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

94
Copyright ©2018 IEEE. All rights reserved.

21. Binning

21.1 General

The conceptual model for binning comprises the following elements:

 One or more soft bin definitions (Clause 22)
 One or more hard bin definitions (Clause 23)
 One or more soft-to-hard bin maps36 (Clause 24)
 Counters and bin related events (22.6)
 Bin setting and clearing mechanisms (Clause 33)
 A null bin called None (22.4)
 Bin axes (22.5)

Soft bin definitions blocks and hard bin definitions blocks shall each contain a Pass and a Fail group.
Each group shall contain one or more axes. Each axis shall contain one or more related STIL.4 bins. In the
22.2 example referred to extensively throughout this document, the axis named ClockSpeed has bins
"3.00GHz", "2.93GHz", and "2.66GHz", and the axis named CacheSize has bins "8Mb" and
"4Mb".37

Hard bin groups shall be constrained to a single bin axis which may be named or unnamed. Soft bin groups
may have one unnamed explicit or implicit bin axis, or one or more named bin axes.38

If a bin map is to be used, the TestProgram block shall refer to the bin map by name. This bin map shall
in turn reference soft bin definitions and optionally hard bin definitions by name. See Clause 24 for a more
detailed bin map description.

Hard and soft bins shall be cleared automatically by the on START event handler before the test it refers to
is executed. When a bin is set, it shall remain set until cleared by the next on START event or by a
ClearBin39 function call. Hard bins shall be set according to the BinMap specified in the
TestProgram block when execution is complete.

Soft bins may be set or cleared by the STIL.4 programmer by using SetBin, SetBinStop, or
ClearBin statements in the action blocks specified in Table 21. The semantics of these functions are
explained in Clause 33. Each binning function takes an argument which may refer to a single soft bin, a soft
bin axis, or a soft bin group (either Pass or Fail).

21.2 Binning element reference

Syntax for referring to a single bin:

unary_bin_expr ::=
 <
 (<Pass. | Fail.>)(BinAxes[<BIN_AXIS_NAME | BIN_AXIS_INDEX>].)Bins[<BIN_NAME | BIN_INDEX >] |
 <BIN_NAME | BIN_NUMBER>
 >

36 No more than one soft-to-hard bin map, one set of soft bin definitions, and one set of hard bin definitions per test program may be
active at one time.
37 These particular bin names are double quoted so as not to violate identifier syntax rules.
38 The code for an explicit axis with no name is BinAxis { ... }.
39 Only soft bins may be cleared via the ClearBin action.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

95
Copyright ©2018 IEEE. All rights reserved.

Syntax for referring to all bins along a bin axis (related bins, e.g., speed bins):

unary_bin_axis_expr ::=
 <
 (<Pass | Fail.>)BinAxes[<BIN_AXIS_NAME | BIN_AXIS_INDEX>] | BIN_AXIS_NAME
 >

Syntax for referring to all bins in a group:

group ::= <Pass | Fail>

Syntax for referring to multiple bins, i.e., all bins in a group or along an axis:

multi_bin_expr ::= < group | unary_bin_ axis_expr >

22. SoftBinDefs

22.1 SoftBinDefs syntax

The general form of the SoftBinDefs block is as follows:

SoftBinDefs (BIN_DEF_NAME) {
 (StartBinNumber integer;) // Default if unspecified is 1
 (BinNumberIncrement integer;) // Default if unspecified is 1
 Pass {
 (Color string;) // Pass bin default color name or hex RGB, "green" if unspecified
 (bin_definition)+ | (bin_axis_definition)+
 } // end Pass
 Fail {
 (Color string;) // Fail bin default color name or hex RGB, "red" if unspecified
 (bin_definition)+ | (bin_axis_definition)+
 } // end Fail
}

One unnamed SoftBinDefs block shall be permitted. Named SoftBinDefs blocks shall be permitted
only in FlowExtended mode. Metatypes bin_definition and bin_axis_definition are explained in 22.3 and
22.5, respectively.

Each soft and hard bin definition block contains one Pass and one Fail group. Each of these groups
contains at least one axis, explicitly or implicitly, named or unnamed. If a group contains multiple axes,
each axis shall be uniquely named within the group for unambiguous reference. See examples in Figure 57
and Figure 59 (in 22.2 and 23.2, respectively).

When the bin group contains bin definitions directly, a single anonymous bin axis is implied. Alternatively,
bin definitions may be enclosed in a bin axis block. Hard bin definitions shall be constrained to one bin
axis.

Color: optional user settable attribute which may be specified at the beginning of the block and may be
used to set the default display color for all bins within the group (colors that override the default may be
specified per bin). If left unspecified, the default colors are red and green for the Fail and Pass groups
respectively.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

96
Copyright ©2018 IEEE. All rights reserved.

Groups have a data access function which may be invoked by the following syntax:

<Pass|Fail>.BinAxes.size(): a phrase that returns the axis count for either Pass or Fail group as
type Integer. It may be used to establish an end point for iterating over axes. The axis count shall
remain constant during program execution.

A bin’s attributes (see 22.3) include a bin number. Bin numbers can be automatically generated using
StartBinNumber for the first bin and BinNumberIncrement for any bin after the first. Automatic
bin numbering shall be in effect only if attribute Number is not set on any bin. If bin attribute Number is
set for any bin then automatic bin numbering is not in effect, and Number shall be set for each bin within
the SoftBinDefs block. Each bin’s number shall be unique within the SoftBinDefs block.

StartBinNumber: Sets the starting bin number for automatic bin number generation. If not present, the
default StartBinNumber is 1.

BinNumberIncrement: Sets the bin number increment for automatic bin number generation. If not
present, the default BinNumberIncrement is 1.

Figure 55 is a pictorial representation of the Pass group in the example of Figure 57. Each of the gray
cells formed by the bin axes may eventually be mapped to a hard bin by a BinMap (see Clause 24). When
there is only one axis like in the Fail group of Figure 57, the soft to hard bin mapping relationship is one
to one.

Figure 55 —Diagram: pass group with two bin axes

22.2 SoftBinDefs examples

The soft bin definitions example of Figure 56 show a typical, common usage in which bin numbers are
explicitly specified instead of being automatically generated, and in which there are no bin axes.:

x1 // Simple, common usage of SoftBinDefs without StartBinNumber,
 2 // BinNumberIncrement, or BinAxis
 3 SoftBinDefs softbindefs {
 4 Pass {
 5 Bin "3.00GHz" { Number 1; Color Green; }

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

97
Copyright ©2018 IEEE. All rights reserved.

 6 Bin "2.93GHz" { Number 2; Color Green; }
 7 Bin "2.66GHz" { Number 3; Color Green; }
 8 }
 9 Fail {
10 Bin ContactOpens { Number 6; Color Red; }
11 Bin ContactShorts { Number 7; Color Red; }
12 Bin Functional { Number 8; Color Red; }
13 Bin Timing { Number 9; Color Red; }
14 Bin Levels { Number 10; Color Red;}
15 }
16 }

Figure 56 —Example: soft bin definitions—simple, common usage

The soft bin definitions example of Figure 57 automatically generates default numbers for each bin, and
includes an illustration of the use of bin axes. Note the difference between the bin number and a numeric
bin index.

x1 SoftBinDefs softbindefs {
 2 StartBinNumber 1; // Sets default start bin number
 3 BinNumberIncrement 1; // Sets default bin number increment
 4 Pass {
 5 BinAxis ClockSpeed {
 6 Bin "3.00GHz"; // Index 0, number 1
 7 Bin "2.93GHz"; // Index 1, number 2
 8 Bin "2.66GHz"; // Index 2, number 3
 9 }
10 BinAxis CacheSize {
11 Bin "8Mb"; // Index 0, number 4
12 Bin "4Mb"; // Index 1, number 5
13 }
14 }
15 Fail {
16 Bin ContactOpens; // Index 0, number 6
17 Bin ContactShorts; // Index 1, number 7
18 Bin Functional; // Index 2, number 8
19 Bin Timing; // Index 3, number 9
20 Bin Levels; // Index 4, number 10
21 }
22 }

Figure 57 —Example: soft bin definitions—bin axes, autoincrementing bin numbers

22.3 Bins

A Bin is the lowest object in the STIL.4 binning containment hierarchy which is composed of a bin
definitions block (either SoftBinDefs or HardBinDefs) which contains contains two group blocks,
one named Pass and one named Fail, each of which contain one or more axes (BinAxis), each of
which contains one or more bins. See the coding example Figure 57 in 22.2 for a better view of the
hierarchy.

bin_definition ::= Bin < BIN_NAME ; | BIN_NAME { bin_attributes } >

BIN_NAME shall use meta-type name_segment syntax.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

98
Copyright ©2018 IEEE. All rights reserved.

bin_attributes ::=
 (Color string;)
 (Enable boolean;)
 (Number signed_integer;)
 (WafermapChar <simple_char | special_char | "simple_char | special_char | space">;) // Hard bin only
 (Terse string;)
 (Verbose string;)

This clause enumerates user settable attributes by keyword.

Color: optional, may be used to override the display color specifcations or defaults for the Fail and/or
Pass groups. The argument for Color is a literal, naming either the color, e.g., "red", or a 24 bit
hexadecimal RGB code, e.g., "#FF0000". This literal should be quoted, but may be unquoted. It is
recommended to use the same form (quoted or unquoted) throughout.

Enable: optional, may be set to True, the default, or False. Bin axis attribute size() is not affected.

Number: optional, specifies bin numbers on a per-bin basis, when automatic bin numbering is not used
(see 22.1).

Terse: optional, may be used to store a brief bin descriptor in the form of a String.

Verbose: optional, may be used to store a verbose bin descriptor in the form of a String.

WafermapChar: may be used to store a single character suitable for printing a wafer map. Set to space
character by default. The parameter may be a single visible character or a string containg a single character.
The following statements shall be legal:

1 WafermapChar T;
2 WafermapChar "T";
3 WafermapChar " ";

The following line comments refer to WafermapChar statements above:

 Lines 1 and 2: both lines set the wafermap character to T.
 Line 3: this is the only way to explicitly set the wafermap character to a space.

The following example shows how to set these attributes by redefining bin Contact from the example in
23.2. For brevity, the definitions, group, and axis blocks are omitted:

1 Bin Contact {
2 Color "#00FFFF"; // Alias cyan
3 Enable False;
4 Number 6; // Number all or none in SoftBinDefs
5 Terse "Contact";
6 Verbose "Contact opens and shorts";
7 WafermapChar O;
8 }

The following line comments refer to bin Contact statements above:

 Line 2: specifies GUI color via string containing a hexadecimal value, could have specified the
same color via string "cyan".

 Line 3: the bin is disabled. Tests and/or flow-nodes can react to this state via bin member function
isEnabled().

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

99
Copyright ©2018 IEEE. All rights reserved.

 Line 4: bin number is specified. This number shall be unique within the bin definitions block. Bin
numbers shall be specified for all bins or none. When bin numbers are unspecified, bins are
automatically numbered in order of appearance starting with 1 by default (see bin definitions
attribute StartBinNumber).

Bins also have data access functions which may be accessed via the following format:

 unary_bin_expr.bin_data_access_function

Meta-type unary_bin_expr is described in 21.2. Bin data access functions represented by meta-type
bin_data_access_function:

index(): returns the bin index on the axis where the it resides in the form of an Integer.

isEnabled(): returns True if the bin is enabled, False otherwise.

getBinGroup(): returns enumerated type BinGroup value (FAIL, PASS, or NONE).

isSet(): returns True if the bin is set, False otherwise.

name(): returns the bin name in the form of type String (does not include quotes if any).

number(): returns the bin number in the form of type Integer.

terse(): returns the terse bin description in the form of a String.

verbose(): returns the verbose bin description in the form of a String.

wafermapChar(): returns the bin associated wafer map character in the form of a single character
String.

22.4 Bin None (FlowExtended)

In FlowExtended mode, soft bin None is automatically defined by STIL.4. User statements defining
this bin shall be neither required nor permitted. When mapping soft to hard bins, the mapping for soft bin
None is triggered when no other soft bins have been set, regardless of whether bin None has been set or
not.

Bin None data access functions may be accessed only via parameters, e.g., TestBase parameter
failBin or passBin. They cannot be accessed directly, via e.g., None.isSet(), because keyword
None assumes context-dependent semantics. Bin None may be used directly in unambiguous contexts
such as statement SetBin None. See Table 17.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

100
Copyright ©2018 IEEE. All rights reserved.

Table 17 —Bin None standard attributes and data access functions

Attribute Function Value
 countSince(counter_reset_event) Integer 0, incremented when set, may be cleared by user
Enable isEnabled() Boolean True
Index index() Integer 0
 getBinGroup() Enum BinGroup::NONE
 isSet() Boolean False, becomes True when set
Name name() String "None"
Number number() Integer -1
Terse terse() String "NoBin"
Verbose verbose() String "NoBin"
WafermapChar wafermapChar() String " " (single space character)

22.5 Bin axes

Each Pass and Fail group contains at least one axis, explicit or implicit, named or unnamed. If a group
contains multiple axes, each axis shall be uniquely named within the group. Each axis shall contain at least
one element of type Bin.

bin_axis_definition ::=
 BinAxis (BIN_AXIS_NAME) {
 (MapBinLowest | MapBinHighest)
 (bin_definition)+
 }

Metatype bin_definition is explained in 22.3.

MapBinLowest or MapBinHighest: used for bin arbitration. These keywords affect soft to hard bin
mapping as follows: when mapping soft to hard bins in the BinMap and two or more bins on a bin axis are
set, the soft bin with either the lowest or highest index is mapped to the hard bin. The default is
MapBinHighest, commensurate with the most stringent device spec being associated with bin index 0.
In this scheme, device specs are expected to relax with each index increment as is the case in the example
of Figure 57.

Axis data access functions:

axis_name.Bins.size(): a phrase that returns the bin count for the axis and is useful for establishing a
bin iteration end point. The return value is of type Integer. The bin count shall remain constant
during program execution.

axis_name.name(): returns the name of the axis in the form of type String. The name shall remain
constant during program execution.

22.6 countSince functions (FlowExtended)

In FlowExtended mode, each soft bin has a set of counters. The set consists of a counter for each
counter_reset_event.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

101
Copyright ©2018 IEEE. All rights reserved.

counter_reset_event 40 ::= < LOAD | LOT_START | WAFER_START | START >

During the execution of a test or flow triggered by a counter_reset_event, soft bin counts associated with
that counter_reset_event are incremented each time a SetBin or SetBinStop action is executed for the
associated soft bin, and are reset to zero each time a ClearBin action is executed for the associated soft
bin.

At the termination of the test or flow triggered by a START event, soft bin counters associated with
counter_reset_events other than START are incremented by one if the associated soft bin is set at that time.

Counters corresponding to a counter_reset_event are reset to zero each time that counter_reset_event
occurs, before the counter_reset_event associated test or flow is executed.

Function countSince applies to soft bins, soft bin axes, and soft bin groups, and returns an Integer.

<Pass|Fail>.countSince(counter_reset_event):

Returns the number of bins that have been set in the Pass or Fail group since the
counter_reset_event.

 axis_name.countSince(counter_reset_event):

Returns the number of bins that have been set on the axis since the counter_reset_event.

 unary_bin_expr.countSince(counter_reset_event):

Returns the number of times the bin has been set since the counter_reset_event.

23. HardBinDefs

23.1 HardBinDefs syntax

Hard bin definitions block syntax is identical to soft bin definitions block syntax with the following
exceptions:

 The keyword introducing the block is HardBinDefs.
 The Pass and Fail group blocks shall each be restricted to one axis, explicit or implicit, named

or unnamed.

HardBinDefs (BIN_DEF_NAME) {
 (StartBinNumber integer;) // Default if unspecified is 1
 (BinNumberIncrement integer;) // Default if unspecified is 1
 Pass {
 (Color string;) // Pass bin default color name or hex RGB, "green" if unspecified
 (bin_definition)+ | (bin_axis_definition)
 } // end Pass
 Fail {
 (Color string;) // Fail bin default color name or hex RGB, "red" if unspecified
 (bin_definition)+ | (bin_axis_definition)

40 This is a subset of enumerated type AsynchronousEvent (35.1).

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

102
Copyright ©2018 IEEE. All rights reserved.

 } // end Fail
}

One unnamed HardBinDefs block shall be permitted. Named HardBinDefs blocks shall be permitted
only in FlowExtended mode. Metatypes bin_definition and bin_axis_definition are explained in 22.3 and
22.5, respectively.

23.2 HardBinDefs examples

The hard bin definitions example of Figure 58 show a typical, common usage in which bin numbers are
explicitly specified instead of being automatically generated, and in which the hard bin color is also
specified.

x1 HardBinDefs {
 2 Pass {
 3 Bin "3.00GHz" { Number 1; Color Green; }
 4 Bin "2.66GHz" { Number 2; Color Green; }
 5 }
 6 Fail {
 7 Bin failContact { Number 5; Color Red; }
 8 Bin dcFails { Number 6; Color Red; }
 9 Bin acFails { Number 7; Color Red; }
10 }
11 }

Figure 58 —Example: hard bin definitions—simple, common usage

The hard bin definitions example of Figure 59 automatically generates default numbers for each bin. The
following hard bin definitions example provides the basis for other examples:

x1 HardBinDefs hardbindefs {
 2 Pass {
 3 Bin "3.00GHz/2.93GHz/8Mb"; // Index 0, number 1
 4 Bin "3.00GHz/2.93GHz/4Mb"; // Index 1, number 2
 5 Bin Unmarketable; // Index 2, number 3
 6 Bin Unclassifyable; // Index 3, number 4
 7 }
 8 Fail {
 9 Bin Contact; // Index 0, number 5
10 Bin LooseFunct; // Index 1, number 6
11 Bin Timing; // Index 2, number 7
12 Bin Levels; // Index 3, number 8
13 }
14 }

Figure 59 —Example: hard Bin definitions—autoincrementing Bin numbers

23.3 Bins

Syntax is described in 22.3.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

103
Copyright ©2018 IEEE. All rights reserved.

24. BinMap

24.1 General

Block type BinMap refers to soft and optionally to hard bin definitions. Hard bins shall be set according to
the BinMap specified in the TestProgram block when execution is complete. This is the sole
mechanism for setting hard bins.

The following rules apply:

 When there is a single axis in the group, each mapping statement maps a soft bin to a hard bin. Two
or more soft bins may map to the same hard bin.

 When there are two or more axes in a group, each mapping statement shall map a cell of the
resulting array to a hard bin. Multiple soft bin combinations may map to the same hard bin.

 Each combination of bins, one from each axis contained within a group,41 shall have a
corresponding mapping statement. A mapping statement is triggered after all its soft bins are set.
Pass soft bins or soft bin combinations shall be mapped only to Pass hard bins, and Fail soft
bins shall be mapped only to Fail hard bins. In FlowExtended mode, one statement mapping
soft bin None42 to a hard bin is permitted. This mapping is triggered after no other soft bin is set.

24.2 BinMap syntax

The syntax for specifying a BinMap is as follows:

(BinMap BIN_MAP_NAME {
 (SoftBinDefs BIN_DEF_NAME;)
 (HardBinDefs BIN_DEF_NAME;)
 bin_map_stmt*
})*
SoftBinDefs and HardBinDefs specifiers shall be allowed only in FlowExtended mode. A bin map that
has no SoftBinDefs or HardBinDefs references shall use the unnamed SoftBinDefs or
HardBinDefs blocks.

bin_map_stmt ::=
 Map soft_bin_expr+ -> hard_bin_expr;

Multiple instances of meta-type soft_bin_expr shall be separated by white space.

soft_bin_expr ::= unary_bin_expr;
hard_bin_expr ::= unary_bin_expr;

Meta-type soft_bin_expr shall be from a SoftBinDefs block. Meta-type hard_bin_expr shall be from a
HardBinDefs block. Meta-type unary_bin_expr is described in 21.2.

41 BinAxis keywords MapBinLowest and MapBinHighest control which of multiple set bins on an axis is used for mapping.
42 In FlowExtended mode, soft bin None is automatically defined by STIL.4.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

104
Copyright ©2018 IEEE. All rights reserved.

24.3 BinMap example

Figure 60 shows a BinMap example showing a simple usage, with unnamed SoftBinDefs and
HardBinDefs blocks (hence, the BinMap need not specify them), and a simple, flat BinMap.

x1 BinMap binmap {
 2 "3.00GHz" -> "3.00GHz";
 3 "2.93GHz" -> "2.66GHz";
 4 "2.66GHz" -> "2.66GHz";
 5 ContactOpens -> failContact;
 6 ContactShorts -> failContact;
 7 Functional -> acFails;
 8 Timing -> acFails;
 9 Levels -> dcFails;
10 }

Figure 60 —Example: BinMap using unnamed SoftBinDefs, HardBinDefs

Figure 61 shows another BinMap example, commensurate with the soft bin definition example in 22.2 and
the hard bin definitions example in 23.2.

x1 BinMap binmap {
 2 SoftBinDefs softbindefs;
 3 HardBinDefs hardbindefs;
 4
 5 Map None43 -> 4; // Unclassifyable
 6
 7 Map "3.00GHz" "8Mb" -> 1; // Pass "3.00GHz/2.93GHz/8Mb"
 8 Map "2.93GHz" "8Mb" -> 1; // Pass "3.00GHz/2.93GHz/8Mb"
 9 Map "2.66GHz" "8Mb" -> 3; // Pass Unmarketable
10 Map "3.00GHz" "4Mb" -> 2; // Pass "3.00GHz/2.93GHz/4Mb"
11 Map "2.93GHz" "4Mb" -> 2; // Pass "3.00GHz/2.93GHz/4Mb"
12 Map "2.66GHz" "4Mb" -> 3; // Pass Unmarketable
13
14 Map ContactOpens -> 5; // Fail ContactOpens
15 Map ContactShorts -> 5; // Fail ContactShorts
16 Map Functional -> 6; // Fail LooseFunct
17 Map Timing -> 7; // Fail Timing
18 Map Levels -> 8; // Fail Levels
19 }

Figure 61 — Example: BinMap using named SoftBinDefs, HardBinDefs

25. Flow conceptual model

The flow conceptual model in Figure 62 describes the interaction between the Flow, FlowNode, Test,
TestProgram, and binning syntax blocks.

43 Bin None usage requires FlowExtended mode.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

105
Copyright ©2018 IEEE. All rights reserved.

Figure 62 —Diagram: STIL.4 conceptual model

An entry-point, described in 34.4, references a single Test or Flow which it executes when it’s associated
asynchronous event, such as the push of a tester start button, triggers it. Every execution path can be traced
back to an entry-point.

Figure 63 illustrates a Flow block. A Flow contains a collection of FlowNode blocks. The first
FlowNode as it appears syntactically in the Flow is the start point. A Flow may be invoked by an entry-
point or a FlowNode.

Figure 64 illustrates a Test block. A Test may contain a set of parameter assignments and reference a
TestMethod. The TestMethod is not defined as part of STIL.4.

Figure 65 shows multiple FlowNode objects of which one is shown in detail. Each FlowNode refers to a
single Test or Flow. A Test may be referred to by zero or more FlowNode objects. A FlowNode has
one entry point and one or more exit ports. An exit-port may stop the execution flow via a stop or bin and
stop action, or direct the continuation. The execution flow may continue with another FlowNode within
the parent Flow or return to the caller of the parent Flow. A bin assignment may be made without
stopping the execution flow.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

106
Copyright ©2018 IEEE. All rights reserved.

Figure 63 —Diagram: conceptual model of flow

Figure 64 —Diagram: conceptual model of test

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

107
Copyright ©2018 IEEE. All rights reserved.

Figure 65 —Diagram: conceptual model for flow node

26. Flow conceptual model (FlowExtended)

26.1 General

This conceptual model is the foundation for FlowExtended syntax and may be used to design a STIL.4
database. A STIL.4 compliant tool is not required to adhere to the model however it should behave as
though it did. Regardless of syntactical shortcuts, the underlying conceptual model remains the same.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

108
Copyright ©2018 IEEE. All rights reserved.

Figure 66 —Diagram: STIL.4 conceptual model (FlowExtended)

The STIL.4 components describing the test-flow execution sequence are entry-points, tests, and flow-
nodes. Each component is a separate object.

An entry-point, covered in detail under 34.4, refers to a single test or flow which it executes when it’s
associated asynchronous event, such as the push of a tester start button, triggers it. Every execution path
can be traced back to an entry-point. When a test or flow is executed, it is by way of an entry-point or a
flow-node. A test or flow object can be created by instantiating a test-type or flow-type respectively, or
using keyword TestMethod to refer to a test-method by name and parameter list (see 29.2). All
FlowExtended test and flow objects shall support TestBase properties (see 35.3.3).

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

109
Copyright ©2018 IEEE. All rights reserved.

Figure 67 shows a test or flow. Tests and flows are so similar that they can be used interchangeably. A test
or flow has one entry point and one exit point. It may pass or fail. The ovals contain commands whose
primary function is to control flow, directly, or indirectly via variables. The ovals represent virtual member
functions, i.e., functions that may be overridden when one test-type or flow-type is derived from another
(inheritance). Actions are covered in Clause 33. The rectangle labeled TestExec embodies the intrinsic
difference between different kinds of tests and flows.

Figure 67 —Diagram: conceptual model for test and flow (FlowExtended)

Type TestBase is at the root of every test-type or flow-type inheritance hierarchy. It is an abstract type,
meaning that unlike the types derived from it, it cannot be instantiated. Type TestBase embodies the
common denominator between all tests and flows. That includes parameters and variables not shown in
Figure 63. See 35.3.3 for a more concise description of TestBase.

Figure 68 shows multiple flow-nodes of which one is shown in detail. Flow-nodes occur within the
TestExec block of flows and tests instantiated from test-types that contain flow-nodes. Each flow-node
refers to a single test or flow. The test or flow is executed when the flow-node is triggered. A test or flow
may be referred to by zero or more flow-nodes. A flow-node has one entry point and one or more exit
ports. An exit-port directs the flow to another flow-node or to the post-actions of the test or flow that
contains the flow-node. Flow-node connections are constrained to within the test or flow where the flow-
nodes appear. STIL.4 defines a standard flow-node that has a pass and a fail port for the purpose of
allowing syntactical shortcuts (see 35.3).

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

110
Copyright ©2018 IEEE. All rights reserved.

Figure 68 —Diagram: conceptual model for flow node

26.2 Flow-related types

This clause describes the form of flow related types, i.e., TestBase, TestType, FlowType, and
FlowNode, and provides some usage examples. STIL.4 also defines standard components based on the
syntax for these types. These are described under Clause 35.

26.3 Inheritance

STIL.4 inheritance applies to test-types and flow-types with some constraints. Only single inheritance is
supported. A flow-type shall inherit from TestBase or another flow-type. A test-type shall inherit from
TestBase, or another test-type or flow-type. There is no constraint on the length of the inheritance chain.
Every inheritance chain ultimately traces back to TestBase as its most distant base type. All test-types
and flow-types may be used as base types.

All data is inherited cumulatively, i.e., the most distant derived type contains the sum of all the data in the
inheritance hierarchy. The Parameter and FlowVariables blocks contain all the data. Parameters are
public; therefore, the most distant derived type has access to the parameters of any of its ancestors as well
as its own. Variables, on the other hand, are private and therefore accessible only to the type containing the
FlowVariables block. The test/flow-type name space contains all the parameters in the inheritance
hierarchy plus the variables defined in its own local FlowVariables block.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

111
Copyright ©2018 IEEE. All rights reserved.

On inheritance, the derived test-type or flow-type may override default parameter initialization values
and/or narrow constraints imposed by the base test or flow via parameter attributes. The following attribute
overrides are permitted:

 For all types, Required may override Optional.
 For type General, attribute Units may override unspecified units.
 For type BinSpec, BinType Pass, or Fail may override a BinType with Pass/Fail

unspecified.
 For type BinSpec, BinType Bin, Axis, or Group may override a BinType with Bin, Axis,

or Group unspecified or to narrow a combination specified in the base.

For illustrative purposes only, the example in Figure 69 shows a pared-down version of TestBase and
test-types derived from it.

x1 // ---
 2 TestBase {
 3 Parameters { // failBin potentially affected by inheritance
 4 InOut BinSpec failBin = None { Optional; BinType Fail; }
 5 }
 6 }
 7 // ---
 8 TestType DerivedTypeLegalA {
 9 Inherit TestBase { // override failBin default from None to Failed
10 failBin = Failed;
11 }
12 }
13 // Reaffirm TestBase failBin value (None), constrain to BinType Fail
14 TestType DerivedTypeLegalB {
15 Inherit TestBase {
16 failBin = None { BinType Fail, Group; }
17 }
18 }
19 // Accept TestBase failBin value (None), constrain to BinType Fail
20 TestType DerivedTypeLegalC {
21 Inherit TestBase {
22 failBin { BinType Fail, Group; }
23 }
24 }
25 // Override TestBase failBin value to Failed. Constrain to Group.
26 TestType DerivedTypeLegalD {
27 Inherit TestBase {
28 failBin = Failed { BinType Group; }
29 }
30 }

Figure 69 —Example: inheritance with overrides

The derived type shall inherit member functions PreActions, TestExec, PostActions,
PassActions, and FailActions from the base-type. The derived type may override each individual
base-type function in aggregate by defining it locally, e.g., one cannot inherit or override part of the
FailActions block.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

112
Copyright ©2018 IEEE. All rights reserved.

26.4 Instantiation and execution

A test may be instantiated from a test-type at the top44 or TestProgram45 level and later referred to by
name at the point of use, or it may be instantiated inline anonymously at the point of use. Top-level
instance statements shall not be permitted when the input stream contains more than one TestProgram
block. Point of use is either at an entry-point or a flow-node's TestExec via a reference_stmt:

reference_stmt ::= < test_reference_stmt | flow_reference_stmt >

test_reference_stmt ::=
< TEST_NAME ; | // Reference to predefined test by name
 TEST_TYPE; | // Reference to test created inline from TestType using defaults
 TEST_TYPE { param_override_stmts } // Reference to test created inline from TestType
>

flow_reference_stmt ::=
< FLOW_NAME; | // Reference to predefined flow by name
 FLOW_TYPE ; | // Reference to flow created inline from FlowType using defaults
 FLOW_TYPE { flow_init_stmts } // Reference to flow created inline from FlowType
>

27. TestBase definition (FlowExtended)

Keyword TestBase represents an abstract type. In other words, an instance of TestBase cannot be
created; however, TestBase is at the root of every test or flow inheritance hierarchy and therefore
represents the common denominator of every test-type and flow-type.

27.1 TestBase syntax

The general form of a TestBase definition is as follows:

TestBase {
 (Parameters {
 ((<In | Out | InOut>) param_elements_stmt)*
 })
 (FlowVariables { (var_elements_stmt)* })
 (PreActions { (action_stmt)* })
 (TestExec;)
 (PostActions { (action_stmt)* })
 (PassActions { (action_stmt)* })
 (FailActions { (action_stmt)* })
}

Other than the fact that TestBase has no Inherit statement, TestBase block body syntax is the
same as FlowType body syntax. TestType body syntax differs only at the TestExec line. TestType
and FlowType shall have TestBase as their most distant ancestor in any inheritance chain.

44 When a test is instantiated at the top level, its parameters and variables may refer only to globally visible data, i.e., data defined in
unnamed blocks.
45 Tests may always be instantiated within the TestProgram block where they can access globally visible data plus data brought
into scope by named block references within the TestProgram block.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

113
Copyright ©2018 IEEE. All rights reserved.

param_elements_stmt ::= <
param_type param_definition_stmt |
param_type { (param_definition_stmt)+ }

>

param_type and stil_object_expr are defined in 6.11.

value_expr is defined in 17.2.

param_value_expr ::= value_expr | stil_object_expr

For In and Out Parameters, the following definitions of param_definition_stmt apply:

param_definition_stmt ::= <
// Uninitialized scalar variable, optional type matching units allowed for real_var_type only
PARAM_NAME (= None(units)); |
PARAM_NAME (= None(units)) { (param_attributes)* } |

// Initialized scalar variable.
PARAM_NAME = param_value_expr; |
PARAM_NAME = param_value_expr { (param_attributes)* } |

// Unintialized array variable
// Optional type matching units allowed for real_var_type only
PARAM_NAME[int_expr] (= None(units)); |
PARAM_NAME[int_expr] (= None(units)) { (param_attributes)* } |

// Initialize array elements to distinct values
PARAM_NAME[(int_expr)] = [value_list]; |
PARAM_NAME[(int_expr)] = [value_list] { (param_attributes)* } |

// Initialize all array elements to same value
PARAM_NAME[int_expr] = value_expr; |
PARAM_NAME[int_expr] = value_expr { (param_attributes)* }

>

For InOut Parameters, the following definitions of param_definition_stmt apply:

param_definition_stmt ::= <
// Uninitialized scalar variable, optional type matching units allowed for real_var_type only
PARAM_NAME (= None(units)); |
PARAM_NAME (= None(units)) { (param_attributes)* } |

// Initialized scalar variable.
PARAM_NAME = &stil_object_expr; |
PARAM_NAME = &stil_object_expr { (param_attributes)* } |

>

param_attributes ::= <

Description string; | // Default is empty string, i.e. ""
ReInitAt ASYNC_EVENT_NAME; |
Units "units_expr"; | // For type General with initial value of None
< Optional | Required >

>// Optional test and flow parameters set to None are to be ignored.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

114
Copyright ©2018 IEEE. All rights reserved.

Every test-type and flow-type inherits the capability to define an optional Parameters,
FlowVariables, PreActions, TestExec, PostActions, PassActions, and/or
FailActions block. Of these, Parameters and FlowVariables represent data. PreActions,
TestExec, PostActions, PassActions, and FailActions represent protected virtual functions,
i.e., functions that are not publicly accessible but may each be replaced by functions of the same name in
the derived type. Once a test-type or flow-type is instantiated, its parameters and variables are initialized.
Once an entry-point is triggered, it automatically executes the functions of its test or flow in the order in
which they are required to appear in the test or flow definition except that only one of either
PassActions or FailActions shall be executed.

A parameter or variable defined in the local Parameters or FlowVariables blocks respectively may
hide a variable of the same name defined in the unnamed global FlowVariables block and any of the
named FlowVariables blocks referenced in the TestProgram block.

Parameters: this block contains publicly accessible variables. Once a test or flow is instantiated, its
parameters may be accessed via dot notation, e.g., expression testname.parametername. An InOut
parameter, i.e., a reference, may be reassigned. The difference between calling a function and executing a
test or flow is that a function ‘forgets’ its parameters on exit whereas a test or flow does not. In the type
definition, each parameter shall be initialized to a default value, explicitly or implicitly. In the absence of
an explicit default value, the parameter is initialized to value None, a value that indicates lack of
initialization and may be detected via operators == or !=. At test or flow instantiation, the value None shall
be legal only for parameters with attribute Optional. A required parameter’s default value may be None
but the instantiation value shall be other than None. A test-type or flow-type collects all the parameters in
its inheritance hierarchy in one namespace.

NOTE—One parameter may refer to another from the same test-type or flow-type definition, or test or flow
instantiation, but define before use rules apply. At instantiation, parameters are initialized in the order they appear in
the test-type definitions’ parameter block. When a test or flow is instantiated, parameter initialization statements shall
be specified in test-type or flow-type definition parameter order but optional parameters may be omitted. With regard to
inheritance hierarchies, TestBase parameters are followed by the derived test or flow parameters in order of
derivation.

Parameter declaration syntax is identical to variable declaration with one exception. Parameters have an
additional modifier specifying directionality, i.e., either In, Out, or InOut for input, output, or both,
respectively. Semantics for the directionality modifiers are shown in Table 18.

Table 18 —Parameter directionality semantics

Parameter In InOut Out
Usage Test or flow input

only.
Test or flow input, output, or
both.

Test or flow output only.

User settable at
instantiation

Yes. Yes. No. Initialization value is
defined by test-type or flow-
type.

(Table continues)

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

115
Copyright ©2018 IEEE. All rights reserved.

Table 18—Parameter directionality semantics
Parameter In InOut Out

Interface semantics 1. Can be changed inside
test or flow, but changes
are not reflected outside
test or flow.

2. External access is read
only

1. A reference to an object
which exists outside the
test or flow.

2. Changes to value(s) are
reflected in the
referenced object.

3. Can be re-assigned
inside test or flow to
reference a different
external object of the
same type.

4. The right-hand side
(RHS) of initialization
statements (initial
declarations or
overrides) shall consist
of a single object name
prefixed by the ‘&’
operator.

5. Assignment statements
modify the value(s) of
the referenced object
unless the RHS consists
of a single object name
prefixed by the address-
of operator '&', in which
case the reference is re-
assigned.

6. External access is read
or modify.

1. Object cannot be
changed outside test or
flow.

2. External access is read
only.

With attribute Optional The parameter shall be
initialized to an expression
whose type is consistent
with the parameter type
including None, explicitly
or by omission (assigns
default).

The parameter shall be
initialized to the name of
an instantiation whose type
is consistent with the
parameter type including
None, explicitly or by
omission which assigns the
default.

The parameter shall be
initialized to the default
value defined in the
TestType or FlowType.
None shall be a legal
value.

With default attribute
Required

The parameter shall be
initialized to any
expression consistent with
the parameter type, i.e., the
default value shall be
overridden by a value other
than None.

Required by definition: the
parameter shall be
initialized to the name of
an instantiation of a type
consistent with the
parameter type. None is
invalid.

The parameter shall be
initialized to the default
value defined in TestType
or FlowType. Test or flow
output shall be a value
other than None.

When an In or Out parameter with a Const attribute is instantiated with an expression, the right-hand side is
replaced with its value at the time of instantiation.

When an InOut parameter with a Const attribute is instantiated, the test or flow cannot change the object
referenced by the parameter; however, the parameter can be changed to refer to a different object of the
same type

FlowVariables: this block contains variables with private access, i.e., by the test or flow containing the
FlowVariables block only. A derived test or flow does not have access to any variables in the
inheritance hierarchy but its own. FlowVariables use the same namespace as Parameters. A test-

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

116
Copyright ©2018 IEEE. All rights reserved.

type or flow-type adds only its own variables to the local namespace. Variable initialization begins once
parameter initialization is completed. One variable may refer to another occurring previously in the same
block or to a parameter of the same test or flow.

Action syntax is designed to control flow by manipulating variable contents and setting bins and either stop
or continue. Actions may be used for side effect but they are specifically not used to load timing, levels, or
patterns, activities performed under the purview of the TestExec function which generally differs from
one test-type to another. Actions are covered in greater detail in Clause 33.

PreActions: this block contains actions carried out immediately before TestExec. Base test-type or flow-
type pre-actions may be overridden in aggregate by defining a derived test-type or flow-type
PreActions block.

TestExec: represents test or flow execution, a no-op for the standard TestBase. For derived types,
TestExec followed by a semicolon represents a reference to the base type’s TestExec46 or a standard
or local library test-type’s non-STIL.4 code, the part of the code written a language other than STIL.4
which implements a standard or tester specific test description.

PostActions: this block contains actions carried out immediately after TestExec. Base type
PostActions may be overridden in aggregate by defining a derived test-type or flow-type block of the
same name.

PassActions: this block contains actions carried out immediately after PostActions if this test or flow
passes. Base type PassActions may be overridden in aggregate by defining a derived test-type or flow-
type block of the same name. Subclause 35.3.3 describes what constitutes pass.

FailActions: this block contains actions carried out immediately after PostActions if this test or flow
fails. Base type FailActions may be overridden in aggregate by defining a derived test-type or flow-
type block of the same name. Subclause 35.3.3 describes what constitutes fail.

27.2 TestBase example

In basic mode (see Clause 7), the TestBase definition shall be empty and unalterable. The following is
the basic TestBase definition:

TestBase {
 Parameters {}
 FlowVariables {}
 PreActions {}
 TestExec;
 PostActions {}
 PassActions {}
 FailActions {}
}

This is its shorthand equivalent:

TestBase {}

Subclause 35.3.3 shows the default TestBase definition and explains the constraints under which the user
may alter it.

46 The immediate base type may be specified by the Inherit statement. See 28.2 and 31.1.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

117
Copyright ©2018 IEEE. All rights reserved.

27.3 Parameter initialization and assignment
When a test-type or flow-type is defined, each of its parameters is assigned a default value. Each parameter
that does not have attribute Optional, shall have its default value overridden when that test-type or flow-
type is instantiated. Initialization and assignment syntax for parameters is the same as for variables with
one exception: parameters have an additional directionality qualifier, either In, Out, or InOut, indicating
input, output, or both.

A mathematical expression shall be evaluated at each point of use during execution if necessary, e.g., when
relational operators evaluate their arguments, when tester hardware registers are loaded, or when a
mathematical expression containing a mutable variable is used as or assigned to a constant.

The example of Figure 70 shows a Parameters block as it appears in the definition of a test-type. It sets
default parameter values however the rules demonstrated in this example also apply when initializing
parameters during test and flow instantiation. The PreActions block demonstrates assignment rules.

x1 TestType ExParams {
 2 Parameters {
 3 In Integer i0 = 0;
 4 In Const Integer i1 = 1;
 5
 6 // i2-i5: references to i0. Can reassign to other references
 7 // If Const, cannot change value by writing through reference
 8 InOut Integer i2 = &i0; // Can change value
 9 InOut Const Integer i3 = &i0; // Cannot change value via i3
10 InOut Integer i4 = &i0; // Same as line 8
11 InOut Const Integer i5 = &i0; // Same as line 9
12
13 // m0 is Const – cannot update spec var Meas field via m0
14 InOut Const Seconds m0 = &spec.cat.var.Meas;
15
16 // m1 is not Const – can update spec var Meas field via m1
17 InOut Seconds m1 = &spec.cat.var.Meas;
18
19 // t0 is const (both from use of Const, and/or
20 // to use of non-Meas field of a spec variable).
21 InOut Const Seconds t0 = &spec.cat.var.Typ;
22
23 Out Volts v0 = 0V;
24 }
25 PreActions {
26 // Reassign i2 from i0 to i4. i4 also assigned to i0,
27 // so in effect, no change.
28 // Changing i2’s value changes i4's (and i0's) value
29 i2 = &i4;
30
31 // i3 is now reference to i1. Since i3 is Const Integer,
32 // cannot change value of i1 through i3
33 i3 = &i1;
34
35 // Update values through references
36 i4 = i1; // set value of i4’s ref (i0) to i1 value. i0 = 1
37 i2 = 2; // set value of i2’s ref to 2. i0 = 2
38 }
39 }

Figure 70 —Example: parameter initialization

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

118
Copyright ©2018 IEEE. All rights reserved.

At the user’s discretion, individual array dimensions may be specified or not, e.g.:

1 TestType Example
2 {
3 Inherit TestBase;
4 Parameters {
5 InOut BinSpec passBin { Required; BinType Axis; }
6 InOut Const Limits limsarray[passBin.size()] { Units "s"; }
7 InOut Integer a[2][];
8 }
9 }

The following line comments refer to the TestType example above:

 Line 5: Overrides TestBase attributes on inheritance to make passBin a required variable that
shall be set to a Pass axis, BinType attribute Pass having been set in TestBase.

 Line 6: limsarray shall refer to a one dimensional array of the same size as the passBin axis.
Its contents shall not be altered by this test.

 Line 7: array a is required to refer to a two dimensional array whose first dimension is of size 2 and
whose second dimension may be of any size. Identifier a shall reference the same object for the life
of the instantiation of Example.

Once a non-constant array reference parameter is initialized, it may be assigned another array of the same
size and units.47 Alternatively, an array parameter may be assigned a scalar of the same units which sets
every member of the referenced array to the same value. An individual element of the array may be singled
out via one or more bracket enclosed indices, each a scalar integer value zero or greater, and assigned a
scalar of the same units changing the value of that array element.

27.4 Parameter types

Parameter types represent data structures. Specific types may represent a further specialization of one of
these classifications. All parameter types have identifiers, constraints, attributes, functions, and operators.

All FlowVariables types shown in Table 11 (in 17.5) may be used as Parameter types. When used
as parameters, FlowVariables types shall be designated as In, InOut, or Out.

Additional parameter types representing STIL block types, as shown in Table 19 are also permitted.

47 The reference parameter points to the new array, i.e., not an array copy operation.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

119
Copyright ©2018 IEEE. All rights reserved.

Table 19 —STIL block parameter types

Type name IEEE Std User-settable constraints
Type-specific

functions, operators,
and selectors

BinSpec STIL.4 BinType (<Pass|Fail>)(,<Group|Axis|Bin>);
Category STIL.0 Type (<Timing|DCLevels>) size(), []
DCLevels STIL.2
DCSequence STIL.2
DCSets STIL.2
PatternBurst STIL.0
PatternExec STIL.0
Selector STIL.0 Type (<Timing|DCLevels>)
Signal STIL.4
SignalGroup STIL.4 IOType (<In|InOut|Out>)

StaticType (<Supply|Ground|Open|Level>)
SigType (<Analog|Digital|AnalogDigital>)

size(), at(integer)

Spec STIL.0 Type (<Timing|DCLevels>) size(), []
SpecVariable STIL.4 Units "units_expr"; constant/mutable Meas field units(), meas() or Meas,

min() or Min, typ() or
Typ, max() or Max

TestType STIL.4
Timing STIL.0

Detailed parameter type descriptions follow. Parameter definition examples are as they would appear inside
a test-type or flow-type Parameters block. Function, operator, and selector usage examples are shown
as they would appear in a test-type or flow-type actions block or a test or flow instantiation block.48

BinSpec: used to pass a reference to a structure defined in the SoftBinDefs block which is referred to in
the BinMap block which is referred to in the TestProgram block. Except for the setting and clearing of
bins and the associated side effects on counters, BinSpec attributes cannot be changed at runtime.
Attribute keyword BinType constrains the type of binning structure which is legal for that parameter.
Qualifiers Pass or Fail constrain the parameter to a Pass or Fail group, axis, or bin, respectively.
Qualifiers Group, Axis, or Bin constrain the parameter to a group, axis, or bin respectively. These two
groups of qualifiers can be used in conjunction to further constrain a legal parameter to a pass bin, for
example. Bin actions are applicable to a BinSpec parameter and are covered in 22.3, 22.5, and Clause 33.
Alternate BinSpec parameter definition examples follow:

1 InOut BinSpec failBin = None { BinType Fail; }
2 InOut BinSpec failBin = None { BinType Fail, Group; }
3 InOut BinSpec passBin = None { BinType Pass, Axis; }
4 InOut BinSpec failBin = None { BinType Fail, Bin; }
5 InOut BinSpec failBin = None;

Category: used to pass a reference to a STIL.0 Category structure. With the exception of the spec
variable Meas field, no STIL.4 code shall change the expressions inside a Category block. Parameter
qualifier Const shall prevent assignment to the spec variable Meas field. Function size() returns the
number of variables defined in the category block. Operator [] accesses the Nth variable in that block
where numbering begins at zero. A definition example:

 InOut Category cat = None;

48 The difference between an action and an instantiation parameter assignment statement is that during instantiation, a value may be
assigned to a constant parameter.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

120
Copyright ©2018 IEEE. All rights reserved.

Usage is specified on a per test or flow basis but is generally expected to be commensurate with STIL.0
PatternExec. Function and operator usage examples:

1 catsz = cat.size(); // # variables in Category cat
2 specvar = &cat[0]; // First variable in Category cat
3 specvar = &cat[catsz - 1]; // last variable in Category cat

DCLevels: used to pass a STIL.2 DCLevels structure. No STIL.4 syntax shall change the expressions
inside a DCLevels block; however, non-STIL.4 code may. The definition form is consistent with
Category above. Usage is specified on a per test basis but is generally expected to be commensurate with
STIL.2 PatternExec.

DCSequence: shall be used to pass user-defined sequences only, i.e., it shall be illegal to pass predefined
sequences InitialSetup, PowerRaise, PowerLower, and EndOfProgram. No STIL.4 syntax
shall change the expressions inside a DCSequence block.

NOTE—STIL.4 currently has no way to execute a user-defined DCSequence; therefore, a non-STIL.4 library test is
required to execute it.

DCSets: used to pass a STIL.2 DCSets structure. No STIL.4 syntax shall change DCSets. The definition
form is consistent with Category above. Usage is specified on a per test basis but is generally expected
to be commensurate with STIL.2 PatternExec usage.

PatternBurst: used to pass a reference to a STIL.0 PatternBurst structure. A test’s TestExec that
consists of non-STIL.4 code, may temporarily override start and/or stop locations as per VecLocation
parameters. The definition form is consistent with Category above. PatternBurst usage is specified
on a per test basis but is generally expected to be commensurate with STIL.0 PatternExec.

PatternExec: used to pass a reference to a STIL.0 PatternExec structure. No STIL.4 syntax changes
PatternExec data (see PatternBurst). The definition form is consistent with Category above.
Usage is specified on a per test basis.

Selector: used to pass a STIL.0 Selector structure. No STIL.4 syntax shall change Selector data.
This structure shall be used to select which of the four spec variable values (Meas, Min, Typ, or Max) to
use for each spec variable (may be applied to SpecVariable, DCLevels, and/or Timing). The
definition form is consistent with Category above. Usage is specified on a per test basis but is generally
expected to be commensurate with STIL.0 PatternExec.

SignalGroup: used to pass a sigref_expr or None if optional. Signal and signal-group names referred to by
the sigref_expr if any shall be in scope. To be in scope, a signal or signal-group names shall be defined in
the unnamed Signals or SignalGroups blocks respectively, or brought into scope via the Device
block.49 Parameter constraints may optionally be set to SigType and either IOType or StaticType.
When constraints are absent, any signal or signal group may be passed. Constraints shall apply to each
individual signal, e.g., passing a group that contains signals of type In and some of type Out does not
meet a constraint that calls for type InOut. Here is more detailed description of constraints:

49 When using SignalMap, only the top-level unnamed Signals and SignalGroups blocks are in scope. When using the
Device block, the top-level unnamed Signals and SignalGroups blocks plus Signals and SignalGroups blocks
referenced by the Device and Chip blocks are in scope.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

121
Copyright ©2018 IEEE. All rights reserved.

a) IOType:
In: SignalGroup containing only In and InOut signals shall be legal.
Out: SignalGroup containing Out and only InOut signals shall be legal.
InOut: SignalGroup containing only InOut signals shall be legal.

b) StaticType:
Supply: SignalGroup containing only Supply signals shall be legal.
Ground: SignalGroup containing only Ground signals shall be legal.
Open: SignalGroup containing only Open, e.g., unused package pins, signals shall be legal.
Level: SignalGroup containing only Level, e.g., low current reference voltage, signals shall
be legal.

c) SigType:
Analog: SignalGroup containing only Analog or AnalogDigital signals shall be legal.
Digital: SignalGroup containing only Digital or AnalogDigital signals shall be
legal.
AnalogDigital: SignalGroup containing only AnalogDigital signals shall be legal.
These signals may switch dynamically between being analog or digital.

The general form allows for omission of the Const modifier which applies to SignalGroup:

1 InOut Const SignalGroup siggrp { IOType In; }
2 InOut Const SignalGroup siggrp { SigType Digital; IOType In; }
3 InOut Const SignalGroup siggrp { StaticType Supply; }
4 InOut Const SignalGroup siggrp { SigType Analog; StaticType Level; }
5 InOut Const SignalGroup siggrp { StaticType Open; }

Note that all siggrp alternative parameter definitions are initialized to None by default.

SignalGroup supports function size(), and at(integer). Function size() returns the number of
individual signals in the group. The at function indexes the group and returns an individual signal. The
first signal is siggrp.at(0), the last is siggrp.at(siggrp.size() – 1). Negative indices and
indices greater than group size – 1 shall be illegal; therefore, indexing an empty signal-group, a group of
size 0, shall be illegal. The expression siggrp.at(0).name(), for example, would return the name of
the first signal as a string if siggrp was not empty and had a value other than None.

Spec: used to pass a a reference to a STIL.0 Spec structure. With the exception of spec variable Meas
fields, no STIL.4 code shall change the definitions inside a Spec block. Parameter qualifier Const shall
prevent assignment to the Meas field of any variable contained herein. Function size() returns the
number of categories defined in the Spec block. Operator [] accesses the Nth Category in that block.
Numbering begins at zero. A definition example:

 InOut Spec spec = None;

Usage is specified on a per test basis but is generally expected to be commensurate with STIL.0
PatternExec. Function and operator usage takes the same form as Category.

SpecVariable: used to pass a reference to a STIL.0 spec variable structure. The spec variable has Meas,
Min, Typ, and Max fields and is defined in a Spec block or in a Category block which is defined in a
Spec block. The Min, Typ, and Max fields of a spec variable are immutable by definition, i.e., their
mathematical expressions shall not be altered. Their actual values, however, may change if the
mathematical expressions depend directly or indirectly on a Meas field (see Selector). In the following
definition example, only the Meas field is affected by the Const qualifier:

 InOut Const SpecVariable specvar = None;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

122
Copyright ©2018 IEEE. All rights reserved.

Without the Const qualifier, specvar.Meas may be set by the test, with the Const qualifier, it shall
not.

Usage examples:

1 specvar = spec.Categories[I].Variables[J];
2 specvar = &spec.cat.var;
3 specvar.Meas = &testresult;

The following line comments apply to the specvar example above:

 Line 1: a test instantiation statement initializing specvar to the Jth spec variable in the Ith
Category under Spec spec, where I and J are of type Integer with values of zero or greater.

 Line 2: a test instantiation statement initializing specvar to spec variable var in Category
cat under Spec spec.

 Line 3: a test-type action statement assigning the value of testresult to the Meas field of
specvar. This is illegal in this example but would be legal were parameter specvar defined
without the Const qualifier. Assuming it is legal, i.e., testresult units shall also match
specvar units, any subsequent access to the spec variable from this or any other test, via
expression spec.cat.var for example, shall reflect the new Meas field value.

TestType: used to pass a reference to a STIL.4 test, i.e., an instantiation of TestType or any type derived
from TestType. If for example, TestBase is specified as the TestType, this is no constraint at all since all
test-types are derived from TestBase. If StdFunctional is specified as the TestType, then only an
instantiation of StdFunctional or a type derived from it may be passed in. One application is for
defining a generic histogram generating test-type that loops over the user’s chosen test. Applying parameter
qualifier Const prevents the assignment of values to parameters by, e.g., the histogram generating test.

Timing: used to pass a STIL.0 Timing structure. No STIL.4 syntax changes the expressions contained in
the Timing block; however, non-STIL.4 code may. The definition form is consistent with Category
above. Usage is specified on a per test basis but is generally expected to be commensurate with STIL.0
PatternExec.

Constraints are either intrinsic or user-settable. Intrinsic constraints are implied by the parameter type, e.g.,
type Seconds can only be initialized to or assigned a value of type Seconds whereas type General
may be initialized to any numeric value. User settable constraints may occur in several locations. Type-
modifier keyword Const occurs before the type-name and constrains a parameter to be immutable. Other
constraints, located between braces along with attributes, restrict legal assignments to a subset of what
might otherwise be legal.

All parameter types support functions type(), name(), and description(), which return type
String, as shown in Table 14.

Parameters are defined in blocks preceded by keyword Parameters, which occurs inside test-type
definitions only. For example, see Figure 71.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

123
Copyright ©2018 IEEE. All rights reserved.

1 FlowVariables pgm { // Top level definition of variable
2 Seconds prd = 10ns; // In TestType X, local prd hides this one
3 }
4 TestType X {
5 Parameters { // Local definition of parameter
6 In Const Seconds prd { Optional; }
7 }
8 }

Figure 71 —Example: global, top-level, and local FlowVariables

During initialization, the right-hand side, i.e., the value, of a variable or parameter to be assigned may be a
reference to another that has already been initialized.

27.5 Parameter attributes

Parameter attributes appear following a definition statement, enclosed in braces. A parameter attribute is
specified by its name followed by zero or more context specific arguments and terminated by a semicolon.
For example:

1 FlowVariables { // Global variables
2 Volts vdd = 3.3V
3 { Permissions RhsReadWrite; Description "Device power"; }
4 }

An attribute, if not explicitly specified, takes on its default value. Some attributes enable a GUI to impose
constraints. When editing STIL.4 code via a text editor, constraint imposing attributes merely serve as
directives which users may ignore at their own peril.

Table 20 —Parameter attributes

Attribute Argument Default Purpose
Description string Empty string Declare intended use.
Optional |
Required

 Required Optional marks a parameter that does not require an
initialization value on test or flow instantiation

ReInitAt ASYNC_EVENT_NAME START Describe which asynchronous event reinitializes this
variable before executing its associated test. All
variables shall be initialized on LOAD.

Units string units
unspecified

To constrain units on type General only

27.6 Parameter operators and member functions

See Table 13, Table 14, and 17.7. All operators and member functions for FlowVariables also apply to
Parameters.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

124
Copyright ©2018 IEEE. All rights reserved.

For parameter type "InOut", an assignment statement in which the right-hand side (RHS) consists of a
single object name prefixed by the '&' operator, the parameter on the left-hand side (LHS) is re-referenced
to the object on the RHS. When the RHS consists of an expression other than that described above, the
assignment is made to the object referenced by the LHS.

BinSpec may represent a Pass or Fail bin group, a Bin, or a BinAxis; for related functions, see 22.3
and 22.5.

27.7 Parameter array operations

See 17.8. All operations that apply to FlowVariable arrays also apply to Parameter arrays.

27.8 Spec variable access

A spec variable or its fields shall be accessed relative to its hierarchical location, e.g., spec.cat.var or
spec.cat.var.Meas, assuming spec and cat are the names of a previously defined Spec and
subordinate Category block containing variable var. STIL.0 usage of quoted variable names and period
as a string concatenation operator may appear ambiguous, e.g., "spec"."cat"."var" may represent
concatenated string "speccatvar" or a reference to a spec variable. STIL.4 code shall use only operator
+ for string concatenation.

Only the Meas field of a spec variable may be assigned a value, e.g.:

 specname.catname.varname.Meas = 10ns;

When referring to a STIL.0 spec variable in any other STIL.4 expression, one of fields Meas, Min, Typ,
or Max shall be selected, either directly, e.g., specname.catname.varname.Typ, or indirectly via an
accompanying STIL.0 Selector.

 Each Spec block shall have a domain name, and each Spec block name shall be unique across all
Spec blocks.

 A Spec block may be referred to directly by a parameter of type Spec. A Category block may
be referred to directly by a parameter of type Category. A spec-variable may be referred to
directly by a parameter of type SpecVariable. A spec-variable field may be referred to directly
using a parameter or flow-variable of the appropriate type, e.g., Seconds, Volts, etc

 The reference hierarchy shall be constrained to one order: Spec, Category, variable,
Meas|Min|Typ|Max field.

 The information contained in Spec blocks is not globally accessible to STIL.4. The spec block
name is a significant part of the reference hierarchy. For example, catname.varname.Typ is
not a legal STIL.4 reference whereas specname.catname.varname.Typ is (catname
is not found in the top-level namespace, specname is).

SPEC_BLOCK_NAME.size() returns the number of categories in the spec block (type Integer). If the
Category block is omitted in the Spec block specification, size() returns 1, i.e., there is one anonymous
Category block.

SPEC_BLOCK_NAME.name() returns the name of the spec block as type String. When SPEC_BLOCK_NAME
is a parameter, name returns the name of the original Spec block, not the name of the parameter.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

125
Copyright ©2018 IEEE. All rights reserved.

We may iterate over categories and variables via indices. The first category or variables is accessed via
index 0. In the following syntax, an explicit category name and variable name can be substituted for
Categories[I] and Variable[J]. Category and variable name order is as specified in the original spec block.

The Spec block (Spec (SPEC_NAME) { . . . }) is now part of the spec.category.variable.selector hierarchy.

SPEC_BLOCK_NAME.Categories[I] returns the Ith category in a spec block, which can then be further
indexed.

SPEC_BLOCK_NAME.Categories[I].name() returns a string containing the category name corresponding to
the Ith category in a spec block

SPEC_BLOCK_NAME.Categories[I].size() returns the number of variables in the Ith category in a spec block

SPEC_BLOCK_NAME.Categories[I].Variables[J] returns the Jth variable in the Ith category within a spec
block, suitable for further indexing. The value of the variable is determined by the currently-active selector,
unless that selection is explicitly overridden by specifying Min, Typ, Max, or Meas.

SPEC_BLOCK_NAME.Categories[I].Variables[J].name() returns a string containing the variable name of the
Jth variable in the Ith category within a spec block.

SPEC_BLOCK_NAME.Categories[I].Variables[J].[<Min | Typ | Max | Meas>] returns the Jth variable in the
Ith category within a spec block. The value of the variable is determined by the specification of Min, Typ,
Max, or Meas.

Data-type SpecVariable shall refer to a single Spec variable, e.g., as expressed by the hierarchy
SPEC_BLOCK_NAME.CATEGORY_NAME.SPEC_VARIABLE_NAME. SpecVariable subcomponents, i.e., Min,
Typ, Max, and Meas, can be accessed by appending the desired selector field to the SpecVariable. In
addition, there are two other operators available for a SpecVariable variable: .name() which returns
the SpecVariable name as a string, and .units() which returns the units of the SpecVariable as
a string. Function.name()can be used to retrieve the spec-variable name as defined in a Spec block
inside a Test or TestFlow via its SpecVariable parameter. Function .units()can be used to
type-check the spec-variable passed into a Test or TestFlow to insure it has the expected units.

Semantic rules:

 The combination of spec block name+category name+spec variable name shall be unique. This is
an extension of the STIL.0 rule stating that the combination of category name+spec variable name
shall be unique.

 Zero or more of variable fields Min, Typ, Max, or Meas may be defined. Any field omitted in the
spec block definition shall be initialized to value None.

 All spec-variable field units shall be the same, e.g., if one or more fields specify volts then any
uninitialized fields, i.e., fields that are set to 'None', shall be deemed to have the same units.

 Units or the lack thereof may be specified for a spec-variable, e.g., spec_expr 'None' is
indeterminate, '3' specifies no units, and either '3V' or 'NoneV' specifies volts. Once a spec-
variable field is initialized to a value other than 'None' or the Meas field is assigned a value
(None is not a legal assignment value), the spec-variable shall remain constrained to the units of
that value for the remainder of its existence. Keyword Units may be used to specify units when
only the Meas field is intended to be used, i.e., all fields are set to None without units.

 A mutable SpecVariable's Meas field may serve as the target of an assignment. A
SpecVariable's meas() function, although it returns the Meas value, shall not be the legal
target of an assignment:

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

126
Copyright ©2018 IEEE. All rights reserved.

28. TestType definition (FlowExtended)

28.1 General

For each IEEE standard-defined test-type, its function and how it uses its parameters to perform that
function should be described. See Clause 35 for standard definitions. The TestExec statement followed
by a semicolon represents inherited or non-STIL.4 code. Alternatively, the TestExec statement may be
followed by a brace enclosed block of STIL.4 flow-node statements invoking other standard tests. Standard
documents may choose to use flow-node statements to unambiguously describe a specific standard test-
types’ behavior, whereas the implementation may be via non-STIL.4 code or flow-node statements, at the
provider’s discretion. Local standards, i.e., ATE vendor or organization-wide provided test-type libraries,
should follow suit.

For test-types in general, the TestExec statement followed by a semicolon50 executes the base type’s
TestExec or non-STIL.4 code. The TestExec statement followed by a brace enclosed block of flow-node
statements overrides the base type’s TestExec. Under the control of a UI, the block is intended to be seen
as a black box in a production environment and in full detail in a development environment.51

28.2 TestType syntax

The general form of a TestType definition is as follows:

test_typedef_stmt ::=
TestType TEST_TYPE_NAME {
 (< Inherit < TestBase | TEST_TYPE_NAME | FLOW_TYPE_NAME > ; |
 Inherit < TestBase | TEST_TYPE_NAME | FLOW_TYPE_NAME > {
 param_override_stmts
 } >)
 (Parameters {
 ((<In | Out | InOut>) param_elements_stmt)*
 })
 (FlowVariables { (var_elements_stmt)* })
 (PreActions { (action_stmt)* })
 (< TestExec; | (flownode_stmt)* | TestExec {(flownode_stmt)*} >)
 (PostActions { (action_stmt)* })
 (PassActions { (action_stmt)* })
 (FailActions { (action_stmt)* })
}

For In and Out Parameters, the following definitions of param_override_stmts and
param_val_override_stmts apply:

param_override_stmts ::=

(< PARAM_NAME { param_attributes } |
 PARAM_NAME = param_value_expr; |
 PARAM_NAME = param_value_expr { param_attributes } |
 PARAM_NAME[] = { param_attributes }
 PARAM_NAME[] = value_expr; |
 PARAM_NAME[] = value_expr { param_attributes } |

50 The absence of the TestExec statement is equivalent to the TestExec statement followed by a semicolon.
51 A flow differs from a test in that its TestExec details are intended to be visible in both production and development environments.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

127
Copyright ©2018 IEEE. All rights reserved.

 PARAM_NAME[] = ([value_expr (,value_expr)+])+; |
 PARAM_NAME[] = ([value_expr (,value_expr)+])+ { param_attributes }
>)*

param_val_override_stmts ::=

(<PARAM_NAME = None(units); |
 PARAM_NAME = param_value_expr; |
 PARAM_NAME[] (= None(units)); |
 PARAM_NAME[] = value_expr;
 PARAM_NAME[] = ([value_expr (,value_expr)+])+;
>)*

For InOut Parameters, the following definitions of param_override_stmts and param_val_override_stmts
apply:

param_override_stmts ::=

(<PARAM_NAME = { param_attributes } |
 PARAM_NAME = &stil_object_expr; |
 PARAM_NAME = &stil_object_expr { param_attributes } |
>)*

param_val_override_stmts ::=
(<PARAM_NAME (= None(units)); |
 PARAM_NAME = &stil_object_expr;
>)*

The param_override_stmts are used to override the initialization and/or attributes of parameters defined in
the inheritance chain during definition of derived types. Restrictions on how parameter attributes can be
overridden are found in 26.3. New parameters created for this TestType are defined and initialized in the
Parameters block. The definition and semantics of Inherit and param_override_stmts are in 28.2. The
definition of the remainder of TestType elements (param_elements, var_elements, action_stmt, and
flownode_stmt) are in 27.1, 17.2, and 30.2, respectively.

param_val_override_stmts are used to override parameter initialization values during instantiation.

Meta-type param_value_expr shall be of the same type as the type of param PARAM_NAME, or be
convertible to that type. param_value_expr is defined in 27.1.

The definition of TestType block elements other than Inherit is in Clause 27. Any action
block specified in this context shall completely override the inherited block of the same name in the base
test-type.

Inherit: the optional inherit statement denotes the base type from which Parameters, PreActions,
TestExec, PostActions, PassActions, and FailActions are inherited. The absence of an
inherit statement is equivalent to Inherit TestBase. Base type parameter default initialization values
may be overridden within the curly braces following the base type name.

TestExec: followed by a semi-colon, a reference to the base type’s TestExec52 or a standard or local
library test-type’s non-STIL.4 code.

(flownode_stmt)*: this form traverses flow-nodes beginning with the first and executes the test or flow
associated with each. If there are no flow-node statements, the behavior is the same as the TestExec form

52 The immediate base type may be specified by the Inherit statement. See 28.2 and 31.1.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

128
Copyright ©2018 IEEE. All rights reserved.

above. If there are one or more flow-node statements, the behavior is the same as the TestExec form
below. The definition of flownode_stmt is in Clause 30.

TestExec {(flownode_stmt)*}: this form shall override the base type’s TestExec.

28.3 TestType example

The following is an example of test-type TightAcFnc which tests the device under test (DUT) at
minimum and maximum timing edge values via the two selector parameters, sets bin AcFnc and either
stops on fail, or continues on pass:

x1 TestType TightAcFnc {
 2 Parameters {
 3 InOut Selector selmin;
 4 InOut Selector selmax;
 5 InOut Timing tim;
 6 InOut DCLevels dclev;
 7 InOut PatternBurst patburst;
 8 }
 9 TestExec {
10 TestExec MyFunctional {
11 sel = &selmin;
12 tim = &Parent.tim;
13 dclev = &Parent.dclev;
14 patburst = &Parent.patburst;
15 }
16 TestExec MyFunctional {
17 Local.sel = &Parent.selmax;
18 Local.tim = &Parent.tim;
19 Local.dclev = &Parent.dclev;
20 Local.patburst = &Parent.patburst;
21 }
22 }
23 }

Figure 72 —Example: TestType calling subflow using inline instantiation
of other TestTypes and implicit standard FlowNode

Assumptions were made to keep the example compact. The following line comments refer to Figure 72:

 Lines 3–7: parameters are added to the local namespace; each is required and initialized to None
by default.

 Lines 10–15: upon instantiation of TightAcFnc, an anonymous inline copy of TestType
MyFunctional is created. Its default initialization values are overridden by the assignment
statements. A copy of the standard flow-node is created and its TestExec is made to refer to the
anonymous copy of MyFunctional.

 Lines 16–21: same comments as for lines 10–15.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

129
Copyright ©2018 IEEE. All rights reserved.

29. Test

29.1 General

The Test statement contains a set of parameter assignments and references a TestMethod or TestType. In
FlowExtended, the Test statement instantiates a Test from a TestType, either previously defined or
defined inline. Using any of the forms, the Test statement assigns test specific parameter data for
execution. To permit a test parameter to refer to an unnamed block upon instantiation, all unnamed top-
level blocks shall implicitly be assigned the identifier Unnamed.53

In FlowExtended, the local scope of a Test block includes parameters and local variables. Each variable
and parameter name shall be unique in the local scope. Variables and parameters declared in the local scope
hide variables of the same name higher in the containment hierarchy and ultimately the global scope. The
global scope includes Spec block names, variables declared at the top level in an unnamed
FlowVariables block, or one or more named FlowVariables blocks that are referenced in the
TestProgram block.54

To specify variables and/or parameters in scopes other than the local scope, the following rules apply:

 To access a top-level variable that is not hidden by a local parameter or variable, simply refer to it
by name.

 To access a top-level variable that is hidden by a local parameter or variable, use the notation
Global.VAR_NAME which corresponds to ::VAR_NAME in C++.

 To access a local variable, simply refer to it by name, or use the notation Local.VAR_NAME. The
Local notation allows the programmer to indicate that the local scope should be used, regardless
of whether or not this variable hides another by the same name at a higher level. The use of
Local.VAR_NAME is analogous to the "this" pointer (this->VAR_NAME) from C++.

 To access a parameter of the test or flow executed by the flow-node from within the flow-node, use
the notation CurrentExec.PARAM_NAME.

 For a test or flow to access the containing tests’ or flow’s parameter, use Parent.PARAM_NAME.
 For objects contained in other objects the notation OBJECT_NAME.SUBOBJECT_NAME may be

used provided the subobject is accessible. A spec variable or parameter may be accessed this way
whereas test or flow variables are inaccessible.

29.2 Test syntax

A STIL.4 input stream may contain any number of Test instance statements using any of the following
forms:

a) The following definition of test_instance_stmt applies when using Flow 2017 (Clause 7):

test_instance_stmt ::=
 < Test TEST_NAME {
 TestMethod METHOD_NAME;
 (MethodParameters {
 (In method_param_type PARAM_NAME = param_value_expr;)*

53 An optional test parameter is set to None by default. The right-hand side assignment value Unnamed is the only way to make the
parameter reference an unnamed top-level block.
54 Strictly speaking, only the unnamed variables block is truly global; however, named variables blocks referenced in the
TestProgram block become global to the test program which ties together all objects used to test the device.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

130
Copyright ©2018 IEEE. All rights reserved.

 (Out method_param_type PARAM_NAME -> object_expr;)*
 })
 }
 >

When using Flow 2017, test_instance_stmt creates a Test block specifying a TestMethod
name and optional input parameters and output value(s), creating a connection between a Test
block and a named TestMethod with optional passing of input parameter values to the
TestMethod and outputs from the TestMethod. TestMethods are not defined within STIL.4;
therefore, define before use does not apply to the test method name.

The semantics of In and Out parameters are as follows:

 In: An input object passed to the TestMethod. Changes internal to the TestMethod will not
update the object’s value outside test.

 Out: An output value (from an output parameter PARAM_NAME, as defined by the
TestMethod) assigned to the object represented by object_expr.

b) The following definition of test_instance_stmt applies when using FlowExtended 2017
(Clause 7):

test_instance_stmt ::=
 < Test TEST_TYPE TEST_NAME; |
 Test TEST_TYPE TEST_NAME { param_val_override_stmts } |
 Test TEST_NAME {
 TestMethod METHOD_NAME;
 (MethodParameters {
 (In method_param_type PARAM_NAME = param_value_expr;)*
 (Out method_param_type PARAM_NAME -> object_expr;)*
 })
 }
 >

The definition for param_val_override_stmts is in 28.2. During Test instantiation, parameter
attributes shall not be overridden, and Out parameter values shall not be overridden.

param_value_expr ::= value_expr | stil_object_expr

method_param_type and stil_object_expr are defined in 6.11.
value_expr is defined in 17.2.

object_expr ::= <anything that evaluates to a named object, such as a FlowVariable or the .Meas
field of a spec variable>

When using FlowExtended 2017, the test_instance_stmt definition has three forms:

 The first form is used only if all required TestType parameters have default values other
than None.

 The second form may be used to override some or all default test parameter values of the
TestType. Parameters in param_override_stmts with attribute Required (rather than
Optional) and a default value of None, shall be initialized via a param_override_stmts
statement with a value other than None.

 For the first and second forms, the semantics of In, InOut, and Out are as defined in
Table 18.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

131
Copyright ©2018 IEEE. All rights reserved.

 The third form creates a Test block specifying a TestMethod name and optional input
parameters and output value(s), as described above for Flow 2017.

29.3 Test example

The example in Figure 73 shows the form of a Test block without a TestType.

x1 FlowVariables { // Global variables
 2 Volts vx1 = 30mV;
 3 Seconds tx1 = 660ps;
 4 }
 5
 6 Test DSPtest1 {
 7 // DSPMethod has two output params, named time_val and vil
 8 TestMethod DSPmethod;
 9 MethodParameters {
10 In sigref_expr grp = 'AnalogOut';
11 In Hertz sampleRate = 200kHz;
12 In Decibels snr = 53dB;
13 In Percent thd = 0.2%;
14 Out Volts vil -> vx1; // vil assigned to vx1
15 Out Seconds time_val -> tx1; // time_val assigned to tx1
16 }
17 }
18
19 Test DSPtest2 {
20 // DSPMethod has two output params, named time_val and vil
21 TestMethod DSPmethod;
22 MethodParameters {
23 In sigref_expr grp = 'AnalogOut';
24 In Hertz sampleRate = 96kHz;
25 In Decibels snr = 98dB;
26 In Percent thd = 0.01%;
27 Out Volts vil -> vx1; // vil assigned to vx1
28 Out Seconds time_val -> tx1; // time_val assigned to tx1
29 }
30 }
31 Flow main {
32 FlowNode {
33 TestExec DSPtest1;
34 ExitPorts {
35 Port tx1 > 30ns {} Return; // Conditionally exit flow
36 Port True {} Next;
37 }
38 }
39 FlowNode {
40 TestExec DSPtest2;
41 ExitPorts {
42 Port True {} Next;
43 }
44 }
45 }

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

132
Copyright ©2018 IEEE. All rights reserved.

46 TestProgram TEST_PROGRAM_NAME {
47 EntryPoints {
48 On START main;
49 }
50 }

Figure 73 —Example: Test block without TestType

The example in Figure 74 shows a Test statement that instantiates from a defined TestType.

x1 // Test-types are most likely defined in a library
 2 TestType DSPtype {
 3 // TestType description: vil sets waveform base level for
 4 // waveform generator hardwired to DUT input.
 5 // TestExec raises waveform base level by 20uV increments until
 6 // input waveform amplitude becomes nonviable as judged by output
 7 // on parameter grp
 8 // Overridable PostActions restore last viable amplitude.
 9
10 // TestType parameter description:
11 // grp: input waveform amplitude viability
12 // sampleRate: waveform generator sample rate
13 // snr: waveform generator signal-to-noise ratio
14 // thd: waveform generator total harmonic distortion
15 // vil: DUT input waveform average base level, see TestType desc
16 // time_val: TestExec test time
17 Parameters {
18 // Constraints
19 InOut Const SignalGroup grp { IOType Out; SigType Analog; }
20 In Const Hertz sampleRate;
21 In Const Decibels snr;
22 In Const Real thd = 0.2/100 { Optional; } // 0.2%
23 InOut Volts vil;
24 Out Seconds time_val;
25 }
26 // TestExec changes parameter values as per TestType description
27
28 PostActions {
29 vil = vil - 20uV; // Sets vil to last viable amplitude
30 }
31 // Default PassActions are a no-op (would set pass-bin if
32 // one were passed in)
33 // Default FailActions propagate fail status up to entry-point
34 }
35
36 Signals {
37 AnalogOut Out+Analog; // Signal "AnalogOut" is an analog output
38 }
39
40 FlowVariables { // Global variables
41 Volts vx1 = 30mV;
42 Seconds tx1 = 660ps;
43 }
44 Test DSPtype DSPtest1 { // TestType DSPtype instantiation
45 grp = &AnalogOut;
46 sampleRate = 200kHz;
47 snr = 53dB;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

133
Copyright ©2018 IEEE. All rights reserved.

48 // Param thd not specified - uses DSPtype default value (0.2%)
49 vil = &vx1; // Binds parameter vil to global vx1
50 }
51
52 Test DSPtype DSPtest2 { // TestType DSPtype instantiation
53 grp = &AnalogOut;
54 sampleRate = 96kHz;
55 snr = 98dB;
56 thd = 0.01/100; // 0.1%
57 vil = &vx1; // Parameter vil is reference to global vx1
58 }
59 Flow main {
60 FlowNode {
61 TestExec DSPtest1; // Behavior same as Figure 69 up to here
62 PostActions {
63 tx1 = CurrentExec.time_val;
64 }
65 ExitPorts {
66 Port tx1 > 30ns {} Return; // Conditionally exit flow
67 Port True {} Next;
68 }
69 FlowNode {
70 TestExec DSPtest2;
71 ExitPorts {
72 Port True {} Next;
73 }
74 }
75 }
76
77 TestProgram TEST_PROGRAM_NAME {
78 EntryPoints {
79 On START main;
80 }
81 }

Figure 74 —Example: Test statement using defined TestType (FlowExtended)

The following comments compare the two Test examples:

 Both Test examples define and assign identical parameter data, and modify FlowVariables
vx1 and tx1.

 The first example does not use a TestType. Instead, it references a TestMethod named
DSPmethod not defined in STIL.4.

 The second example defines a TestType named DSPmethod that can be inherited by other
TestTypes and instantiated by Test statements.

30. FlowNode

30.1 General

A flow-node is a node in a directed graph representing a finite state machine. The flow-node has one
entrance and in theory, any number of exit ports of which one shall be chosen at execution time.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

134
Copyright ©2018 IEEE. All rights reserved.

30.2 FlowNode syntax

The flownode_stmt, referred to in other parts of this document takes the following form:

flownode_stmt ::=
 < FlowNode (NODE_NAME) {
 (Position integer integer;)
 (Disable (boolean_expr);)
 (TestNumber unsigned_expr;)
 (InheritParentCategorySelector | // Use either Inherit… or Category/Selector. Cannot use both
 (Category CATEGORY_NAME;)*
 (Selector SELECTOR_NAME;)*)
 (PreActions { (action_stmt)* })
 < (TestExec reference_stmt)+ | TestExec; >
 (PostActions { (action_stmt)* })
 (ExitPorts {
 ((PORTLABEL:) Port boolean_expr { (action_stmt)* } next_stmt;)+
 })
 } |
 TestExec reference_stmt >

NODE_NAME: The flow-node name serves as the target of a connection from another flow-node or itself via
next_stmt. The standard flow-node is designed so that most of the time the name is unnecessary. The flow-
node name shall be unique within the block that contains the flow-node.

action_stmt: Optional operation invoked before and/or after the TestExec. Table 21 shows action
statements and where each is legal.

next_stmt: The next_stmt shall define the next step in the navigation of the execution flow if the condition
of the Port boolean_expr is met. The “Port Actions” and “Branching Actions” columns in Table 21 show
which action statements are legal.

Position: An optional statement with an x/y pair of unsigned integers to represent relative position of the
FlowNode within its Flow for documentation or illustrative purposes. The unsigned integer values have
no units or implied scale. The first number represents relative position on an x-axis with the value 0
representing the leftmost position. The second number represents relative position on a y-axis with the
value 0 representing the topmost position. This statement has no impact upon flow navigation.

Disable: An optional keyword with optional boolean_expr used to skip the FlowNode. If keyword is
present without expression, or if keyword is present with a true expression, flow navigation shall continue
with the next FlowNode, or return if the last FlowNode.

TestNumber: An optional unsigned_expr assigned to the FlowNode. In FlowExtended, if a Test
(rather than a Flow) is invoked by the TestExec, this TestNumber overrides the testNumber
parameter in the referenced Test.

Category/Selector context shall be cleared at the beginning of the FlowNode. When Category and Selector
are required to resolve spec references, they shall be set in either the FlowNode (as described below) or as a
parameter to the test being executed.

It is recommended that Category/Selector context be set either in the FlowNode or in the Test or Flow, but
not both.

InheritParentCategorySelector: Inherits the Category/Selector context from the FlowNode which called
the subflow containing this flownode. If present, neither Category nor Selector shall be specified.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

135
Copyright ©2018 IEEE. All rights reserved.

Category: An optional Category block name or expression evaluating to a Category block name. Selects a
category, which defines the values of spec variables to be used for this FlowNode. This selection remains
for the duration of the FlowNode, including all post-execution actions, unless overridden at the Test or
Flow level, including overriding by the value None.

Selector: An optional Selector block name or expression evaluating to a Selector block name. Selects a
Selector block, which defines the Min, Typ, Max, or Meas values to be used for each spec variable that is
referenced by the Category selected for this FlowNode. This selection remains active for the duration of the
FlowNode, including all post-execution actions, unless overridden at the Test or Flow level, including
overriding by the value None.

PreActions: An optional list of actions performed prior to the TestExec. Action statements are described
in Clause 33.

TestExec: When a single TestExec statement occurs within the FlowNode block, it invokes a Test or
Flow using a reference_stmt as described in 26.4. FlowExtended allows for keyword TestExec
followed immediately by a semicolon within the FlowNode block. This shall be legal only for the top-
level standard flow-node definition.

Multiple TestExec statements may occur within the FlowNode block. Conceptually, this may be
described as invoking a single Flow which implements wrapping FlowNodes for each TestExec. Only
the FlowExtended syntax allows for test-type definitions.

When the TestExec statement occurs within a Flow block or test-type, the reference_stmt shall be
executed and flow navigation shall by default proceed to the next flownode_stmt. In this case, there is no
value for the FlowNode NODE_NAME, TestNumber, or execResult.

PostActions: An optional list of actions performed after the TestExec. Action statements are described
in the Clause 33.

execResult: The FlowNode contains a read-only execResult member of type ExecResult. This
member is set by the TestExec. The mechanics of setting execResult is not defined as part of STIL. The
Boolean expression statements in the ExitPorts may make use of this member by testing its value
against possible enumerators of ExecResult.

ExitPorts: A block containing a list of Port statements. Each Port statement includes a Boolean
expression. These Boolean expressions are evaluated in the order that the ports appear. At runtime, the first
port with a Boolean expression that evaluates to true is triggered.

Port: A Port includes an optional PORTLABEL, a boolean_expr, a block of zero or more action statements
(metatype action_stmt), and a next_stmt. In the ExitPorts block, the first port in the list which contains
a boolean_expr evaluating to True is triggered. Once triggered, the port performs the actions enclosed
in braces, e.g., set a soft bin and stop the flow. Thereafter, the next_stmt shall pass control to another
flow-node or the PostActions block of the enclosing flow. Exit-port actions are described in Clause 33.
The optional PORTLABEL is arbitrarily named. This name cannot be referenced. Setting the last port’s
Boolean expression to True guarantees a valid exit for the flow-node.

Refer to 35.3.2 for the standard flow-node definition.

Unspecified clauses, such as pre-actions, exit-ports, etc., shall use standard flow-node definitions and
behaviors.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

136
Copyright ©2018 IEEE. All rights reserved.

30.3 FlowNode examples

x1 FlowNode StuckAt1 {
 2 TestNumber 41;
 3 TestExec testStuckAt1;
 4 ExitPorts {
 5 Port 'execResult==Pass' { } Next;
 6 FAIL: Port 'True' { SetBinStop failSCAN; }
 7 }
 8 }

Figure 75 —Example: FlowNode with ExitPorts

x1 // Example A:
 2 FlowNode {
 3 TestExec test1;
 4 TestExec test2;
 5 }
 6
 7 // Example B:
 8 FlowNode {
 9 TestExec StdFlow {
10 TestExec test1;
11 TestExec test2;
12 }
13 }
14
15 // Example C:
16 FlowNode {
17 TestExec StdFlow {
18 FlowNode { TestExec test1; }
19 FlowNode { TestExec test2; }
20 }
21 }
22
23 // Example D:
24 FlowNode {
25 PreActions {}
26 TestExec StdFlow {
27 FlowNode {
28 PreActions {}
29 TestExec test1;
30 PostActions {}
31 ExitPorts {
32 Port True {} Next;
33 }
34 }
35 FlowNode {
36 PreActions {}
37 TestExec test2;
38 PostActions {}
39 ExitPorts {
40 Port True {} Next;
41 }
42 }
43 }

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

137
Copyright ©2018 IEEE. All rights reserved.

44 PostActions {}
45 ExitPorts {
46 Port True {} Next;
47 }
48 }

Figure 76 —Example: equivalent FlowNode specification forms (FlowExtended)

Examples A, B, C, and D in Figure 76 are functionally equivalent. Every explicitly or implicitly created
flow-node executes standard flow-node actions. When FlowExtended standard FlowNode and
TestBase are in effect and test1 passes, test2 is executed, if test1 fails, the inline-instantiated
StdFlow’s PostActions are executed.

31. FlowType definition (FlowExtended)

31.1 FlowType syntax

The general form for the definition of a flow-type follows:

flow_typedef_stmt ::=
FlowType FLOW_TYPE_NAME {
 (< Inherit < TestBase | FLOW_TYPE_NAME >; |
 Inherit < TestBase | FLOW_TYPE_NAME > {
 param_override_stmts
 } >)
 (Parameters {
 ((<In | Out | InOut>) param_elements_stmt)*
 })
 (FlowVariables { (var_elements_stmt)* })
 (PreActions { (action_stmt)* })
 (TestExec;)
 (PostActions { (action_stmt)* })
 (PassActions { (action_stmt)* })
 (FailActions { (action_stmt)* })
}

The definition and semantics of Inherit and param_override_stmts are in 28.2. The definition of the
remainder of the FlowType elements (param_elements, var_elements, and action_stmt) can be found in
27.1, 17.2, and 30.2 , respectively.

Behavior is identical to TestType with regard to type definition. On instantiation, however, a FlowType
TestExec statement may be overridden whereas a TestType TestExec statement shall not.

32. Flow

32.1 General

A Flow statement is a container for zero or more FlowNodes.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

138
Copyright ©2018 IEEE. All rights reserved.

In FlowExtended, the Flow statement the Flow statement instantiates a Flow from a FlowType, either
previously defined or defined inline. Using any of the forms, the Flow statement assigns flow specific
parameter data for execution. To permit a flow parameter to refer to an unnamed block upon instantiation,
all unnamed top-level blocks shall implicitly be assigned the identifier Unnamed.55

In FlowExtended, the local scope of a Test block includes parameters and local variables. The rules for
local vs. non-local scoping and means of accessing non-local variables are as described for Test parameters
and variables in Clause 29.

32.2 Flow syntax

A STIL.4 input stream may contain any number of Flow instance statements using any of the following
forms:

The following definition of flow_instance_stmt applies when using Flow 2017 (Clause 7):

flow_instance_stmt ::=

< Flow FLOW_NAME { (flownode_stmt)* }>

The following definition of flow_instance_stmt applies when using FlowExtended 2017 (Clause 7):

flow_instance_stmt ::=

< Flow FLOW_TYPE FLOW_NAME; |
 Flow FLOW_TYPE FLOW_NAME { flow_init_stmts }} |
 Flow FLOW_NAME { (flownode_stmt)* }

>

flow_init_stmts ::=

< param_override_stmts
 < TestExec; | (flownode_stmt)* | TestExec { (flownode_stmt)* } >
>

The definition and semantics of param_override_stmts are in 28.2. Parameter override statements may be
omitted if all required FlowType parameters have default values other than None. During Flow
instantiation, parameter attributes shall not be overridden, and Out parameter values shall not be
overridden.

The definition of flownode_stmt is in 30.2.

For the FlowExtended 2017 definition, there are three forms of the Flow statement:

 The first TestExec form terminated by a semicolon shall execute the most immediate base type’s
TestExec in the inheritance hierarchy.

 The second form consisting of zero or more flownode_stmt may be used to override the flow-type’s
flow-node statements if any. If there is no flownode_stmt, the behavior is the same as the first form.
The first flow-node is the flow entry point.

 The third form using keyword TestExec is identical to the second with one exception: if it is
terminated by an empty pair of braces, the flow shall be empty, i.e., a no-op. In FlowExtended
mode, the implied type shall be StdFlow.

55 An optional test parameter is set to None by default. The right-hand side assignment value Unnamed is the only way to make the
parameter reference an unnamed top-level block.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

139
Copyright ©2018 IEEE. All rights reserved.

32.3 Flow examples

The example in Figure 77 shows a Flow using Flow 2017 constructs. It creates two tests (whose content is
not specified here), shows the use of those tests in a Flow (used as a subflow) which contains two
FlowNodes with common usage of elements, and finally shows another flow which calls the subflow from
one of its FlowNodes

x1 Test testStuckAt1 { }
 2 Test testStuckAt2 { }
 3 Flow scan {
 4 FlowNode StuckAt1 {
 5 TestNumber 41;
 6 TestExec testStuckAt1;
 7 ExitPorts {
 8 Port 'execResult==Pass' { SetBin bin1; } Next;
 9 Port 'True' { SetBinStop failSCAN; }
10 }
11 }
12 FlowNode StuckAt2 {
13 TestNumber 42;
14 TestExec testStuckAt1;
15 ExitPorts {
16 Port 'execResult==Pass' { } Next;
17 Port 'True' { SetBinStop failSCAN; }
18 }
19 }
20 }
21 Flow main {
22 FlowNode scanTests {
23 TestNumber 40;
24 TestExec scan; // Executes the subflow “scan” – defined above
25 ExitPorts {
26 Port 'True' { } Next;
27 }
28 }
29 }

Figure 77 —Example: Flow in TestProgram block
(using Flow 2017 constructs)

The example in Figure 78 shows a Flow using FlowExtended 2017 constructs. It instantiates a flow inside
the TestProgram block, and shows the use of both explicit FlowNodes, and implicit FlowNodes using the
standard FlowNode (see 35.3.2)

x1 TestProgram basicflow {
 2 Test StdFunctional fncloose {
 3 failBin = LooseFunct;
 4 patburst = burst1;
 5 tim = acloose;
 6 dclev = dcloose;
 7 }
 8 Test StdFunctional fnctight {
 9 failBin = TightFunct;
10 passBin = Passed;
11 patburst = burst1;
12 tim = actight;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

140
Copyright ©2018 IEEE. All rights reserved.

13 dclev = dctight;
14 }
15 Flow StdFlow main {
16 FlowNode { // Explicit default flow-node
17 TestExec fncloose;
18 }
19 TestExec fnctight; // Implicit default flow-node
20 }
21 EntryPoints {
22 On START main;
23 }
24 }

Figure 78 —Example: Flow in TestProgram block
(using FlowExtended 2017 constructs)

Execution shall begin with an asynchronous event that causes an entry point to execute its test or flow
which shall then execute its PreActions, TestExec, PostActions, and either PassActions or
FailActions, in that order. If the TestExec block contains flow-nodes, explicitly or implicitly, the
first flow node is executed. The flow node shall execute its PreActions, TestExec, PostActions,
and the actions of the first Port in the ExitPorts block whose Boolean statement evaluates to True.
Finally, the selected port specifies which flow node to execute next. Control may pass to flow-nodes
contained in the same test or flow, to the PostActions of the containing test or flow, or in case of an
exception, back to the originating entry-point.

33. Actions and flow control

Actions are commands executed from test, flow, or flow-node action blocks most of which directly or
indirectly affect flow. The test and flow action blocks are named PreActions, PostActions,
PassActions, and FailActions. Flow-node actions blocks are named PreActions,
PostActions, and Port. Some actions are constrained to specific action block types, i.e., those
belonging to a test, flow, or flow-node and either before or after TestExec. See Table 21.

Table 21 —Actions and their legal locations

Action

T
es

t/F
lo

w

Fl
ow

N
od

e

Pr

eA
ct

io
ns

Po
st

A
ct

io
ns

Pa
ss

/F
ai

l A
ct

io
ns

Po
rt

 A
ct

io
ns

B
ra

nc
hi

ng
 A

ct
io

ns

Bypass   
ClearBin      
If/Else If/Else      
Next (NODE_NAME)  
Return  
SetBin soft_bin_expr      
SetBinStop soft_bin_expr     
Stop     
var_assignment_stmt      
ReExec     
While      

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

141
Copyright ©2018 IEEE. All rights reserved.

Table 21 contains the list of available actions. The “Test/Flow” and/or “FlowNode” columns are checked if
the corresponding action is legal in any part of those blocks. One or more of the remainder of the columns
are checked if the corresponding action is legal within the specified Test, Flow, or FlowNode sub-block
or, for the “Branching Actions” column, after the Port brace-enclosed actions block.

The syntax for use with binning actions allows for specifying single or multiple bins. It is described in 21.2.
The following is a detailed description of all available actions, some accompanied by usage examples.

Bypass: Skip pre-actions after the Bypass statement and TestExec. Execution resumes at entry to the
PostActions block.

ClearBin < BIN_VAR_NAME | unary_ bin_expr | multi_bin_expr >: applies to soft bins only and clears the
bin(s) corresponding to the parameter. BIN_VAR_NAME refers to a variable of type BinSpec. See 21.2
for metaypes unary_ bin_expr and multi_bin_expr. With SoftBinDefs defined as per Figure 55 and
Figure 57 and linked in via the TestProgram block BinMap statement, the following examples clear all
soft bins in group Fail and axis ClockSpeed, respectively:

ClearBin Fail;
ClearBin Pass.BinAxes[ClockSpeed];

If (boolean_expr) ({ (action)* } | action)
(Else If (boolean_expr) ({ (action)* } | action))
(Else ({ (action)* } | action))

This statement has normal if/else-if/else semantics, i.e., one of the actions or action blocks is
executed depending on the evaluation of the parentheses enclosed Boolean expression. For example:

If (speed >= 3.00GHz)
 SetBin "3.00GHz";
Else If (speed >= 2.93GHz)
 SetBin "2.93GHz";
Else
 SetBin None;56

Precondition: variable speed shall be defined in a top-level FlowVariables block and linked in via the
current TestProgram block, or in one of the Parameters blocks in the inheritance chain, or in the
local test-type’s or flow-type’s FlowVariables block. The bins named "3.00GHz" and "2.93GHz"
shall be defined, uniquely named, and linked in via the TestProgram block.

Next (NODE_NAME): specifies which flow-node gains control after the current one. The Next statement
without parameters passes control to the next flow-node statement in the user code.57 For the last flow-node
in a list only, keyword Next shall be equivalent to keyword Return. The optional flow-node name
specifies the next flow-node to which control is to be passed.

ReExec: re-executes TestExec, then re-enters PostActions.

Return: stop execution of flow-nodes and perform post-actions of the test or flow that contains the flow-
node with this instruction.

56 Bin None usage requires FlowExtended mode.
57 The standard FlowNode, which is invoked via syntactical shortcut TestExec, is also a target of statement Next.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

142
Copyright ©2018 IEEE. All rights reserved.

SetBin < BIN_VAR_NAME | unary_ bin_expr | multi_bin_expr >: applies to soft bins only and sets the bin(s)
corresponding to the parameter.58 BIN_VAR_NAME refers to a variable of type BinSpec. See 21.2
for metatypes unary_ bin_expr and multi_bin_expr. With SoftBinDefs defined as per Figure 55 and
Figure 57 and linked in via the TestProgram block BinMap statement, these examples all set the same
soft bin:

SetBin Pass.BinAxes[ClockSpeed].Bins["2.93GHz"];
SetBin Pass.BinAxes[0].Bins[1]; // Via indices
SetBin Pass.Bins["2.93GHz"] // Unambiguous specification
SetBin "2.93GHz"; // Unambiguous specification
SetBin 2; // Via bin number

SetBinStop < BIN_VAR_NAME | unary_ bin_expr | multi_bin_expr >: applies to soft bins only.
BIN_VAR_NAME refers to parameter type BinSpec. Refer to the unary_ bin_expr and multi_bin_expr
explanations. Statement SetBinStop failBin is semantically equivalent to the following:

1 SetBin failBin;
2 If (failBin != None)
3 Stop;

The following line comments refer to the SetBin example above:

 Line 1: failBin refers to parameter BinSpec failBin.
 Lines 2 and 3: the Stop statement is reached only if parameter BinSpec failBin is set to a

user-defined bin, i.e., None is the default.

Stop: return to the caller, bubbling up through the levels of flow-nodes and tests, until the initiating entry-
point is reached. Local code specified after the Stop statement at the current level is not executed. At each
subsequent higher level, execute the PostActions and PassActions or FailActions for tests, but
skip execution of FlowNodes and their PostActions and ExitPort actions.

var_assignment_stmt: assigns an expression to a variable. The following is a valid example assuming
varname and value are defined in the current context:

varname = value;

While (boolean_expr) (action | { (action)* })

This statement loops over a single action or block of actions as long as the parentheses enclosed expression
evaluates to True.

34. TestProgram

34.1 General

The TestProgram block assembles the elements required to define a test program. In FlowExtended, one
or more TestProgram blocks may be defined in the input stream. The Device block covered in
Clause 20 chooses which test program(s) to execute. Alternatively, on a tester running a single

58 Bins are automatically cleared by the entry point On START event handler before its test is executed. Once a bin is set, it remains
set until cleared explicitly by a ClearBin statement or implicitly by the next On START event.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

143
Copyright ©2018 IEEE. All rights reserved.

TestProgram, the user may use SignalMap, Clause 19, to associate signals with pads, pins, and
channels.

34.2 TestProgram syntax

The following definition of TestProgram applies when using Flow 2017 (Clause 7):

(TestProgram TEST_PROGRAM_NAME {
 (FlowVariables VAR_BLOCK_NAME;)*
 (BinMap BIN_MAP_NAME;)
 (SignalMap SIG_MAP_NAME;)
 entry_pts_stmt
})+

The following definition of TestProgram applies when using FlowExtended 2017 (Clause 7):

(TestProgram TEST_PROGRAM_NAME {
 (FlowVariables VAR_BLOCK_NAME;)*
 (BinMap BIN_MAP_NAME;)
 (SignalMap SIG_MAP_NAME;)
 (typedef_stmt)*
 (instance_stmt)*
 entry_pts_stmt
})+

typedef_stmt ::= < test_typedef_stmt | flow_typedef_stmt >

instance_stmt ::= < test_instance_stmt | flow_instance_stmt >

Multiple TestProgram blocks is a FlowExtended feature used in the Device block.

FlowVariables: this keyword introduces a reference to a FlowVariables block. The unnamed
FlowVariables block is implicitly referenced, i.e., all its variable definitions are visible from within the
TestProgram block. VAR_BLOCK_NAME is a reference to a FlowVariables block defined at the top
level, i.e., the same level as TestProgram. In addition to variables in the top-level unnamed
FlowVariables block, all variables defined in the referenced block(s) become visible within the scope
of the TestProgram block. Since all TestProgram variables reside in the same namespace, if multiple
FlowVariables blocks are referenced, each variable’s name shall be unique across all blocks. A
FlowVariables block is replicated with each reference, i.e., once for each instance of TestProgram.

BinMap: this keyword introduces a reference to a BinMap block. BIN_MAP_NAME is a reference to a
BinMap block defined at the top level.

SignalMap: this keyword introduces a reference to a SignalMap block. It shall be used only when
SignalMap is employed instead of Device. This is because a single TestProgram can choose which
SignalMap to use but a Device block chooses which TestProgram to run. SIG_MAP_NAME is a
reference to a SignalMap block defined at the top level. The unnamed top-level SignalMap block may
specifically be referred to as SignalMap Unnamed.

typedef_stmt: this statement defines a test-type or flow-type that in the context of the TestProgram block
is visible only within that block. A type definition local to the TestProgram block shall not have the
same name as an existing top-level type definition. Test-type or flow-type definitions may also occur at the

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

144
Copyright ©2018 IEEE. All rights reserved.

top level however data brought into scope by TestProgram FlowVariables, BinMap, and
SignalMap references are not visible to them. Top-level test-type or flow-type definitions are visible
from inside every TestProgram block. See Clause 28 for test_type_def_stmt syntax and Clause 31 for
flow_typedef_stmt syntax.

instance_stmt: this statement creates an instantiation of a test-type or flow-type. The instance is visible only
from within the TestProgram block where this statement occurs and may be referenced by the
entry_pts_stmt. An instance local to the TestProgram block of the same name as an existing top-level
instance shall hide the top-level instance. Note that top-level instance statements shall not be permitted
when the input stream contains more than one TestProgram block.

entry_pts_stmt: this statement associates one or more asynchronous events, each with a test or flow
instance to be executed. See 34.4 for syntax.

34.3 TestProgram examples

The example in Figure 79 illustrates a typical usage when using Flow 2017 (Clause 7). It contains a
SignalMap, a BinMap, and if the flows main and eowFlow rely on FlowVariables, the global unnamed
FlowVariables block shall contain the needed FlowVariables.

1 TestProgram pgm {
2 SignalMap HandTestSigMap;
3 BinMap binmap;
4 EntryPoints {
5 On START main;
6 On WAFER_END eowFlow;
7 }
8 }

Figure 79 —Example: TestProgram using Flow constructs

The example in Figure 80 illustrates a typical usage when using FlowExtended 2017 (Clause 7).

1 TestProgram pgm {
2 FlowVariables globals;
3 BinMap binmap; // Select bin map
4 Flow StdFlow main; // Instantiate StdFlow as main
5 EntryPoints {
6 On LOAD None;
7 On START main; // Execute Flow main when start is received
8 }
9 }

Figure 80 —Example: TestProgram using FlowExtended constructs

For the sake of brevity, FlowVariables (Clause 17), BinMap (Clause 24), and StdFlow (35.7)
definitions are not shown in Figure 80. Define before use rules apply. This TestProgram example is
compatible with the Device block because it has no SignalMap reference. FlowVariables available to
pgm include those in the named FlowVariables block global, and those in any unnamed FlowVariables
block.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

145
Copyright ©2018 IEEE. All rights reserved.

34.4 Entry points

Keyword EntryPoints occurs within the TestProgram block. It introduces a block of asynchronous
events each of which triggers the execution of a test or flow using the following form:

entry_pts_stmt ::=
EntryPoints {
 (On ASYNC_EVENT_NAME reference_stmt)*
}

ASYNC_EVENT_NAME represents one of the enumerations of enumerated type AsynchronousEvent
(see 35.1 for standard definitions). No event shall be listed more than once in the EntryPoints
block. The definition of reference_stmt is in 26.4. See example in Figure 80.

The execution sequence emanating from entry-point On START triggers standard named DC-sequences
(see keyword DCSequence in this document and STIL.2).

Semantics of fail status propagation to top include, for example, the following:

 The state of each entry-point shall be the state of the test or flow it points to.
 For the test or flow that an entry-point refers to, statements involving scope operator Parent are

legal but shall be ignored.

34.5 Bin map

The TestProgram block BinMap statement specifies a named BinMap block. The following example
shows the use of unnamed SoftBinDefs and HardBinDefs blocks. The TestProgram specifies
a BinMap block, which uses those unnamed blocks and therefore does not need to specify either by name).

SoftBinDefs {
 Pass {
 Bin bin1 { Number 1; Color Green; }
 }
 Fail {
 Bin failSCAN { Number 10; Color Red; }
 }
}
HardBinDefs {
 Pass {
 Bin bin1 { Number 1; Color Green; }
 }
 Fail {
 Bin bin2 { Number 2; Color Red; }
 }
}
BinMap binmap {
 bin1 -> bin1;
 failSCAN -> bin2;
}
TestProgram pgm {
 BinMap binmap;
}

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

146
Copyright ©2018 IEEE. All rights reserved.

The next example shows the use of a named SoftBinDefs block.

SoftBinDefs softbindefs {
 Pass {
 Bin Passed;
 }
 Fail {
 Bin Functional;
 }
}

BinMap binmap {
 SoftBinDefs softbindefs;
}

TestProgram pgm {
 BinMap binmap;
}

This example uses binmap to make soft bin definitions accessible to the test program. For simplicity’s
sake the optional hard bin definitions and binmap soft to hard bin mappings are omitted. In FlowExtended
mode, if there’s no hard binning and the test program uses only bin None, neither bin definitions nor a bin
map reference shall be required since bin None is defined by default.

35. Standard definitions

35.1 Standard enumerated types

35.1.1 General

In addition to allowing the user to define enumerated types, STIL.4 requires some standard enumerated
types. Standard enumerated type definitions shall be accessed automatically by the STIL.4 compliant tool,
i.e., they shall not require an Include statement.

A tool provider may extend the list of standard enumerations by adding to the end only. The expectation is
that these and other standard types are provided as part of a tool library, i.e., the user should not have to
provide the definitions as shown in 35.1.2 and 35.1.3. Standard enumerated types for FlowExtended
(35.1.3) shall include those defined for Flow (35.1.2).

35.1.2 Standard enumerated types

Enum AsynchronousEvent {
 NEVER, // event that never occurs - used to disable ReInitAt
 LOAD, // Load executable test program
 LOT_START, //
 WAFER_START, //
 START, // Start test or main flow
 TEST_ENTRY, // Enter a test or flow
 RETEST, // Retest DUT
 END, // Stop test or main flow

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

147
Copyright ©2018 IEEE. All rights reserved.

 WAFER_END, //
 LOT_END, //
}

AsynchronousEvent enumerations are used with EntryPoints, reinitialization specification for
variables via keyword ReInitAt, and functions such as countSince.

Enum ExecResult {
 NORESULT, // No execution result
 PASS, // Pass result
 FAIL, // Fail result
 ERRORRESULT, // Error result
}

ExecResult is used by keyword execResult.

35.1.3 Standard enumerated types (FlowExtended)

Enum BinGroup
{
 FAIL,
 PASS,
 NONE,
}

A BinGroup enumeration is returned by bin member function getBinGroup().

Enum CheckResult {
 PASS, //
 FAIL_UNITS, // Units mismatch
 FAIL_BOTHLIM, // Lower and upper limit
 FAIL_HILIM, // Upper limit
 FAIL_LOLIM, // Lower limit
 INDETERMINATE, // Limits compared to result None
}

A CheckResult enumerations is returned by Limits member function check.

Enum FailMode { // FlowExtended
 PASS,
 EXCEPTION_SOFT, // Software exception, e.g., divide by 0
 EXCEPTION_HARD, // Hardware exception
 FAIL_SETUP, // Tester or device configuration
 FAIL_FNC, // Functional or functional part of parametric
 FAIL_PRM, // Parametric, e.g., search endpoints
 NOEXEC, // Test’s or flow’s TestExec not executed
}

FailMode is used by TestBase parameter failMode.

Enum LevelGrp {
 BICMOS,
 BTL,
 CMOS,
 ECL,

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

148
Copyright ©2018 IEEE. All rights reserved.

 ETL,
 GTL,
 GTLP,
 I2L,
 LVCMOS,
 LVECL,
 LVPECL,
 LVTTL,
 NECL,
 PECL,
 TTL,
}

LevelGrp enumerations are used to infer input and/or output buffer voltage levels. STIL.4 does not
specify the actual voltage levels associated with each enumeration. Current capabilities shall be specified
separately on a per-buffer or buffer-type basis.

Enum LocType {
 LABEL,
}

LocType enumerations are used with type VecLocation.

Enum TestMode {
 PRODUCTION, // Production
 ENGINEERING, // Engineering/characterization
 DEVELOPMENT, // Development/debug
}

TestMode enumerations are intended for flow control.

35.2 Standard global variables (FlowExtended)

Standard variables if used shall prepopulate the unnamed top-level FlowVariables block. A standard
variable is one whose name is reserved. Standard variables are intended for flow-control and/or device
binning. A tester running STIL.4 treats a standard variable as it would any other. A STIL.4 input stream
shall not be required to define any of the standard variables. Figure 81 shows required standard variable
attributes in bold. Variable attributes other than type and name are flexible, e.g., any of these variables
could be defined with an alternate description, as a shared memory type, etc.

FlowVariables {
 Const String StdChipType = None {
 Permissions RhsReadWrite;
 ReInitAt LOAD;
 Description "Chip type identifier"; }
 Const String StdDeviceType = None {
 Permissions RhsReadWrite;
 ReInitAt LOAD;
 Description "Chip/pkg/wire-bond combination identifier"; }
 Const TestMode StdTestMode = None {
 Permissions RhsReadWrite;
 ReInitAt START;
 Description "Development, Engineering, or Production mode"; }
 Const String StdPackageType = None {

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

149
Copyright ©2018 IEEE. All rights reserved.

 Permissions RhsReadWrite;
 ReInitAt LOAD;
 Description "Package type identifier"; }
 Const Celsius StdTestTemperature = None {
 Permissions RhsReadWrite;
 ReInitAt LOAD;
 Description "Intended device test temperature"; }
}

Figure 81 —Example: standard global variable definitions

Figure 81 shows tester independent definitions, hence the initializations to None. On a tester running
STIL.4, a function call may be used to initialize a standard variable. If so, that function shall return the type
of value required by that variable, e.g., a function used to initialize StdChipType shall return a value of
type String.

StdChipType: represents the die. Its value may be None during package test.

StdDeviceType: represents the device or final product identifier, i.e., it may name the chip-type at
wafer test or the chip-type/package-type/wire-bonding combination at package test.

StdTestMode: an enumerated type representing test mode. See 35.1 for the definition.

StdPackageType: represents the package type. Its value shall be None during wafer test.

StdTestTemperature: represents the temperature the device is intended to be tested at. If the
temperature is unspecified, its value shall be None. Specifically, StdTestTemperature should not be
used to represent the current chuck or junction temperature.

35.3 Flow control defaults (FlowExtended)

35.3.1 General

STIL.4 provides standard FlowNode and TestBase definitions using the syntax defined in Clause 30
and Clause 27, respectively. These definitions enable syntactical shortcuts for common stop-on-
fail/adaptive-test behavior which make it easier to understand what a flow is doing by not becoming mired
in repetitive details. Figure 76 shows the relationship between complete explicit FlowNode descriptions
and syntactical shortcuts.

The user may provide defaults which shall appear in the input stream before any statement that invokes
them. In practical terms, the safest place is before TestType or FlowType definitions.

35.3.2 Standard flow-node

The standard flow-node is capable of executing a test or flow and a set of actions that are designed, in
concert with TestBase actions, to exhibit stop-on-fail behavior that is easily translated to target ATE.
Stop-on-fail behavior is described as run-until-fail, then bin-and-stop, otherwise continue. Which of the
actions that model this behavior are apportioned to TestBase and which are apportioned to the standard
flow-node is governed by an organizational philosophy that attempts to make it easy to target the greatest
number of known ATE. A provider may customize that apportionment to suit the behavior of a particular
target tester.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

150
Copyright ©2018 IEEE. All rights reserved.

The standard flow-node definition shall be accessed automatically by a STIL.4 compliant tool, i.e., it shall
not require an Include statement. The standard flow-node shall be defined once before first use as an
unnamed flow-node definition at the top-level, i.e., outside the scope of any flow, test-type or flow-type,
the only other places where a flow-node may be defined. It is safest to define the standard flow-node before
TestType, Test, FlowType, Flow, or TestProgram.

The following is the standard flow-node definition:

1 FlowNode {
2 PreActions {}
3 TestExec;
4 PostActions {}
5 ExitPorts {
6 Port True {} Next;
7 }
8 }

The user may override standard default flow-node PreActions, PostActions, and ExitPorts by
explicitly specifying them in a default FlowNode block. Note that TestExec shall always be overridden
by a TestExec that executes a user-specified test. The following is commentary on the standard flow-
node definition:

 When a flow-node is instantiated, a copy of the default flow-node is made and its placeholder
TestExec statement is replaced with one that refers to a test or flow.

 An implicit instantiation has no name and uses the default flow-node PreActions,
PostActions, and ExitPorts. An explicit instantiation may have a name and may override
the default's PreActions, PostActions, and/or ExitPorts.

35.3.3 Standard TestBase

The standard TestBase definition shall be accessed automatically by a STIL.4 compliant tool, i.e., it shall
not require an Include statement. TestBase is an abstract base type, i.e., it cannot be instantiated.
STIL.4 also specifies a standard FlowNode, enumerated types, and top-level variables necessary for the
functioning of the standard test-types and flow-types.

The purpose of TestBase is to provide a common set of elements for all TestType and FlowType
definitions. TestBase shall be defined only once in the input stream. TestBase requires the standard
definition of enumerated type FailMode (see 35.1).

The standard configuration of TestBase executes a set of actions that are designed, in concert with
FlowNode actions, to exhibit stop-on-fail behavior that is easily translated to target ATE. Stop-on-fail
behavior is described as run-until-fail, then bin-and-stop, otherwise continue. Which of the actions that
model this behavior are apportioned to TestBase and which are apportioned to the standard flow-node is
governed by an organizational philosophy that attempts to make it easy to target the greatest number of
known ATE. A provider may customize that apportionment to suit the behavior of a particular target tester.

In addition to syntactic form and semantics, a test-type or flow-type derived from TestBase also inherits
concrete content. The minimum mandated content of TestBase is shown in Figure 82. A tool provider
may define an alternate version with additional parameters and/or action blocks with differing content.59

59 This is usually done in conjunction with defining a default FlowNode because the TestBase and default FlowNode definitions
together are expected to produce desirable behavior when shorthand syntax is used to describe a flow.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

151
Copyright ©2018 IEEE. All rights reserved.

TestBase {
 Parameters {
 Out Const String Type { ReInitAt LOAD; } // Ref type()
 Out Const String Id { ReInitAt LOAD; } // Ref name()
 Out Const String App = "" { ReInitAt LOAD; }
 Out FailMode failMode = NOEXEC { ReInitAt TEST_ENTRY; }
 In Integer testNumber = None { Optional; }
 InOut BinSpec failBin = None { Optional; BinType Fail; }
 InOut BinSpec passBin = None { Optional; BinType Pass; }
 }
 FlowVariables {}
 PreActions {}
 TestExec;
 PostActions {}
 PassActions {
 SetBin passBin;
 }
 FailActions {
 If (Local.failMode != NOEXEC) {
 Parent.failMode = Local.failMode;
 SetBinStop failBin;
 }
 }
}

Figure 82 —Example: minimum content standard TestBase definition

A description of the required parameters follows:

Type: appears to be initialized to None; however, this parameter is unique in that it is automatically
initialized to the test-type or flow-type name when the derived type is instantiated.60

Id: appears to be initialized to None; however, this parameter is unique in that it is automatically initialized
to the derived type’s instance name on instantiation.61

App: set to an empty string by default, this parameter may be used to indicate the specific application of
this type of test or flow, e.g., when parameter Type is set to "DCMeasurement", a fictional type for
this example, the user may choose to initialize App to "VOH".

failMode: set to Enum FailMode enumeration PASS when TestExec is executed and passes, set to
appropriate alternate FailMode enumeration otherwise (see 35.1). Enum FailMode may be augmented
to allow for user-defined fail codes. PassActions or FailActions are automatically selected as
illustrated by the following pseudo-code:

 If (Local.failMode == PASS){ execute PassActions } Else { execute FailActions }

testNumber: a runtime read-only variable which is set at instantiation, normally used for tests but not
flows.

failBin: any command using this variable is a no-op when set to None.

passBin: any command using this variable is a no-op when set to None.

60 Dot notation access to parameter Type requires that the test be instantiated.
61 For inline instantiations which are anonymous, Id is set to an empty string.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

152
Copyright ©2018 IEEE. All rights reserved.

35.3.4 Flow control example

Figure 83 shows an example of FlowNode and Test interaction.

x1 TestType RequiredSetupTest {
 2 Inherit StdFunctional;
 3 }
 4
 5 Test RequiredSetupTest setup1 {
 6 testNumber = 1;
 7 patburst = setupburst1;
 8 tim = setupac;
 9 dclev = setupdc;
10 }
11
12 Test RequiredSetupTest setup2 {
13 testNumber = 2;
14 patburst = setupburst2;
15 tim = setupac;
16 dclev = setupdc;
17 failBin = failSetup;
18 }
19
20 Flow StdFlow main {
21 TestExec {
22 FlowNode {
23 TestNumber 10; // Overrides setup1 testNumber
24 PreActions {
25 If (skipThisTest)
26 Bypass; // Resumes at PostActions
27 }
28 TestExec setup1; // 1st attempt at setup
29 ExitPorts {
30 NO_EXEC: Port 'CurrentExec.failMode == NOEXEC' {}
31 Next SKIP1; // Skip dependent tests
32 PASS: Port 'CurrentExec.failMode == PASS' {}
33 Next DEPEND; // Run dependent tests
34 FAIL: Port True {}
35 Next; // Try 2nd attempt at setup
36 }
37 }
38
39 FlowNode { // Uses setup2 testNumber
40 PreActions {
41 If (skipThisTest)
42 Bypass; // Resumes at PostActions
43 }
44 TestExec setup2; // 2nd attempt at setup
45 ExitPorts {
46 PASS: Port 'CurrentExec.failMode == PASS' {}
47 Next DEPEND; // Run dependent tests
48 FAIL: Port True {}
49 Next SKIP1; // Skip dependent tests
50 }
51 }
52 }
53

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

153
Copyright ©2018 IEEE. All rights reserved.

54 FlowNode DEPEND { TestExec flow1; }
55
56 FlowNode SKIP1 { TestExec flow2; }
57 }

Figure 83 —Example: FlowNode/Test interaction

The premise of flow main in Figure 83 is that it either executes flow1 following successful configuration
of the DUT or skips to flow2 which does not depend on device configuration. flow1 and its associated
configuration tests may be skipped under control of the Boolean variable skipThisTest or via some
adaptive test process (not described here). If executed, flow main makes up to two attempts to configure
the DUT as controlled by Boolean variable skipThisTest. If the second attempt is made and fails, soft
bin failConfig is set and the program stops. If no attempts are made, the flow carries on with flow2 at
flow-node SKIP1.

Figure 83 employs standard FlowNode and TestBase definitions. Identifiers failSetup,
setupburst1, setupac, setupdc, setupburst2, skipThisTest, flow1, and flow2 are
presumed to have been defined before use.

The following line comments refer to Figure 83:

 Lines 1–3: defines RequiredSetupTest as a type of StdFunctional test to indicate intent.
 Lines 5–10: defines an instance of RequiredSetupTest named setup1. Unmentioned

parameters take on default values defined in standard TestBase, StdFunctional, and
theoretically RequiredSetupTest defined in this example, which has no parameters of its
own.

 Lines 12–18: defines an instance of RequiredSetupTest named setup2. Other than the
name, the commentary for lines 5–10 applies.

 Lines 20–57: defines an instance of StdFlow named main. As required, it replaces the standard
flow-node TestExec with its own.

 Lines 22–37: defines an anonymous flow-node. Like all flow-nodes under FlowExtended,
instantiation begins by copying the standard flow-node. This particular instantiation then overrides
the standard flow-node TestNumber, PreActions, TestExec (which every flow-node
instantiation is required to override), and ExitPorts.

 Line 26: PostActions occur between TestExec and ExitPorts. Because they are not
specified in this flow-node, they are as specified in the standard flow-node, i.e., an empty set.

 Lines 30–31: This covers the situation where setup1 is not executed via a mechanism not
described by STIL.4 which intercepts the execution of setup1, e.g., intervening adaptive test
software, then dependent tests are skipped.

 Lines 39–51: defines an anonymous flow-node in a manner similar to that described for lines 22–
37.

 Line 54: defines a flow-node named DEPEND. This flow-node uses the PreActions,
PostActions, and ExitPorts defined in the standard flow-node. Note that attribute
TestNumber is not set in the standard flow-node and therefore not set in this instantiation. The
syntactical shortcut

 TestExec flow1;

could replace this line.

 Line 56: defines a flow-node named SKIP1. Other than the name and TestExec, the
commentary for line 54 applies.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

154
Copyright ©2018 IEEE. All rights reserved.

35.4 Standard No-op and None (FlowExtended)

Definitions of standard test-types shall be accessed automatically by the STIL.4 compliant tool, i.e., they
shall not require an Include statement.

TestType None{
 Inherit TestBase;
 PreActions {}
 TestExec;
 PostActions {}
 PassActions {}
 FailActions {}
}

Test-type None shall inherit all its parameters from TestBase, have no local variables, and override all
TestBase actions with actions that do nothing. Its TestExec function shall do nothing. This facilitates
entry-point initialization to None, e.g.:

 On LOAD None;

The above code instantiates test-type None inline. Test-type None shall only be used as keyword None
and as a base type for standard test-type StdNoOp as follows:

TestType StdNoOp {
 Inherit None;
}

Test-type StdNoOp may serve as a place-holder (inline instantiation) or as a base type from which to
derive other test-types that may define parameters and/or local variables and execute pre- and/or post-
actions.

35.5 Standard PatternExec test (FlowExtended)

The definition of StdPatternExec shall be accessed automatically by a STIL.4 compliant tool, i.e., it
shall not require an Include statement.

StdPatternExec is a standard predefined TestType from which a Test can be instantiated. A
StdPatternExec test loads level and timing information and subsequently executes one or more
patterns. It shall not be used to load only levels or timing or only run patterns.

TestType StdPatternExec {
 Inherit TestBase;
 Parameters {
 InOut PatternExec patexec;
 }
 TestExec;
}

Parameters:

patexec: this is a reference to a previously defined PatternExec block. The contents of that
block shall adhere to the requirements described in the next paragraph. Passing a reference to a

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

155
Copyright ©2018 IEEE. All rights reserved.

PatternExec that refers to an empty Timing, DCLevels, or PatternBurst shall result in
undefined behavior.

In addition to the syntax and semantics described in STIL.0, STIL.2, and clarifications described under
Clause 10 in this document, a PatternExec block used as a StdPatternExec parameter shall meet
the following requirements:62

 PatternBurst shall be specified for every instance of StdPatternExec.
 DC levels shall be specified for all signals exercised via associated patterns for the first

StdPatternExec to be executed. DC levels shall be optional thereafter.
 Timing shall be specified for all signals exercised via associated patterns for every instance of

StdPatternExec.

35.6 Standard functional test (FlowExtended)

The definition of StdFunctional shall be accessed automatically by a STIL.4 compliant tool, i.e., it
shall not require an Include statement. See Figure 84.

StdFunctional is a predefined standard TestType from which a functional Test can be
instantiated. Similar to StdPatternExec, a StdFunctional test loads level and timing information
and subsequently executes one or more patterns. It has additional capabilities described by way of its
parameters.

TestType StdFunctional {
 Inherit TestBase;
 Parameters {
 InOut PatternBurst patburst;
 InOut Const Timing tim;
 InOut Const DCLevels dclev;
 InOut Const DCSets dcsets { Optional; }
 InOut Category accat { Optional; }
 InOut Category dccat { Optional; }
 InOut Const Selector acsel { Optional; }
 InOut Const Selector dcsel { Optional; }
 In VecLocation start { Optional; }
 In VecLocation stop { Optional; }
 In Window win { Optional; }
 In Seconds maxtime { Optional; }
 InOut DCSequence seqbeg { Optional; }
 InOut DCSequence seqend { Optional; }
 }
 TestExec;
}

Figure 84 —Example: standard functional test definition

TestExec: runs non-STIL.4 functional test code using at minimum, required parameters patburst, tim,
and dclev. Pre and post actions are inherited from TestBase. Sets TestBase parameter failMode
to the appropriate value of type FailMode, i.e., to FAIL_FNC when the test fails, to PASS otherwise.
Parameter details follow:

62 This is an amalgamation of STIL.0 and STIL.2 rules amended by STIL.4 for the purpose of using PatternExec as a
StdPatternExec parameter.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

156
Copyright ©2018 IEEE. All rights reserved.

accat: contains spec variables for use with timing. Needed to resolve variable names used in test
parameter tim.

acsel: required if test parameter accat uses values other than Typ, i.e., Meas, Min, or Max.

dccat: contains spec variables for use with DC levels. Needed to resolve variable names used in test
parametes dclev and dcsets.

dclev: contains DC level information for In, Out, InOut, and Supply signals, that in conjunction with
test parameters tim and patburst complete the information required to generate waveforms. See STIL.2
for more information.

dcsel: required if test parameter dccat uses values other than Typ, i.e., Meas, Min, or Max.

dcsets: contains a set of DCLevels that may be referenced in each pattern in test parameter patburst
to change levels on the fly. Before the first such reference, the levels specified by test parameter dclev are
in force.

maxtime: limits the maximum execution time. Terminates infinite or match loop patterns.

patburst: if test parameters start and stop are set to None, usually the default, then all
PatternBurst and or PatList Start and Stop specifications are honored.

seqbeg: optional user-defined DCSequence to be executed before any levels are set by TestExec.

seqend: optional user-defined DCSequence to be executed after TestExec.

start: overrides any and all Start statements found within test parameter patburst. The location shall
be unique in the set of patterns referenced in the PatList. Setting start to a location on or inside a loop
or MatchLoop statement results in undefined behavior.

stop: overrides any and all Stop statements found within test parameter patburst. The location shall
be unique in the set of patterns referenced in the PatList. Setting stop to a location on or inside a loop
or MatchLoop statement results in undefined behavior.

tim: contains waveform character associated timing and waveform descriptions to be used in conjunction
with test parameter patburst to generate logical waveforms.

win: describes a pattern window, i.e., vector range and signals, over which strobes specified in the timing
and patterns shall be active. When the value of win is None, strobes specified in the timing shall be active
over the entire PatternBurst, otherwise the vector range should fall between vector locations specified
by parameters start and stop or PatternBurst/Pattern Start and Stop statements in order to
be effective.

35.7 Standard flow (FlowExtended)

The definition of StdFlow shall be accessed automatically by a STIL.4 compliant tool, i.e., it shall not
require an Include statement.

Flow-type StdFlow is used to instantiate a flow of tests with standard flow pre- and post-actions. The
standard definition is as follows:

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

157
Copyright ©2018 IEEE. All rights reserved.

FlowType StdFlow {
 Inherit TestBase;
}

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

158
Copyright ©2018 IEEE. All rights reserved.

Annex A

(informative)

Event sequence

A.1 General

This annex describes the sequence of events as they occur on a virtual machine or actual ATE running
STIL.4. The purpose of this clause is to unambiguously communicate the intent behind STIL.4, STIL.0,
and STIL.2, especially as it relates to variable memory allocation and content. It is understood that when
STIL.4, STIL.0, and STIL.2 code is translated to run on a particular tester, it may not be possible to wholly
comply with the standard’s intent. Understanding STIL.4 intent helps make test programs translated to run
on different testers behave as consistently as possible.

A.2 Parsing and loading

Each test-program shall have its own copy of unamed and named FlowVariables referenced by the
TestProgram block. Note that the reference to the unnamed FlowVariables block is implicit and
precedes references to named FlowVariables blocks.

Variables defined inside a test or flow FlowVariables and Parameters block are initialized upon
instantiation of that test or flow.

All tests or flows, named or anonymous/inline, are instantiated before any are executed. This may affect a
top-level variable value, i.e., a test or flow may associate a default value with an InOut parameter that
references a top-level variable. The value of that top-level variable may subsequently be employed during
the instantiation of another test or flow.

Once all program information is loaded, a LOAD event is generated.

A.3 Execution

An asynchronous event shall be required to begin execution (see AsynchronousEvent in 35.1). STIL.4
defined asynchronous events shall occur in the following order: LOAD, LOT_START, WAFER_START,
START, and then RETEST. When an asynchronous event is triggered:

1. Pre TestExec actions:

a. Variables whose ReInitAt attribute matches the event name are initialized. This
includes spec variable meas values, parameters and variables in FlowVariables
blocks associated with TestProgram and FlowVariables blocks local to tests.

b. If the event is START, then all soft and hard bins are unset and event-specific bin-
associated counters are reinitialized.

2. The test or flow associated with the event, as specified under EntryPoints, is executed.

3. Post TestExec actions:

a. If the event is START, then all soft bins are mapped to hard bins according to BinMap
instructions.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

159
Copyright ©2018 IEEE. All rights reserved.

Annex B

(informative)

Top-level block sequence (FlowExtended)

B.1 General

The intent of this clause is to provide an example of a safe block sequence, first in the form of a top-level
skeleton, then in the form of a complete test program.

B.2 Skeleton and dependencies

This subclause provides a usable top level block sequence and the dependencies upon which this sequence
is based. Standard definitions and extensions or modifications thereof should be read before any of the user
supplied blocks.

Not all the blocks listed here need to be present in one input stream. Pattern related blocks for example may
be separate. Some of the dependencies while possible or even likely may not be present under specific
circumstances.

STIL.0/1/2/4 block Dependencies
STIL 1.0 None

Header None

UserFunctions None

Variables a None

FlowVariables Variables (determines which variables are in shared memory)

FlowVariables VARS_NAME Unnamed FlowVariables block

Signals None

SignalGroups Unnamed Signals block

Signals SIGS_NAME Unnamed Signals block

SignalGroups GRPS_NAME Signals block of the same name and unnamed Signals block

Package PKG_NAME None (may be supplied via ATPRG library)

Chip CHIP_NAME Signals, SignalGroups

DCSequence DCSEQ_NAME Chip, Signals, SignalGroups

Device DEV_NAME Chip, Package, Signals, SignalGroups, TestProgram,b DCSequence

Spec SPEC_NAME None

Selector SEL_NAME None

Timing Device, Chip, Signals, SignalGroups

Timing TIM_NAME Device, Chip, Signals, SignalGroups

DCLevels Device, Chip, Signals, SignalGroups

DCLevels LEVELS_NAME Device, Chip, Signals, SignalGroups

DCSets DCSET_NAME DCLevels

PatternBurst BURST_NAME Device, Chip, Signals, SignalGroups, MacroDefs, Procedures,
ScanStructures, PAT_NAME or BURST_NAME

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

160
Copyright ©2018 IEEE. All rights reserved.

STIL.0/1/2/4 block Dependencies
PatternExec PATEXEC_NAME Spec, Category, Selector, DCLevels, DCSets, Timing, PatternBurst

used by an automatic test pattern generator to generate
StdFunctional test

SoftBinDefs None

SoftBinDefs SOFTDEFS_NAME None

HardBinDefs None

HardBinDefs HARDDEFS_NAME None

BinMap BINMAP_NAME SoftBinDefs, HardBinDefs

TestType TESTTYPE_NAME c TestBase and other base types, FlowVariables, PatternBurst,
PatternExec

FlowType FLOWTYPE_NAME d Same as TestType

Test TESTTYPE_NAME TEST_NAME FlowVariables, BinMap, Timing, DCLevels, DCSets, Spec,
Selector, DCSequence, PatternBurst, PatternExec

Flow FLOWTYPE_NAME FLOW_NAME Same as Test

SignalMap SIG_MAP_NAME Unnamed Signals block

TestProgram PGM_NAME Variables, FlowVariables, BinMap, SignalMap,e Test and Flow
types

ScanStructures SCAN_NAME Signals

Procedures None

Procedures PROCS_NAME None

MacroDefs None

MacroDefs MDEFS_NAME None

Pattern PAT_NAME Device, Chip, Signals, SignalGroups, Procedures, MacroDefs,
ScanStructures

a This block is expected to be pre-populated with standard global variables (see 35.2).
b Forward reference.
c Standard types are expected to be defined before user code.
d Standard types are expected to be defined before user code.
e There is no SignalMap dependency if the Device block is used instead of the SignalMap.

PatternExec is not directly used by STIL.4. An ATPRG may use it to generate a TestType instance
using keyword Test. Pattern code is usually kept in separate files.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

161
Copyright ©2018 IEEE. All rights reserved.

Annex C

(informative)

Usage examples (FlowExtended)

C.1 Coding examples

This section contains sample coding that helps illustrate language features used in concert for specific
applications.

C.1.1 Speed binning with scalable timing

The code in this subclause combines the following elements:

 Timing that consists in part or whole of timing expressions that are a function of period
 Passing bins on a speed bin axis whose names reflect device speed, e.g., "900MHz", "600MHz",

and "300MHz"
 Functions str2number and eval
 TestType

This technique allows the user to easily add, subtract, or temporarily enable or disable speed tests by
respectively adding, subtracting, or enabling/disabling soft bins on the speed axis. When adding or
subtracting, soft to hard bin mapping must be synchronized.

// ==
Signals { // Set-reset latch
 Set In;
 Reset In;
 Q Out;
 QBar Out;
 Vdd Supply;
 Gnd Ground; // STIL.4 property
}
// --
SignalGroups { // Set-reset latch
 DIns = 'Set + Reset'; // Digital inputs
 DOuts = 'Q + QBar'; // Digital outputs
 DSigs = 'DIns + DOuts'; // Digital signals
}
// ==
Pattern pat1 {
 WaveformTable one;
 V { DSigs=10HL; }
 V { DSigs=00HL; }
 V { DSigs=01LH; }
 V { DSigs=00LH; }
 V { DSigs=11XX; }
}
// --
PatternBurst Burst1 {

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

162
Copyright ©2018 IEEE. All rights reserved.

 PatList { pat1; }
}
// ==
Spec SpecSpeed {
 Category CatPeriod {
 period { Units "s"; } // STIL.4: init to None, constrain to Seconds
 }
}
// --
Selector SelPeriod {
 period Meas;
}
// ==
Timing AcLoose {
 WaveformTable one {
 Period 'period';
 Waveforms {
 DIns { 01 { '0s' D/U; }}
 DOuts {
 01 { '0s' D/U; }
 LH { 'period*0.9' L/H; }
 X { '0s' X;}
 }
 }
 }
}
// ==
DCLevels LowV {
 Vdd {
 VForce '3.3V';
 IClamp '8mA';
 }
 DIns {
 VIH '2.0V';
 VIL '0.8V';
 }
 DOuts {
 VIH '2.0V';
 VIL '0.8V';
 VOH '2.4V';
 VOL '0.4V';
 IOH '3mA';
 IOL '3mA';
 LoadVRef '1.8V';
 }
}
// ==
SoftBinDefs softbindefs {
 Pass {
 BinAxis Speed {
 Bin "900MHz"; // Index 0, Number 1
 Bin "600MHz"; // Index 1, Number 2
 Bin "300MHz"; // Index 2, Number 3
 }
 }
 Fail {
 Bin Functional;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

163
Copyright ©2018 IEEE. All rights reserved.

 }
}
// --
HardBinDefs hardbindefs {
 // Explicit bin numbers are the same as default
 Pass {
 Bin "900MHz" { Number 1; } // Index 0
 Bin "600MHz" { Number 2; } // Index 1
 Bin "300MHz" { Number 3; } // Index 2
 Bin Unmarketable { Number 4; Verbose "Too slow"; } // Index 3
 Bin Unclassifyable { Number 5; Verbose "No bins set"; } // Index 4
 }
 Fail {
 Bin Funct { Number 6; } // Index 0
 }
}
// --
BinMap binmap {
 SoftBinDefs softbindefs;
 HardBinDefs hardbindefs;

 // Maps soft bin to hard bin number
 Map Pass.Bins["900MHz"] -> 1;
 Map Pass.Bins["600MHz"] -> 2;
 Map Pass.Bins["300MHz"] -> 3;
 Map None -> 5; // Unclassifyable
 Map Fail.Bins[Functional] -> 6; // Fail Timing
}
// ==
// APPLICATION: functional testing at multiple speeds when the timing
// over the speed range scales to period.

// DESCRIPTION: Iterate over bins on softbin axis "passBin", beginning
// at index 0 executing a StdFunctional test with each iteration. Set
// pass bin corresponding to category on first pass and exits. Set fail
// bin if none of the iterations pass.

// REQUIREMENTS:
// - Parameter "passBin" is a BinAxis whose bin names are test
// speeds in units of Hz, ordered fast to slow.
//
// - Speeds to be tested have their corresponding bins enabled.
//
// - "prd" is a reference to the spec-variable in "accat" that
// represents the period.
//
// - "acsel" selects the Meas field for the parameter passed in as
// "prd".
//
// - Some or all of the timing in "tim" is expressed in terms of a
// spec-variable in "accat" that represents the period.
TestType ScalableSpeed {
 Inherit TestBase {
 passBin = None { BinType Axis; } // Add constraint
 }
 Parameters {
 InOut PatternBurst patburst;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

164
Copyright ©2018 IEEE. All rights reserved.

 InOut Const Timing tim;
 InOut Const DCLevels dclev;
 InOut Category accat { Type Timing; }
 InOut Category dccat { Optional; Type DCLevels; }
 InOut Const Selector acsel;
 InOut Const Selector dcsel { Optional; }
 InOut SpecVariable prd { Units "s"; }
 }
 FlowVariables {
 Const Integer bcount = passBin.Bins.size(); // Axis bin count
 Integer idx = 0; // Index for axis
 Hertz speed = None;
 String bname = passBin[idx].name();
 Seconds period = 1/speed;
 }
 PreActions {
 While (!passBin[idx].isEnabled()) {
 idx = idx + 1;
 If (idx == bcount) {
 Bypass; // Skip TestExec and post-actions
 }
 }

 If (str2number(bname, speed) == bname.size())
 prd.Meas = eval(period); // Evaluate then assign tracking period
 Else {
 Stop;
 }
 }
 // --
 // The following TestExec statement theoretically creates an
 // anonymous instance of StdFlow and StdFunctional when TestType
 // ScalableSpeed is instantiated. The StdFlow instance contains 1
 // default FlowNode which executes StdFunctional.
 TestExec StdFunctional {
 // The following assignments occur only once at TestType
 // StdFunctional/ScalableSpeed instantiation
 Local.patburst = &Parent.patburst;
 Local.tim = &Parent.tim;
 Local.dclev = &Parent.dclev;
 Local.accat = &Parent.accat;
 Local.dccat = &Parent.dccat;
 Local.acsel = &Parent.acsel;
 Local.dcsel = &Parent.dcsel;
 }
 // --
 PassActions {
 SetBin passBin[idx]; // Set soft bin
 }
 FailActions {
 If (idx == bcount) { // Exhausted number of speed bins
 Local.failMode = FAIL_PRM; // TestBase pass/fail indicator
 SetBin Local.failBin; // Soft bin
 } Else {
 idx = idx + 1; // Increment to bin-axis next bin
 If (str2number(bname, speed) == bname.size()) { // Get next speed
 prd.Meas = eval(period); // Variable period is tracking

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

165
Copyright ©2018 IEEE. All rights reserved.

 ReExec; // Loop back to TestExec
 } Else {
 Stop;
 }
 }
 }
}
// ==
TestProgram pgm {
 BinMap binmap; // Refer to BinMap
 Test ScalableSpeed speed { // Instantiate test
 passBin = &Pass.Speed; // Pass group Speed axis
 failBin = &Functional;
 patburst = &Burst1;
 tim = &AcLoose;
 accat = &SpecSpeed.CatPeriod;
 acsel = &SelPeriod;
 dclev = &LowV;
 }
 Flow StdFlow mainflow {
 TestExec speed; // Default FlowNode reference to test instantiation
 }
 EntryPoints {
 On Start mainflow;
 }
}
// ==

C.1.2 FlowExtended production test program example

The program example in Figure C.2 performs a series of functional tests, setting a soft pass or fail bin with
exit-on-fail behavior. After exiting, a hard bin is set according to bin-map specifications. The program is
based on the fictional device shown in Figure C.1 where input C controls the output levels on Z. Patterns
are usually in a separate input stream, i.e., set of files, but for this small example are put in line with the rest
of the information.

This example employs syntax enabled by the FlowExtended mode including the TestType
StdFunctional and standard TestBase components.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

166
Copyright ©2018 IEEE. All rights reserved.

Figure C.1—Diagram: And gate with programmable output levels

xx1 // ==
 2 STIL 1.0 {
 3 FlowExtended 2017;
 4 DCLevels 2002;
 5 }
 6 // ==
 7 Header {
 8 Title "Basic Production Test Program";
 9 Date "Tue Dec 3 17:34:18 EST 2013";
 10 Source "ExBasicProdPgm.stil";
 11 History {
 12 Ann {* 12/4/2013 - made a change *}
 13 }
 14 }
 15 // ==
 16 // User-defined variables
 17 FlowVariables {
 18 Boolean tightFncFailed = False
 19 { Description "True if any test of type TightFnc failed"; }
 20 }
 21 // ==
 22 // Single 2 input AND gate with programmable output levels
 23 // Signal Subtype is Digital by default
 24 Signals {
 25 VDD Supply;
 26 VSS Ground;
 27 A In;
 28 B In;
 29 C In; // Control: 1 = 5V levels, 0 = 3.3V levels
 30 Z Out;
 31 }

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

167
Copyright ©2018 IEEE. All rights reserved.

 32 // --
 33 SignalGroups {
 34 INPUTS = 'A + B + C';
 35 OUTPUTS = 'Z';
 36 ALL = 'INPUTS + OUTPUTS';
 37 }
 38 // --
 39 Signals B4081_IN_DIP_8P {
 40 OPIN1 InOut + Open;
 41 OPIN5 InOut + Open;
 42 }
 43 // --
 44 SignalGroups B4081_IN_DIP_8P {
 45 OPENS = 'OPIN1 + OPIN5';
 46 }
 47 // ==
 48 // 16 pin dual inline package, top view:
 49 // - 1 x x 8 VDD
 50 // A 2 x x 7 Z
 51 // B 3 x x 6 C
 52 // VSS 4 x x 5 -
 53 Package DIP_8P {
 54 PinList { 1..8 }
 55 Plane PWR { 8 }
 56 Plane GND { 4 }
 57 }
 58 // ==
 59 Chip B4081;// Chip defined by unnamed Signals & SignalGroups blocks
 60 // ==
 61 // Chip in an 8 pin DIP
 62 Device B4081_IN_DIP_8P {
 63 Chip B4081;
 64 Package DIP_8P;
 65 Signals B4081_IN_DIP_8P;
 66 SignalGroups B4081_IN_DIP_8P;
 67 PinMap {
 68 // Signal-to-package-pin or -plane mapping
 69 VDD PWR;
 70 VSS GND;
 71 A 2;
 72 B 3;
 73 C 6;
 74 Z 7;
 75 OPIN1 1;
 76 OPIN5 5;
 77 }
 78 Tester " Teradyne, Ultraflex " {
 79 // Fictional tester defaults to a generic Configuration
 80 TestHead {
 81 Partition {
 82 TestProgram production;
 83 DeviceSites 1 {
 84 ChannelMap {
 85 // Signal-to-channel mapping
 86 VDD 23.sense1;
 87 VSS Gnd;
 88 A 4.ch1;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

168
Copyright ©2018 IEEE. All rights reserved.

 89 B 4.ch12;
 90 C 4.ch13;
 91 Z 4.ch14;
 92 OPIN1 4.ch15;
 93 OPIN5 4.ch16;
 94 }
 95 }
 96 }
 97 }
 98 }
 99 }
100 // ==
101 Timing acloose {
102 WaveformTable wft {
103 Period '50ns';
104 Waveforms {
105 INPUTS {
106 01 { '0ns' ForceDown/ForceUp; }
107 }
108 OUTPUTS {
109 HLZ {
110 '0ns' ForceOff;
111 '25ns' CompareHigh/CompareLow/CompareOff;
112 }
113 }
114 }
115 }
116 }
117 // --
118 Timing actight {
119 WaveformTable wft {
120 Period '25ns';
121 Waveforms {
122 INPUTS {
123 01 { '0ns' ForceDown/ForceUp; }
124 }
125 OUTPUTS {
126 HLZ {
127 '0ns' ForceOff;
128 '12.5ns' CompareHigh/CompareLow/CompareOff;
129 }
130 }
131 }
132 }
133 }
134 // ==
135 DCLevels dctight5V {
136 VDD {
137 VForce '5.0V';
138 IClamp '50mA';
139 }
140 INPUTS {
141 VIH '3.7V';
142 VIL '1.3V';
143 }
144 OUTPUTS {
145 VOH '4.7V';

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

169
Copyright ©2018 IEEE. All rights reserved.

146 VOL '0.2V';
147 IOH '-10mA';
148 IOL '10mA';
149 LoadVRef '2.5V';
150 }
151 }
152 // --
153 DCLevels dctight3V {
154 VDD {
155 VForce '5.0V';
156 IClamp '50mA';
157 }
158 INPUTS {
159 VIH '3.7V';
160 VIL '0.8V';
161 }
162 OUTPUTS {
163 VOH '2.4V';
164 VOL '0.5V';
165 IOH '-10mA';
166 IOL '10mA';
167 LoadVRef '1.5V';
168 }
169 }
170 // ==
171 PatternBurst burst5V {
172 PatList { pat5V; }
173 }
174 // --
175 PatternBurst burst3V {
176 PatList { pat3V; }
177 }
178 // ==
179 SoftBinDefs softbindefs {
180 Pass {
181 Bin Passed; // Index 0, Number 1
182 }
183 Fail {
184 Bin LooseFunct; // Index 0, Number 2
185 Bin TightFunct; // Index 1, Number 3
186 }
187 }
188 // --
189 HardBinDefs hardbindefs {
190 Pass {
191 Bin Passed { // Index 0, Number 1
192 WafermapChar *;
193 }
194 Bin NoBin { // Index 1, Number 2
195 WafermapChar ?;
196 Verbose "No soft bin set";
197 }
198 }
199 Fail {
200 Bin TightFunct { // Index 0, Number 3
201 WafermapChar T;
202 Verbose "Tight timing, tight levels";

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

170
Copyright ©2018 IEEE. All rights reserved.

203 }
204 Bin LooseFunct { // Index 1, Number 4
205 WafermapChar L;
206 Verbose "Loose timing, tight levels";
207 }
208 }
209 }
210 // --
211 BinMap binmap { // Soft to hard bin mapping
212 SoftBinDefs softbindefs;
213 HardBinDefs hardbindefs;
214
215 // Sends device to this physical bin when no sort bins are set:
216 Map None -> 2; // Unclassifyable
217
218 Map Pass.Bins[Passed] -> 1;
219
220 Map Fail.Bins[TightFunct] -> 3;
221 Map Fail.Bins[LooseFunct] -> 4;
222 }
223 // ==
224 TestType LooseFnc {
225 Inherit StdFunctional {
226 failBin = LooseFunct; // Override default fail bin
227 passBin = Passed; // Override default pass bin
228 }
229 PreActions { // Override standard PreActions
230 If (tightFncFailed == False)
231 Bypass;
232 }
233 }
234 // --
235 TestType TightFnc {
236 Inherit StdFunctional {
237 failBin = TightFunct; // Override default fail bin
238 passBin = Passed; // Override default pass bin
239 }
240 FailActions { // Override standard FailActions
241 tightFncFailed = True; // Override
242 Parent.failMode = Local.failMode; // Standard
243 SetBinStop failBin; // Standard
244 }
245 }
246 // ==
247 TestProgram production {
248 // Uses top-level unnamed FlowVariables block only
249 BinMap binmap;
250 Test LooseFnc tstLf5V {
251 patburst = burst5V; // Forward reference OK
252 tim = acloose;
253 dclev = dctight5V;
254 }
255 // --
256 Test LooseFnc tstLf3V {
257 patburst = burst3V; // Forward reference OK
258 tim = acloose;
259 dclev = dctight3V;

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

171
Copyright ©2018 IEEE. All rights reserved.

260 }
261 Test TightFnc tstTf5V {
262 patburst = burst5V; // Forward reference OK
263 tim = actight;
264 dclev = dctight5V;
265 }
266 Test TightFnc tstTf3V {
267 patburst = burst3V; // Forward reference OK
268 tim = actight;
269 dclev = dctight3V;
270 }
271 // --
272 Flow StdFlow floLoose {
273 TestExec tstLf5V; // Implicit standard flow-node
274 TestExec tstLf3V; // Implicit standard flow-node
275 }
276 Flow StdFlow floTight {
277 TestExec tstTf5V; // Implicit standard flow-node
278 TestExec tstTf3V; // Implicit standard flow-node
279 }
280 Flow StdFlow floMain {
281 TestExec floLoose; // Implicit standard flow-node
282 TestExec floTight; // Implicit standard flow-node
283 }
284 // --
285 EntryPoints {
286 On START floMain;
287 }
288 }
289 // ==
290 Pattern pat5V {
291 WaveformTable wft;
292 // Signal ABCZ
293 V { ALL = 001L; }
294 V { ALL = 011L; }
295 V { ALL = 101L; }
296 V { ALL = 111H; }
297 }
298 // --
299 Pattern pat3V {
300 WaveformTable wft;
301 // Signal ABCZ
302 V { ALL = 000L; }
303 V { ALL = 010L; }
304 V { ALL = 100L; }
305 V { ALL = 110H; }
306 }
307 // ==

Figure C.2—Example: small production test program

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1450.4-2017
IEEE Standard for Extensions to Standard Test Interface Language (STIL) (IEEE Std 1450-1999) for Test Flow

Specification

172
Copyright ©2018 IEEE. All rights reserved.

Annex D

(informative)

Switching from Flow to FlowExtended

STIL.4 provides for two tiered capability. One is invoked by keyword Flow, the other by keyword
FlowExtended, in the STIL statement block (Clause 7). FlowExtended syntax is mostly a superset
of Flow. There are notable exceptions:

 In Flow mode, a Test instance has no relationship to TestBase whereas in FlowExtended mode, a
Test instance does.

 In Flow mode, a Flow instance has no relationship to TestBase whereas in FlowExtended mode, a
Flow instance does.

Recommendations for Flow mode in anticipation of switching to FlowExtended:

 Avoid using names reserved for FlowExtended under 35.1.3 when defining enumerated types.
 Avoid using names reserved for FlowExtended under 35.2 when defining global variables

unless used for the same purpose.63
 Avoid using TestBase parameter names (35.3.3) as TestMethod parameter names.64

To use FlowExtended capabilities, a user or software vendor may need to make some changes:

 TestMethod based tests work in FlowExtended mode. To take full advantage of the
FlowExtended capability of changing or augmenting the behavior of an existing TestType or
FlowType via inheritance or combining existing test-types to create a new one, a TestMethod
should be replaced by a comparable TestType.65 Note that a Test instance is created by
referencing a TestMethod in Flow mode, the test-method being defined outside the scope of
STIL.4, or by instantiating a TestType that is wholly or partially defined using STIL.4
FlowExtended syntax.

 Depending on the software vendor, Flow and FlowExtended mode may behave differently with
regard to test or flow pass/fail status specification and propagation. Default behavior in
FlowExtended mode uses TestBase (35.3.3) parameter failMode (type FailMode in
35.1.3) to bubble status up the containment hierarchy until it reaches the test-program entry-point
level.

63 A translator may attach a specific meaning to the identifier.
64 FlowExtended depends on a flow or test exhibiting TestBase properties; therefore, a test instantiated via TestMethod
should adopt TestBase properties and a Flow instantiated without specifying the FlowType should imply type StdFlow.
65 Replacing a TestMethod with a TestType requires using type SignalGroup instead of sigref_expr (these types serve
essentially the same purpose).

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

IEEE
standards.ieee.org
Phone: +1 732 981 0060 Fax: +1 732 562 1571
© IEEE

Authorized licensed use limited to: Micronas GmbH. Downloaded on July 17,2018 at 08:44:50 UTC from IEEE Xplore. Restrictions apply.

	IEEE Std 1450.4™-2017 Front Cover
	Title page
	Important Notices and Disclaimers Concerning IEEE Standards Documents
	Participants
	Introduction
	Contents
	List of Figures
	List of Tables
	1. Overview
	1.1 General
	1.2 Scope
	1.3 Purpose

	2. Normative references
	3. Definitions, abbreviations, and acronyms
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Preface
	4.1 General
	4.2 Word usage
	4.3 Conventions
	4.4 Semantics

	5. Tutorial
	5.1 General
	5.2 Flow test program example
	5.3 FlowExtended test program example

	6. Extensions to STIL.0 Clause 6 (STIL syntax description)
	6.1 General
	6.2 Additional reserved words
	6.3 Additions to STIL.0 Table 3 (SI units)
	6.4 Extensions to STIL.0 6.6 (token length)
	6.5 Extensions to STIL.0 6.8 (user-defined name characteristics)
	6.6 Extensions to STIL.0 6.12 (number characteristics)
	6.7 Extensions to STIL.0 6.16 (STIL name spaces and name resolution)
	6.8 Expressions
	6.9 Functions
	6.10 Enum
	6.11 Parameter, MethodParameter, and FlowVariable types

	7. Extensions to STIL.0 Clause 8 (STIL statement)
	7.1 General
	7.2 STIL syntax
	7.3 STIL example

	8. Extensions to STIL.0 Clause 14 (Signals block) (FlowExtended)
	8.1 General
	8.2 Signals block syntax and examples

	9. Extensions to STIL.0 Clause 15 (SignalGroups block) (FlowExtended)
	10. Extensions to STIL.0 Clause 16 (PatternExec block) (FlowExtended)
	10.1 General
	10.2 PatternExec block syntax

	11. Extensions to STIL.0 Clause 17 (PatternBurst block) (FlowExtended)
	11.1 General
	11.2 Extensions to STIL.0 17.1 (PatternBurst block syntax)

	12. Extensions to STIL.0 Clause 18 (Timing and WaveformTable block) (FlowExtended)
	12.2 Timing and WaveformTable syntax

	13. Extensions to STIL.0 Clause 19 (Spec and Selector blocks)
	13.2 Spec block syntax

	14. Extensions to STIL.2 Clause 10 (DCLevels block) (FlowExtended)
	14.1 General
	14.2 DCLevels block syntax

	15. Extensions to STIL.2 Clause 12 (DCSequence) (FlowExtended)
	15.2 DCSequence block syntax
	15.3 DCSequence block example

	16. Include enhancements
	16.1 IncludeOnce
	16.2 DomainInclude

	17. FlowVariables
	17.1 General
	17.2 FlowVariables syntax
	17.3 FlowVariables examples
	17.4 FlowVariable access
	17.5 FlowVariable types
	17.6 FlowVariable attributes
	17.7 FlowVariable operators and member functions
	17.8 FlowVariable array operations

	18. Device to tester interface
	19. SignalMap
	19.1 General
	19.2 SignalMap syntax
	19.3 SignalMap examples

	20. Device (FlowExtended)
	20.1 General
	20.2 STIL.2: DC levels
	20.3 Chip
	20.4 Package
	20.5 Channel map
	20.6 Multi-site/MPW testing
	20.7 Device block examples

	21. Binning
	21.1 General
	21.2 Binning element reference

	22. SoftBinDefs
	22.1 SoftBinDefs syntax
	22.2 SoftBinDefs examples
	22.3 Bins
	22.4 Bin None (FlowExtended)
	22.5 Bin axes
	22.6 countSince functions (FlowExtended)

	23. HardBinDefs
	23.1 HardBinDefs syntax
	23.2 HardBinDefs examples
	23.3 Bins

	24. BinMap
	24.1 General
	24.2 BinMap syntax
	24.3 BinMap example

	25. Flow conceptual model
	26. Flow conceptual model (FlowExtended)
	26.1 General
	26.2 Flow-related types
	26.3 Inheritance
	26.4 Instantiation and execution

	27. TestBase definition (FlowExtended)
	27.1 TestBase syntax
	27.2 TestBase example
	27.3 Parameter initialization and assignment
	27.4 Parameter types
	27.5 Parameter attributes
	27.6 Parameter operators and member functions
	27.7 Parameter array operations
	27.8 Spec variable access

	28. TestType definition (FlowExtended)
	28.1 General
	28.2 TestType syntax
	28.3 TestType example

	29. Test
	29.1 General
	29.2 Test syntax
	29.3 Test example

	30. FlowNode
	30.1 General
	30.2 FlowNode syntax
	30.3 FlowNode examples

	31. FlowType definition (FlowExtended)
	31.1 FlowType syntax

	32. Flow
	32.1 General
	32.2 Flow syntax
	32.3 Flow examples

	33. Actions and flow control
	34. TestProgram
	34.1 General
	34.2 TestProgram syntax
	34.3 TestProgram examples
	34.4 Entry points
	34.5 Bin map

	35. Standard definitions
	35.1 Standard enumerated types
	35.2 Standard global variables (FlowExtended)
	35.3 Flow control defaults (FlowExtended)
	35.4 Standard No-op and None (FlowExtended)
	35.5 Standard PatternExec test (FlowExtended)
	35.6 Standard functional test (FlowExtended)
	35.7 Standard flow (FlowExtended)

	Annex A (informative) Event sequence
	A.1 General
	A.2 Parsing and loading
	A.3 Execution

	Annex B (informative) Top-level block sequence (FlowExtended)
	B.1 General
	B.2 Skeleton and dependencies

	Annex C (informative) Usage examples (FlowExtended)
	C.1 Coding examples

	Annex D (informative) Switching from Flow to FlowExtended
	Back Cover
	Blank Page
	Blank Page
	Blank Page

