
Background Statement for SEMI Draft Document 4782C
NEW STANDARD: STANDARD TEST DATA FORMAT (STDF) MEMORY
FAIL DATALOG
Note: This background statement is not part of the balloted item. It is provided solely to assist the recipient in
reaching an informed decision based on the rationale of the activity that preceded the creation of this document.

Note: Recipients of this document are invited to submit, with their comments, notification of any relevant patented
technology or copyrighted items of which they are aware and to provide supporting documentation. In this context,
“patented technology” is defined as technology for which a patent has issued or has been applied for. In the latter
case, only publicly available information on the contents of the patent application is to be provided.

Background
Yield learning in modern technologies requires fail data logging from the scan and memory structural tests to gain
insight into the failing location inside a chip. Currently there is no standard format to store the fail data in an
efficient way. A group of more than 20 companies from ATE, EDA, Semiconductor and Yield Management
companies has been working to enhance the Standard Fail Datalog Format (STDF) V4 to enable efficient fail
datalog for scan and memory fails. This ballot describes the proposed memory fail datalog format.

Ballot History
Draft Document 4782C is the latest attempt by the STDF Task Force toward an approved SEMI Standard in this
area. The first ballot, 4782, failed to receive sufficient return of votes during the Cycle 6, 2010 voting period, while
ballot 4782A also failed to receive sufficient return of votes during the Cycle 1, 2011 voting period. Ballot 4782B
received sufficient return of votes, but was failed at SEMICON West 2011 (July 13) due to persuasive negatives
received. The task force has reviewed and considered the voting responses received and has submitted ballot 4782C
for voting.

Review and Adjudication Information
 Task Force Review Committee Review & Adjudication
Group: STDF Task Force North America Automated Test Equipment

Committee
Date: Thursday, October 6, 2011 Wednesday, October 26, 2011
Time & Timezone: 9:00 AM to 10:00 AM, Pacific Time 4:30 PM to 6:00 PM, Pacific Time
Location: Via teleconference/ web meeting

Please contact Paul Trio for meeting bridge
information.

SEMI Headquarters
3081 Zanker Road

City, State/Country: Via teleconference / web meeting San Jose, California / U.S.A.
Leader(s): Ajay Khoche (Khoche Consulting Services) Ajay Khoche (Khoche Consulting Services)
Standards Staff: Paul Trio (SEMI NA)

408.943.7041
ptrio@semi.org

Paul Trio (SEMI NA)
408.943.7041
ptrio@semi.org

This meeting’s details are subject to change, and additional review sessions may be scheduled if necessary. Contact
SEMI Standards staff for confirmation.
Telephone and web information will be distributed to interested parties as the meeting date approaches. If you will
not be able to attend these meetings in person but would like to participate by telephone/web, please contact
Standards staff.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 1 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

SEMI Draft Document 4782C
NEW STANDARD: STANDARD TEST DATA FORMAT (STDF) MEMORY
FAIL DATALOG
1 Purpose
1.1 The purpose of this standard is to provide a common format for Memory fail datalog specification along with
necessary synchronization information enabling an efficient dataflow for volume diagnostics applications for
memories.
1.2 The purpose of this standard is to provide a standard format to log electrical failure information during test for
embedded as well as standalone memories. The standard provides the definition of records and their use for storing
failure information.

2 Scope
2.1 The scope of the proposed standard is the Memory failure information collected during electrical test for
embedded as well as standalone volatile memories as shown Figure 1 below:

CTRL 1

Memory
Core 4

JTAG

CTRL 2

Memory
Core 5

Memory
Core 1

Memory
Core 2

Memory
Core 3

Embedded Memory

C
o
n
t
r
o
l
l
e
r

Bank0 Bank1

Bank N-1 Bank N

C
o
n
t
r
o
l
l
e
r

Bank0 Bank1

Bank N-1 Bank N

C
o
n
t
r
o
l
l
e
r

Bank0 Bank1

Bank N-1 Bank N

Die1
Die2

Die3

Standalone

Figure 1

Supported Memory Types

The scope of this standard is as follows:
• Targeted Memories

o Embedded
� Direct Access
� BISTed

o Standalone
� Single Die
� Stacked Dice

• Datalog format
o Definition of records and their use for storing failure information
o Data format for storing Memory design information in the datalog
o Definition of format for enabling data integrity and consistency checking
o Reduction in data volume for storing a given amount of failure information

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 2 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

3 Limitations
3.1 While the proposed format can be used to store the datalog for the non-volatile memories, the standard did not
explicitly target them. So, it may fall short on the requirements for non-volatile memories.
3.2 The standard is limited to store only logic design information in the format. The links to physical information is
provided through the external file references.

4 Referenced Documents
4.1 SEMI Standards
None
4.2 IEEE Standards1
IEEE 1149.1 -1990 IEEE Standard Test Access Port and Boundary-Scan Architecture
4.3 Other References
Standard Test Data Format Version 4.0
Standard Test Data Format Version 2007 (STDF V4-2007) – Scan datalog extension.

5 Terminology
5.1 Abbreviations and Acronyms
5.1.1 ATE — Automated Test Equipment
5.1.2 BIST — Built-in Self Test
5.1.3 STDF — Standard Test Data Format
5.2 Definitions
5.2.1 BIST Controller — a logic block that coordinates the test of the memory block that it tests.
5.2.2 built-In Self Test (BIST) — a test methodology in which the stimulus generator and/or response analyzers is
built into the same integrated circuit as the block that is tested.
5.2.3 column — a series of bits that can be enabled for access using a column address.
5.2.4 datalog — the collection of information that is collected during the application of test. It consists of
information collected from the device, the environment and the equipment that is used to apply the test.
5.2.5 diagnosis — a process of identifying the root cause of an observed incorrect response.
5.2.6 direct access memory — an embedded memory which can be accessed directly from the interface of the
integrated circuit.
5.2.7 embedded memory — is a semiconductor memory that is embedded inside an integrated circuit along with
other logic blocks.
5.2.8 handler — an equipment that is used to move the packaged part to and from the test bed during the test.
5.2.9 march element — sequence of read and write into the memory. It is used to excite a potential fault and
observe corresponding response.
5.2.10 memory bank — a memory can be organized as set of sub-blocks. Each such block is called a bank.
5.2.11 memory core — a memory block that can be used in integrated circuits.
5.2.12 memory instance — a memory instance in an integrated circuit is an instance of memory block.
5.2.13 memory test algorithm — a sequence of march elements.
5.2.14 non-volatile memory — memory that can retain it storage even when the power is turned off.
5.2.15 probe card — an interface to connect device pads on the wafer to channels of an ATE.
5.2.16 prober — an equipment that is used to move the wafer to the test bed for wafer testing.
5.2.17 row — a series of bits in a memory/memory bank that can be enabled for access using a row address.

1 Institute of Electrical and Electronics Engineers
IEEE Operations Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, New Jersey 08855-1331, USA. Telephone: 732.981.0060; Fax:
732.981.1721
Website: www.ieee.org

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 3 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

5.2.18 semiconductor memory — a device that can store data.
5.2.19 standalone memory — a memory integrated circuit that contains only memory blocks.
5.2.20 volatile memory — a semiconductor memory which looses it data when power is turned off.

6 STDF Record Structure
6.1 This section describes the basic STDF record structure. It describes the following general topics, which are
applicable to all the record types:
• STDF record header
• Record types and subtypes
• Data type codes and representation
• Optional fields and missing/invalid data

6.2 STDF Record Header
6.2.1 Each STDF record begins with a record header consisting of the following three fields:

Table 1 STDF Record Header

Field Field Description

REC_LEN The number of bytes of data following the record header

REC_TYP An integer identifying a group of related STDF record types

REC_SUB An integer identifying a specific STDF record type within each REC_TYP group.

6.2.2 Record Types and Subtypes
6.2.2.1 The header of each STDF record contains a pair of fields called REC_TYP and REC_SUB. Each REC_TYP
value identifies a group of related STDF record types. Each REC_SUB value identifies a single STDF record type
within a REC_TYP group. The combination of REC_TYP and REC_SUB values uniquely identifies each record
type. This design allows groups of related records to be easily identified by data analysis programs, while providing
unique identification for each type of record in the file.
6.3 STDF Record Structure
6.3.1 The following table lists the meaning of the REC_TYP codes in STDF upto version V4-2007. The new
record types added for memory fail data log will be described later in the document. The description for rest of these
records can be found in STDF V4 and STDF V4-2007 specification documents [1,2].

Table 2 STDF V4 and V4-2007 Record Types

REC_TYP Code Meaning and STDF REC_SUB Codes

0 Information about the STDF file
10 File Attributes Record (FAR)
20 Audit Trail Record (ATR)
30 Version Update Record (VUR)

1 Data collected on a per lot basis
10 Master Information Record (MIR)
20 Master Results Record (MRR)
30 Part Count Record (PCR)
40 Hardware Bin Record (HBR)
50 Software Bin Record (SBR)
60 Pin Map Record (PMR)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 4 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

62 Pin Group Record (PGR)
63 Pin List Record (PLR)
70 Retest Data Record (RDR)
80 Site Description Record (SDR)
90 Pattern Sequence Record (PSR)
91 Name Map Record (NMR)
92 Cell Name Record (CNR)
93 Scan Structure Record (SSR)
94 Scan Chain Record (SCR)

2 Data collected per wafer
10 Wafer Information Record (WIR)
20 Wafer Results Record (WRR)
30 Wafer Configuration Record (WCR)

5 Data collected on a per part basis
10 Part Information Record (PIR)
20 Part Results Record (PRR)

10 Data collected per test in the test program
30 Test Synopsis Record (TSR)

15 Data collected per test execution
10 Parametric Test Record (PTR)
15 Multiple-Result Parametric Record (MPR)
20 Functional Test Record (FTR)
30 Scan Test Record (STR)

20 Data collected per program segment
10 Begin Program Section Record (BPS)
20 End Program Section Record (EPS)

50 Generic Data
10 Generic Data Record (GDR)
30 Datalog Text Record (DTR)

180 Reserved for use by Image software

181 Reserved for use by IG900 software

6.4 Data type support
6.4.1 The STDF specification uses a set of data type codes that are concise and easily recognizable. For example,
R*4 indicates a REAL (float) value stored in four bytes. A byte consists of eight bits of data. For purposes of this
document, the low order bit of each byte is designated as bit 0 and the high order bit as bit 7. The following table
gives the complete list of STDF data type codes, as well as the equivalent C language type specifier.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 5 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Table 3 Data Types

Code Description C Type Specifier

C*12 Fixed length character string:
If a fixed length character string does not fill the entire field, it must be
left-justified and padded with spaces.

char[12]

C*n Variable length character string:
first byte = unsigned count of bytes to follow
(maximum of 255 bytes)

char[]

S*n Variable length character string:
first two bytes = unsigned count of bytes to follow
(maximum of 65535 bytes)

char[]

C*f Variable length character string: string length is stored in another field char[]
U*f An unsigned integer whose size in bytes (f) is defined in separate field

within the containing record or a separate but related record

U*1 One byte unsigned integer unsigned char
U*2 Two byte unsigned integer unsigned short
U*4 Four byte unsigned integer unsigned long
U*8 Eight byte unsigned integer Unsigned long long
I*1 One byte signed integer char
I*2 Two byte signed integer short
I*4 Four byte signed integer long
R*4 Four byte floating point float
R*8 Eight byte floating point number long float (double)
B*6 Fixed length bit-encoded data char[6]
V*n Variable data type field:

The data type is specified by a code in the first byte, and the data follows
(maximum of 255 bytes)

B*n Variable length bit-encoded field:
First byte = unsigned count of bytes to follow (maximum of 255 bytes).
First data item in least significant bit of the second byte of the array
(first byte is count.)

char[]

D*n Variable length bit-encoded field:
First two bytes = unsigned count of bits to follow (maximum of 65,535
bits). First data item in least significant bit of the third byte of the array
(first two bytes are count). Unused bits at the high order end of the last
byte must be zero.

char[]

N*1 Unsigned integer data stored in a nibble. (Nibble = 4 bits of a byte).
First item in low 4 bits, second item in high 4 bits.
If an odd number of nibbles is indicated, the high nibble of the byte will
be zero. Only whole bytes can be written to the STDF file.

char

kxTYPE Array of data of the type specified.
The value of ‘k’ (the number of elements in the array) is defined in an
earlier field in the record. For example, an array of short unsigned
integers is defined as kxU*2.

TYPE[]

6.5 Optional Fields and Missing/Invalid Data
6.5.1 Certain fields in STDF records are defined as optional. An optional field must be present in the record, but
there are ways to indicate that its value is not meaningful, that is, that its data should be considered missing or
invalid. STDF V4 – 2007 builds on mechanisms of STDF V4 for missing or invalid fields. It uses the same
mechanism as the STDF V4 for indicating missing/invalid data as described below:

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 6 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

• Some optional fields have a predefined value that means that the data for the field is missing. For example, if
the optional field is a variable-length character string, a length byte of 0 means that the data is missing. If the
field is numeric, a value of -1 may be defined as meaning that the data is missing.

• For other optional fields, all possible stored values, including -1, are legal. In this case, the STDF specification
for the record defines an Optional Data bit field. Each bit is used to designate whether an optional field in the
record contains valid or invalid data. Usually, if the bit for an optional field is set, any data in the field is invalid
and should be ignored.

Table 4 Missing/Invalid Field Specification

Data Type Missing/Invalid Data Flag
Variable-length string Set the length byte to 0
Fixed-length character string Fill the field with spaces.
Fixed-length binary string Set a flag bit in an Optional Data byte.
Time and date fields Use a binary 0.
Signed and unsigned integers and floating point values Use the indicated reserved value or set a flag bit in an

Optional Data byte.#1
#1 However for the omission of the optional fields the new standard uses explicit control flags/bits to indicate the absence of optional fields and
the first missing optional field does not mean that the rest of the optional fields in the records are missing as well.

6.6 Continuation of Records
6.6.1 The amount of data required for some of the new record types will occasionally exceed what can be
accommodated in a single 65k record. To facilitate this expanded data volume the concept of “continuation records”
is introduced. Any number of continuation records may be added after an initial record type.
6.6.2 The continuation mechanism is implemented by adding a CONT_FLG (B*1) immediately after the Record
SubType field. This flag is set to 1 if there are follow on continuation records after the current one. The last record is
this sequence of records will have the flag set to 0. In addition for each field that extends over multiple records, a
local count is added for that field to indicate the entries that are present in the current record.
6.7 STDF Record Types
6.7.1 This section contains the definitions for the STDF record types. The following information is provided for
each record type:
6.7.1.1 A statement of function: how the record type is used in the STDF file.
6.7.1.2 A table defining the data fields: first the standard STDF header, then the fields specific to this record type.
The information includes the field name, the data type (see the previous section for the data type codes), a brief
description of the field, and the flag to indicate missing or invalid data (see the previous section for a discussion of
optional fields).
6.7.1.3 Any additional notes on specific fields.
6.7.1.4 Possible uses for this record type in data analysis reports. Note that this entry states only where the record
type can be used. It is not a statement that the reports listed always use this record type, even if Teradyne has written
those reports. For definitive information on how any data analysis software uses the STDF file, see the
documentation for the data analysis software.
6.7.1.5 Frequency with which the record type appears in the STDF file: for example, once per lot, once per wafer,
one per test, and so forth.
6.7.1.6 The location of the record type in the STDF file. See the note on “initial sequence.”
6.8 Initial Record Sequences
6.8.1 For several record types, the “Location” says that the record must appear “after the initial sequence.” The
phrase “initial sequence” refers to the records that must appear at the beginning of the STDF file. The requirements
for the initial sequence are as follows:
6.8.1.1 Every file must contain one File Attributes Record (FAR), one VUR, one Master Information Record (MIR),
one or more Part Count Records (PCR), and one Master Results Record (MRR). All other records are optional.
6.8.1.2 The first record in the STDF file must be the File Attributes Record (FAR).

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 7 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

6.8.1.3 If one or more Audit Trail Records (ATRs) are used, they must appear immediately after the FAR.
6.8.1.4 Version Update Record (VUR) which is a required record for STDF V4 – 2007 must appear after the last
ATR and before MIR
6.8.1.5 The Master Information Record (MIR) must appear in every STDF file. Its location must be after the FAR ,
ATRs (if ATRs are used) and VUR.
6.8.1.6 If the Retest Data Record (RDR) is used, it must appear immediately after the MIR.
6.8.1.7 If one or more Site Description Records (SDRs) are used, they must appear immediately after the MIR and
RDR (if the RDR is used).
6.8.2 Given these requirements, every STDF V4 2007 must contain one of these initial sequences:
FAR – VUR – MIR
FAR – ATRs – VUR – MIR
FAR – VUR – MIR – RDR
FAR – ATRs – VUR – MIR – RDR
FAR – VUR – MIR – SDRs
FAR – ATRs – VUR – MIR – SDRs
FAR – VUR – MIR – RDR – SDRs
FAR – ATRs – VUR – MIR – RDR – SDRs
6.8.2.1 All other STDF record types appear after the initial sequence.

7 Fail Datalog Requirements
7.1 Figure 2 shows the information objects/classes that need to be supported in the standard to enable an efficient
volume diagnosis flow. This object model has been created though the analysis of the design to test to design flow
for volume diagnosis. It allows the design information to be carried forward into test environment and the test
information to be carried back to analysis tools. The proposed standard maps these object onto various STDF
records.

STDF Memory
Fail Datalog

Device
Identification

Test
Identification

Environment
Specification

Format
Specification

Fail Data

Validation &
Synchronization

1..N

FEH
Identification

Design
Information

Figure 2

Object Model

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 8 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

8 STDF Memory Fail Datalog Proposal
8.1 The STDF memory fail datalog proposal is an extension to the current STDF V4 and V4-2007 specifications.
Records currently defined in these specifications would continue to be used to datalog information about equipment
setup, device information, and parametric, functional and scan test results. This standard defines the additional
records shown in Table 5 to provide an improved means of datalogging memory-specific electrical fail data. The
new records are intended to co-exist with existing records in STDF output files.

Table 5 New Memory Fail Data Records

Type Sub Type Record Acronym Description

0 Information about STDF File

 30 VUR Version Update Record

1 Data Collection on a per lot basis

 95 ASR Algorithm Specification Record

 96 FSR Frame Specification Record

 97 BSR Bit Stream Specification Record

 99 MSR Memory Structure Record

 100 MCR Memory Controller Record

 101 IDR Instance Description Record

 102 MMR Memory Model Record

15 Data Collected Per Test Execution

 40 MTR Memory Test Record

8.2 Design Information
8.2.1 The design information objects contain the information about the design that needs to be passed around the
design-to-test-design loop to enable proper diagnosis and data translations. In particular, for the embedded memory
architecture example shown in Figure 1, the design information object includes information about the controllers,
the instances accessed by each controller, the logical memory (e.g. rows/columns, banks), the ports, and orientation
of the memory. It also contains a link to the layout file to enable logical to physical mapping for diagnosis and
localization of failures. For standalone memories the design information only contains information about the
memory model and its orientation. This design information object in the object model is implemented using four
STDF records: MSR, MCR, IDR, and MMR (See Table 4). A single MSR record contains the top level information
about the chip/part. A set of Memory Controller Records (MCR) contains the information about the controllers in
the designs. Each MCR represents a single controller and contains references to the memory instances it controls.
Each memory instance is described using an IDR record which can be linked to their model information. Several
examples how these records can be used to store design information are provided in the Appendix.
8.3 VUR Record
8.3.1 Function: This record is used to indicate the version of STDF update that is being used for the STDF file.
NOTE: This record was introduced as part of the STDF V4-2007 Scan Fail Datalog standard and is described here
just for reference and because it is required to use this extension.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 9 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Table 6 VUR Record

Field Name Data Type Field Description Missing/Invalid Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYPE U*1 Record Type (0)
REC_SUB U*1 Record sub-type (30)
UPD_CNT U*1 Count (k) of entries in the UPD_NAME field
UPD_NAME kxC*n Update Version Name k=0

8.3.2 Field Description
8.3.2.1 UPD_NAME: This field will contain an array of the version update names. For example the entry for the
new memory standard name will be stored as “Memory:2010.1” string in the UPD_NAME field.
8.3.3 Frequency: Once per STDF file
8.3.4 Location: This record occurs between File Atrribute Record (FAR) and Master Information Record (MIR). In
case the STDF contains an Audit Trail Record, it follows the ATR record(s) otherwise, it appears right after the FAR
record.
8.4 Memory Structure Record
8.4.1 Function: This record is the top level record for storing Memory design information. It supports both the
direct access memories as well as the embedded memories controlled by embedded controllers. For embedded
memories it contains the references to the controllers and for direct access memories it contains the references to the
memory instances.
Table 7 Memory Structure Record (MSR)

Field Name Type Field Description Missing/ Invalid

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record Type(1)
REC_SUB U*1 Record Sub-type(99)
NAME C*n Name of the design under test Length Byte = 0
FILE_NAM C*n name of the file containing design information Length Byte = 0
CTRL_CNT U*2 Count (k) of controllers in the design
CTRL_LST kxU*2 Array of controller record indexes CTRL_CNT = 0;
INST_CNT U*2 Count(m) of Top level memory instances
INST_LST mxU*2 Array of Instance description record indexes INST_CNT=0

8.4.2 Field Description
8.4.2.1 NAME — This is a place holder for the design name. It is optional but is recommended.
8.4.2.2 FILE_NAM — Name of the file that has information about the design. This field allows one to link STDF to
information in the files outside of STDF. User can decide how much design information is stored in the STDF file
itself and how much is stored in the external file that is linked.
8.4.2.3 CTRL_CNT — This field is used to record the number of controllers in an embedded memory design. It
also indicates the number of entries in the CTRL_LST field.
8.4.2.4 CTLR_LST — CTRL_LST contains an array of MCR indexes. The size of the array is defined by
CTRL_CNT. The MCR index stored in this array are the indexes defined in the MCR’s CTRL_IDX field. The
order of the entries in the array is not significant.
8.4.2.5 INST_CNT — This field is used to record the number of top level memory instances that are directly
accessible from device IO pins and not controlled by an embedded controller.
8.4.2.6 INST_LST — INST_LST contains an array of IDR record indexes. The size of the array is defined by the
INST_CNT field above. The IDR indexes stored in this array are the indexes define din the IDR’s INST_IDX field.
8.4.3 Frequency: One for each STDF file for a design.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 10 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

8.4.4 Location: It can occur anytime after Retest Data Record (RDR) if no Site Description Record(s) are present,
otherwise after all the SDRs. This record must occur before Memory Controller Records (MCRs) and Instance
Description Records (IDRs)
8.5 Memory Controller Record (MCR)
8.5.1 Function: This record is used to store information about an embedded memory controller in a design. There is
one MCR record in an STDF file for each controller in a design. These records are referenced by the top level
Memory Structure Record (MSR) through its CTRL_LST field.
Table 8 Memory Controller Record (MCR)

FieldName Type Field Description Missing/Invalid

REC_LEN U*2 Bytes of Data following header
REC_TYP U*1 Record Type(1)
REC_SUB U*1 Record Sub-type(100)
CTRL_IDX U*2 Index of this memory controller record
CTRL_NAM C*n Name of the controller Length Byte = 0 (Not

recommend to be missing
though)

MDL_FILE C*n Pointer to the file describing model (e.g. CTL) Length Byte = 0
INST_CNT U*2 Count (k) of INST_IDX array
INST_LST Kx U*2 Array of memory instance indexes

8.5.1.1 CTRL_IDX — This is a unique numeric identifier for this specific memory controller. This is used by other
records types to reference this specific memory controller.
8.5.1.2 CTRL_NAM — The name of the controller. This is a symbolic name that is recommended to match with
controller name in the design. The name could be full hierarchical.
8.5.1.3 The name of the file that contains the model information for this memory controller. This is an optional field
if user want to add a reference to an external file that describes the memory controller. There is not format specified
for that file by this standard. It is up to the environment to provided the readers to read such file in the target
application. The file name could be local or hierarchical.
8.5.1.4 INST_CNT — The number of memory instances that are controlled by this controller. It also indicates the
size of the INST_IDX array.
8.5.1.5 INST_LST — INST_LST contains an array of of IDR indexes whose size is defined by INST_CNT. The
IDR index is defined in the IDR’s INST_IDX field. The order of the entries in the array is not significant.
8.5.2 Frequency: Once per controller in the design.
8.5.3 Location: It can occur after all the Memory Structure Records(MSRs) and before Instance Description
Records (IDRs)
8.6 Instance Description Record
8.6.1 Function: This record is used to store the information for a memory instance within a design. It contains a
reference to the model records which define the design information for this specific memory instance.

Table 9 Instance Description Record (IDR)

FieldName Type Field Description Missing/Invalid

REC_LEN U*2 Bytes of Data following header
REC_TYP U*1 Record Type(1)
REC_SUB U*1 Record Sub-type(101)
INST_IDX U*2 Unique index of this Instance definition record
INST_NAM C*n Name of the Instance Length Byte = 0 (Not

recommend to be missing
though)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 11 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

FieldName Type Field Description Missing/Invalid

REF_COD U*1 0-Wafer(Notch based), 1-Pkg (Package reference
designator)

ORNT_COD C*2 Orientation of the instance (two characters)
MDL_FILE C*n Pointer to the file describing model (e.g. CTL) Length Byte = 0
MDL_REF U*2 Reference to the model record for this instance 0; Model record 0 is

undefined

8.6.1.1 INST_IDX — This is a unique numeric identified for this specific memory instance definition. This is used
by other records types to reference this specific memory instance definition.
8.6.1.2 INST_NAM — The Name of the instance in the design hierarchy.
8.6.1.3 ORNT_COD — This field contains the information about the orientation of the memory instance. It is a two
character code as described below;
• Each memory orientation is represented by a 2 character code
• The 1st character represents the direction of increasing column direction
• The 2nd character represents the direction of increasing row direction
• 4 characters are used to describe the direction
• U → Up
• D → Down
• L → Left
• R → Right

8.6.1.3.1 The naming of these directional indicators is based on notch down placement for wafers and rotates with
other notch placement. For packaged devices it is with reference to the Pad 0 location of the Die/Core (e.g., ‘U’
direction for columns means that the columns addresses are increasing from left to right if the wafer is looked at in
notch right setting).
8.6.1.4 MDL_FILE — The name of the file that contains the model information for this memory instance. This is an
optional field if the model information is not contained in STDF file itself in a Model Record. The file name could
be local or hierarchical.
8.6.1.5 MDL_REF — This is an optional field only used if the memory model information for this memory instance
is contained within the STDF file in an MMR record. MDL_REF contains an index value identifying the associated
MMR record containing the memory model information. The MMR index is defined in the MMR’s MDL_IDX
field.
8.6.2 Frequency: Once per memory instance..
8.6.3 Location: It can occur after all the Memory Controller Records(MCRs) and before Memory Model Records
(MMRs)
8.7 Memory Model Record
8.7.1 Function: This record is used to store the memory model information in STDF. One record per model is used.
The record allows storing the logic level information of the model. It does not have any fields to store the physical
information except height and width. The physical information can be optionally linked to the record through a
reference to the file.

Table 10 Memory Model Record (MMR)

FieldName Type Field Description

REC_LEN U*2 Bytes of Data following header
REC_TYP U*1 Record Type(1)
REC_SUB U*1 Record Sub-type(102)
MDL_IDX U*2 Unique Index of this Memory Model Record

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 12 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

FieldName Type Field Description

MDL_NAM C*n Name of the model Length Byte = 0 (Not
recommend to be missing
though)

DIMS_CNT U*2 Count (k) of dimensions
DIMS_NAM kxC*n Array of Names of of the dimension axis
DIMS_TYP kxU*1 Array of types e.g. BANK, COL, COL_MUX etc
DIMS_SIZ kxU*8 Array of the size of each dimension
DIMS_DIR kxU*1 Array of direction of the each dimension
DIMS_OCD kxC*2 Array of orientation Code for banks Length Byte = 0
PORT_CNT U*2 Count (m) of Ports in the memory
PORT_TYP mxC*n Enumeration of type e.g. ADDR/DATA/CTRL….
PORT_DIR mxC*n In/Out/InOut
PORT_NAM mxC*n Type and name string of the port
PORT_SIZ mxU*1 The size of port in number of bits
MEM_HT C*n Physical height of the memory (with units) Length Byte = 0
MEM_WID C*n Physical width of the memory (with units) Length Byte = 0
MDl_FIL C*n Name of the file with the physical information for this

memory
Length Byte = 0

8.7.1.1 MDL_IDX — This is the unique identifier for this model record that is used as a reference by other records
e.g. the MDL_REF of the Instance Description Record (IDR) to link to a model record. NOTE: MDL_IDX must be
> 0 . ID 0 is undefined.
8.7.1.2 MDL_NAM — This is the name of this memory model
8.7.1.3 DIMS_CNT — The is the count of the dimensions (e.g. row, column, etc..) that a memory mode has.
8.7.1.4 DIMS_NAM — This is an array of the names for memory model dimensions. Instead of providing a fixed
dimension names this allows the user the flexibility in terms of number and names of the dimensions.
8.7.1.5 DIMS_TYP — This is an array of type of the dimension for the dimensions in the model. The values of the
supported types are as follows:

0 — Row
1 — Column
3 — Bank
4 — Column MUX
5 -127 — reserved for future extensions
128-255 — User defined

8.7.1.6 DIMS_SIZ — This is an array of the size specifications for each dimension.
8.7.1.7 DIMS_DIR — This is an array of the direction for each dimension w.r.t. origin of the core as defined by the
design. The possible values of the directions are:

0 — Not present
1 — Up
2 — Down
3 — Left
4 — Right
5 — CenterOut

8.7.1.8 DIMS_OCD – This an array of rientation codes of the memory bank within the memory.. Only supposed to
be used in case of DIMS_TYP being Bank.
8.7.1.9 PORT_CNT — The number of port in the memory model. It also indicates the size of the array for
PORT_TYP, PORT_DIR, PORT_NAM and PORT_SIZ fields.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 13 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

8.7.1.10 PORT_TYP — This is an array of types of the ports in the model e.g. DATA, ADDRESS, CONTROL etc.
The type is indicated by a string values. The predefined types are as follows, the other can be added as needed by the
environment
 ADDRESS — Indicates an address type port
 DATA — Indicates a DATA type port
 CONTROL — Indicates a control type port
 CLOCK — Indicates a clock type port.
[User can add optional additional port types if needed]
PORT_DIR: This is an array of direction for each port. The possible values are:
 In — Input only
 Out — Output only
 InOut — Bi-Directional
8.7.1.11 PORT_NAM — The array of names of the ports
8.7.1.12 PORT_SIZ — The array of port size in number of bits
8.7.1.13 MEM_HT — The character string representing the physical height of the memory. The value is specified
with it units in the character string.
8.7.1.14 MEM_WID — The character string representing the physical height of the memory. The value is specified
with it units in the character string.
8.7.1.15 MDL_FILE — This field is used to add a link to external file containing model information. This is an
optional field and can co-exist with the rest of the data in the record. Please note that this field just allows one to link
STDF to external file. STDF specification neither dictates the format of this file nor prescribes the tools that can
read this file. The file name can be relative or absolute hierarchical file name.
8.7.2 Frequency: Once per memory model.
8.7.3 Location: It can occur after all the Instance Description Records(IDRs) and before any Frame Specification
Records (FSRs), Bit Stream Specification Records (BSRs) and any Test specific records e.g. Parametric Test Record
(PTR), Functional Test Record (FTRs), Scan Test Record (STR) and Memory Test Record (MTRs).

8.8 Algorithm Specification Record
8.8.1 Function: This record is used to store the algorithms that are applied during a memory test.
Table 11 Algorithm Specification Record (ASR) Record

FieldName Type Field Description Missing/Invalid

REC_LEN U*2 Bytes of Data following header
REC_TYP U*1 Record Type(1)
REC_SUB U*1 Record Sub-type(95)
ASR_IDX U*2 Unique identifier for this ASR record
STRT_IDX U*1 Cycle Start index flag
ALGO_CNT U*1 count (k) of Algorithms descriptions
ALGO_NAM kxC*n Array of Names Name of the Algorithm
ALGO_LEN kxC*n Array of Complexity of algorithm, e.g., 13N
FILE_ID kxC*n Array of Name of the file with algorithm description
CYC_BGN kxU*8 Array of Starting cycle number for the Algorithms
CYC_END kxU*8 Array of End Cycle number for the algorithm

8.8.1.1 ASR_INDX — This field stores the unique identifier for this record that is used to reference it in other
records.
8.8.1.2 STRT_IDX — This is a flag that indicates if he cycle numbers for this algorithm starts with 0 or 1. if this
field contains a 0 then it starts from 0 else it start with 1.
8.8.1.3 ALGO_CNT — The number of algorithms stored in this record. This field also indicates the size of the
arrays for ALGO_NAM, ALGO_LEN, FILE_ID, CYC_BGN and CYC_END fields.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 14 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

8.8.1.4 ALGO_NAM — The array of names of the algorithms.
8.8.1.5 ALGO_LEN — The array of algorithms complexities.
8.8.1.6 FILE_ID — The array of File names that contain the description of the algorithm. The name could be of a
library file that contains multiple algorithms. In that case the name of the algorithm in the ALGO_NAM field is used
to identify the specific algorithm in that library.
8.8.1.7 CYC_BGN — The array of starting cycle of the algorithm in the test
8.8.1.8 CYC_END — The array of ending cycle of the algorithms.
8.8.2 Frequency: Once per unique memory test specification.
8.8.3 Location: It can occur after all the Memory Model Records(MMRs) and before any Test specific records e.g.
Parametric Test Record (PTR), Functional Test Record (FTRs), Scan Test Record (STR) and Memory Test Record
(MTRs).
8.9 Frame Specification Record
8.9.1 Function: Frame Specification Record (FSR) is used to define a frame structure that can be used to store the
fail data in a frame format. In most of the embedded memory test architecture available in the industry, the data is
communicated from the BIST controllers to ATE in a serial frame format. Each vendor has its own frame format. So
to deal with different frame format from various vendors the FSR allows encapsulating one or more specific frame
definitions used within the STDF file.
Table 12 Frame Specification Record (FSR)

FieldName Type Field Description Missing/Invalid

REC_LEN U*2 Bytes of Data following header
REC_TYP U*1 Record Type(1)
REC_SUB U*1 Record Sub-type(96)

FRM_IDX U*2 Unique ID for this frame specification record

FLD_CNT U*2 Count (k) of fields in the frame

FLD_TYP kxU*2 Field type; From a pre-defined list

FLD_NAM kxC*n Field Name

FLD_SIZE kxU*2 field width in number of bits

8.9.1.1 FRM_IDX — This field stores the unique identifier for frame definition that is used by other records to
reference this frame definition.
8.9.1.2 FLD_CNT — The number of fields in the frame definition. This field also indicates the size of arrays in
FLD_TYP, FLD_NAM, FLD_SIZE and DEF_VAL fields.
8.9.1.3 The following three fields i.e. FLD_TYP, FLD_NAM and FLD_SIZE are synchronized with each other i.e.
for given index the FLD_TYP contains the type of the field, the entry at that index in FLD_NAM contains the name
of the corresponding field and the entry in FLD_SIZE array in that position contains the size description of the field.
8.9.1.4 FLD_TYP — The array of types for each field in the frame. The possible values of the types are as follows:

0 — Controller
1 — Memory
2 — Port
3 — Algorithm
4 — March element
5 — March Step
6 — Logical Address
7 — Pin No
8 — Cycle No
9 — Write Port
10 — Write Port logic address
11 — Expected data
12 — Measured data

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 15 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

13 — Failed data
14 — Physical Column Address
15 — Physical Row Address
16 — Physical Bank Address
17 — Physical Bit Position
18 — Optional data

8.9.1.5 FLD_NAM: The array of symbolic names of the fields
8.9.1.6 FLD_SIZE: The array of the size of fields in number of bits.
8.9.2 Frequency: Once per memory Algorithm.
8.9.3 Location: It can occur after all the Memory Model Records(MMRs) and before any Test specific records e.g.
Parametric Test Record (PTR), Functional Test Record (FTRs), Scan Test Record (STR) and Memory Test Record
(MTRs).
8.10 Bitstream Specification Record (BSR)
8.10.1 Function: This record is used to enable string bit stream data from the memories. This record defines the
format of the bit stream in which the data can be recorded in Memory Test Record (MTR). The bit streams are
stored as stream of clusters for compaction. i.e. only the data words that have meaningful information are stored in
the stream. Each cluster is defined as the starting address where the meaningful information starts followed by the
count of words with meaningful information followed by the words themselves.

Table 13 BitStream Specification Record (BSR)

Field Name Type Field Description Missing/Invalid

REC_LEN U*2 Bytes of Data following header
REC_TYP U*1 Record Type(1)
REC_SUB U*1 Record Sub-type(97)
BSR_IDX U*2 Unique ID this Bit stream specification

BIT_TYP U*1 Meaning of bits in the stream

ADDR_SIZ U*1
Address field size (U1, U2, U4 or U8), values other than 1,2,4
& 8 are illegal(unused bits in each word are at lower bit
locations)

WC_SIZ U*1 Word Count Field Size (U1, U2, U4, or U8) values other than
1,2,4 & 8 are illegal

WRD_SIZ U*2 Number of bits used in the word field (unused bits in each word
are at lower bit locations)

8.10.1.1 BSR_IDX — This field stores the unique identifier for frame definition that is used by other records to
reference this bit stream definition.
8.10.1.2 BIT_TYP — This field indicates the meanings of the bits in the bit stream where bits are actual data, exp
ecteddata, fails type. The allowed values are as follows:

0 — Actual/Measured data:
 0 bit in log → data 0
 1 bit in log → data 1

1 — Fail data:
0 bit in log → no fail;
1 bit in log → bit failed

2 — Expected data:
0 bit in log → data 0
1 bit in log → data 1

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 16 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

8.10.1.3 ADDR_SIZ — This is the size of address field in the bit stream number of bytes. The allowed values are
1,2,4, and 8 depending on the size of the memory. The user should use a value that is large enough to hold the
address bits of the memory. e.g. 2 bytes for memories of size 64k or lower.
8.10.1.4 WC_SIZ — This is the size of word count field in the frame. The word count field can be U1, U2, U4 or
U8 type depending on how many consecutive words may be stored in the stream, worst case it will be of the size of
the address.
8.10.1.5 WRD_SIZ — Size of each data word in bits. This value is used to extract the word values from the bit
stream.
8.10.2 Frequency: Once per memory Algorithm.
8.10.3 Location: It can occur after all the Memory Model Records(MMRs) and before any Test specific records e.g.
Parametric Test Record (PTR), Functional Test Record (FTRs), Scan Test Record (STR) and Memory Test Record
(MTRs).
NOTE 1: Please see the appendix for an example of the BSR field usage.
8.11 Memory Test Record
8.11.1 Function: This is the record is used to store fail data along with capture test conditions and references to test
test descriptions. It allows the fail data to be stored in various formats describe below using the field highlighting.
The highlighting convention used is as follows:

Yellow — These fields are used for count only logging and allows logging of total fail counts for each
dimension in a memory.
Cyan — These fields are used to (Pin, Cycle number based logging).
Light green — The fields are used to (row,col) based logging.
Gold — These fields are used for frame based logging.
Purple — These fields are used for Bitstream based logging.
Pink — These fields are used for storing compressed bit maps.

Table 14 Memory Test Record (MTR)

Field Name Type Field Description Missing/Invalid

REC_LEN U*2 Bytes of Data following header
REC_TYP U*1 Record Type(15)
REC_SUB U*1 Record Sub-type(40)
CONT_FLG B*1 Continuation flag
TEST_NUM U*4 Test number
HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number
ASR_REF U*2 ASR Index (Algorithm Specification Record)
TEST_FLG B*1 Test flags (fail, alarm, etc.)
LOG_TYP C*n User defined description of datalog length byte = 0
TEST_TXT C*n Descriptive text or label length byte = 0
ALARM_ID C*n Name of alarm length byte = 0
PROG_TXT C*n Additional Programmed information length byte = 0
RSLT_TXT C*n Additional result information length byte = 0
COND_CNT U*2 Count (k) of conditions
COND_LST kxC*n Conditions specified as <condition name> = <Value> arrays; COND_CNT=0
CYC_CNT U*8 Total cycles executed during the test
TOTF_CNT U*8 Total fails during the test

TOTL_CNT U*8 Total fails logged during in complete MTR data set for a
complete Memory Test

OVFL_FLG B*1 Flag to indicate failures after logging stopped

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 17 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Field Name Type Field Description Missing/Invalid

FILE_INC B*1 File incomplete

LOG_TYPE B*1 Type of datalog (Frame, BIT Stream, pin/cycle, compressed
bit stream etc)

FDIM_CNT U*1 Count (m) of FDIM_FNAM and FDIM_FCNT array
FDIM_NAM mxC*n Array of logged Dimension names for fail count logging
FDIM_FCNT mxU*8 Array of count of failures for dimensions
CYC_BASE U*8 Cycle offset to apply for the values in the CYC_OFST array

CYC_SIZE U*1
Size (f) of data (1,2,4, or 8 byes) in
CYC_OFST field

PMR_SIZE U*1
Size (f) of data (1 or 2 bytes) in
PMR_ARR field

ROW_SIZE U*1
Size (f) of data (1,2,4 or 8 bytes) in
ROW_ARR field

COL_SIZE U*1
Size (f) of data (1,2,4 or 8 bytes) in
COL_ARR field

DLOG_MSK U*1 mask to indicate presence or absence of the field for fail
based logging

PMR_CNT U*4 Count (n) of pins in PIN_ARR
PMR_ARR nxU*f Array of PMR indexes for pins PMR_CNT=0
CYCO_CNT U*4 Count (n) of failed cycles in CYC_OFST ARR
CYC_OFST nxU*f array of cycle indexes for each fail CYC_CNT=0
ROW_CNT U*4 Count (d) of number of rows in the current record
ROW_ARR dxU*f Array of row addresses for each fail ROW_CNT=0
COL_CNT U*4 Count (d) of number of cols in the current record
COL_ARR dxU*f Array of column addresses for each fail COL_CNT=0
STEP_CNT U*4 Count (d)of march steps stored in this record
STEP_ARR dxU*1 Array of march steps for each fail STEP_CNT=0
DIM_CNT U*1 Number (k) of dimensions
DIM_NAMS k*C*n Names of the dimensions DIM_CNT=0

DIM_DCNT U*4 Number (n) of data values for a dimension. Repeated per
dimension as shown below. DIM_CNT=0

DIM_DSIZ U*1 Size (f) of data values for a dimension (1,2,4 or 8 bytes).
Repeated per dimension as shown below. DIM_CNT=0

DIM_VALS n*U*f Array of data values for a dimension. Repeated per
dimension as shown in th description that follows the table . DIM_CNT=0

TFRM_CNT U*8 Total frames in frame based logging

TFSG_CNT U*8 Total segments across all the continuation records for this
test

LFSG_CNT U*2
Local number of frame segments. where each frame segment
is defined by FRM_IDX, FRM_MASK, FRM_CNT,
LFBT_CNT, and FRAMES

TFRM_CNT=0

FRM_IDX U*2 Index of the frame record with the frame structure definition TFRM_CNT=0

FRM_MASK D*n mask for the frame field to indicate presence of absence of a
field TFRM_CNT=0

FRM_CNT U*4 Count (q) of frame with current frame definition and the
current mask TFRM_CNT=0

LFBT_CNT U*4 Count(q) of bits out of p*f bits that are stored in this record
(it is used to handle a single frame > 65K)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 18 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Field Name Type Field Description Missing/Invalid

FRAMES D*n
Bit encoded data one or more (q) frames of unmasked frame
fields where the fields and their sizes (in bits) are defined by
the currently referenced FSR.

TFRM_CNT=0

TBSG_CNT U*8 Total number of logged bit stream segments

LBSG_CNT U*2 No of bit stream segments out of all the segments that are
stored in this record

TBSG_CNT=0

BSR_IDX U*2 Index of the bit stream record with the definition of bit stream
fields TBSG_CNT=0

STRT_ADR U *f Starting row address in the current segment; f defined by
ADDR_SIZ field in BSR TBSG_CNT=0

WORD_CNT U*f Count (r) of words in the current stream segment; f defined
by WC_SIZ field in in BSR TBSG_CNT=0

WORDS D*n
Bit encoded data for one or more (r) words where the number
of bits in each word is defined by the referenced BSR
WRD_SIZ field.

TBMP_SIZE U*8 count (k) of compressed bit map in bytes
LBMP_SIZE U*2 Number of bytes from the map in the current record BMP_SIZE =0
CBIT_MAP kxU*1 Compressed bit map BMP_SIZE=0

8.11.1.1 CONT_FLG – It is flag to indicate if another MTR follows as continuation of current log for a test . If this
flag is set to 1 then a continuation MTR record follows and a value 0 indicates that the current MTR is last MTR
record of a datalog for that test.
8.11.1.2 TEST_NUM — It is the identifier for the test for which data is collected. It should be populated with the
Test Number.
8.11.1.3 HEAD_NUM, SITE_NUM — If a test system does not support parallel testing, and does not have a
standard way of identifying its single test site or head, these fields should be set to 1. When parallel testing, these
fields are used to associate individual datalogged results with a PIR/PRR pair. An FTR belongs to the PIR/PRR pair
having the same values for HEAD_NUM and SITE_NUM.
8.11.1.4 TEST_FLG — Contains the following fields:

bit 0 — 0 = No alarm
1 = Alarm detected

bit 1 — Reserved for future
bit 2 — 0 = Test result is reliable

1 = Test result is unreliable
bit 3 — 0 = No timeout

1 = Timeout occurred
bit 4 — 0 = Test was executed

1 = Test not executed
bit 5 — 0 = No abort

1 = Test aborted
bit 6 — 0 = Pass/fail flag

1 = Test completed
bit 7 — 0 = Test passed

1 = Test failed
8.11.1.5 LOG_TYP — This is a user defined description of the datalog type to indicate what type of information is
stored in the current record.
8.11.1.6 LOG_TYPE: This a B*1 field where a log type is indicated by setting the corresponding bit to 1. The bit
assignment is as follows:
 bit 0 — Fail Count log

0 = No Count only log
1 = Fail Count log present

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 19 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

bit 1 — Pin/Cycle type log
0 = No Pin/Cycle type log
1 = Pin/Cycle type log present

 bit 2 — Row, Column & Step based log
0 = No Row, Column & Step based log
1 = Row, Column & Step based log present

 bit 3 — frame based log
0 = No frame based log
1 = frame based log present

 bit 4 — bit stream based log
0 = No bit stream based log
1 = bit stream based log present

bit 5 - Compressed Bit Stream
0 - No Compressed Bit stream based data datalog present
1 - Compressed Bit stream based datalog present

8.11.1.7 TEST_TXT — This is a user given description name of the test
8.11.1.8 ALARM_ID — If the alarm flag (bit 0 of TEST_FLG) is set, this field can optionally contain the name or
ID of the alarm or alarms that were triggered. The names of these alarms are tester-dependent.
8.11.1.9 PROG_TXT — This is also a user provided information. Any additional information regarding
programming can be provided.
8.11.1.10 RSLT_TXT — This is also a user provided information. Any additional information about the results can
be provided
8.11.1.11 ASR_REF — This is the reference to ASR(s) that describes the algorithms that were applied during the
test and for which the data log is stored in the current MTR.
8.11.2 Test Condition Specification
8.11.2.1 Test conditions are specified using an array of strings in the COND_LST field array. Each condition is
represented as “condition=value” in ASCII without the quotes.
8.11.2.2 Each condition specification is stored in a separate entry in the COND_LST array. The size of this array
(or the number of conditions specified) is specified by the COND_CNT field.
8.11.2.3 A user can add other environment specific conditions using this field by adding their custom condition
names and values to this array e.g. CORE_ID=<core-id-name>.
8.11.2.4 There is one exception to the test condition specification and that is Temperature specification. Since, the
temperature is more of a global test condition and a field exists in the Master Information Record (MIR) to represent
that, the temperature does not need to be present in the MTR. The standard however does not preclude one from
putting another temperature parameter in the test conditions array mentioned above
8.11.3 Validation and Synchronization Fields
8.11.3.1 CYC_CNT — The total number of cycles that were executed in this test. If 0 then it should be inferred that
this value was not determinable
8.11.3.2 CYC_BASE — This field is of type U*8 and contains the offset for the cycle numbers in the fail log. This
mechanism allows only U*4 values for the cycle numbers in the fail log (vs. U*8) and thus reduces the data volume.
The actual cycle number for the fail log entries would be CYC_BASE+ <fail Cycle No in the log>.
8.11.3.3 TOTF_CNT — The total number of failures that were detected in this test, logged or not. A failure is
defined as a pin and cycle, such as in three pins failed in the same cycle, that would be counted as 3 failures. If
MAXINT then it should be inferred that this value was not determinable
8.11.3.4 TOTL_CNT — The total number of failures that were detected and logged in this test. A failure is defined
as a pin and cycle, such as in three pins failed in the same cycle that would be counted as 3 failures. This count
includes the total failures from the test execution and includes any following continuation STR records.
8.11.3.5 OVFL_FLG – This flag determines if there were failures after logging stopped.
8.11.3.6 FILE_INC — This flag determine if the fail data is contained in one file or the current file is incomplete.
The assignment of the values is as follows:

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 20 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

0 — File is complete
>0 — File is incomplete
This field is expected to be used to indicate that the data that need to be logged exceed the operating

systems limit for a file size. This field is only valid when the CONT_FLG flag is 0 i.e. it the last record in the series
of continuation records.

8.11.4 Fail Count only Logging
8.11.4.1 It is implemented using FDIM_CNT, FDIM_NAM and FDIM_CNT fields
8.11.4.1.1 FDIM_CNT — It stores the number of dimensions for which a fail count is stored. Is is also the size of
the FDIM_NAM and FDIM _FCNT arrays.
8.11.4.1.2 FDIM_NAM — This array stores the names of the dimension for which fail count is stored.
8.11.4.1.3 FDIM_FCNT — This array stores the actual fail count for the dimensions in FDIM_NAM array.
8.11.5 Fail Datalog
8.11.5.1 CYC_SIZE - Size (f) of data (1,2,4 or 8 bytes) in CYC_OFST field. It allows user to have CYC_OFST
array being a 1, 2, 4, or 8 byte array.
8.11.5.2 PMR_SIZE - Size (f) of data (1 or 2 bytes) in PMR_ARR field. It allows user to have PMR_ARR array
being a 1 or 2byte array.
8.11.5.3 ROW_SIZE - Size (f) of data (1,2,4 or 8 bytes) in ROW_ARR field. It allows user to have CYC_OFST
array being a 1, 2, 4, or 8 byte array.
8.11.5.4 COL_SIZE: Size (f) of data (1,2,4 or 8 bytes) in COL_ARR field. It allows user to have CYC_OFST array
being a 1, 2, 4, or 8 byte array.
8.11.5.5 DLOG_MSK — This flag indicates which type of data is stored in this record. The record as such allows
multiple types of fail log e.g. count only, pin-cycle, frame based bit stream based log but the field for the logs are
optional and can be omitted from MTR. DLOG_MASK field indicated which fields are not present in the current
MTR record. Table Below shows the bit position assignment for log types. Setting a bit to 1 indicates that particular
log type is not present in the record.
Table 15 Log Types

Log type Bit position

Count only Bit 0

(Pin, Cycle) Bit 1

(Row, Col) Bit 2

Fame Based Bit 3

Bit Stream Bit 4

Compressed Bit Stream Bit 5

8.11.5.6 PMR_CNT — The number of entries in the PIN_ARR for Pin-Cycle based fail datalogging.
8.11.5.7 PMR_ARR — The array for storing failed pins in the test. This array is synchronized with the CYC_OFST
array such that the pins in PMR_ARR together with cycle number in CYC_OFST form a pin-cycle number pair to
capture the fail
8.11.5.8 CYCO_CNT — The number of entries in the CYC_OFST or Pin-Cycle based fail datalogging.
8.11.5.9 CYC_OFST — The array of cycle OFST from the CYC_BASE where a failure was observed and captured.
The actual cycle number where the failure was recorded is obtained by adding CYC_BASE to CYC_OFST. This
implementation is done to reduce the impact on the data volume due to large cycle number field. Some ATE support
64 bit cycle numbers which otherwise would lead to 8 byte per cycle number recorded.
8.11.5.10 ROW_CNT — The number of entries in the ROW_ARR for Row-Column based fail datalogging.
8.11.5.11 ROW_ARR — The array to store the failing row number. This array is synchronous with the COL_ARR
such that the corresponding entries form a failed row-column pair.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 21 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

8.11.5.12 COL_CNT — The number of entries in the ROW_ARR for Row-Column based fail datalogging.
8.11.5.13 COL_ARR — The array to store the failing row number. This array is synchronous with the ROW_ARR
such that the corresponding entries form a failed row-column pair.
8.11.5.14 STEP_CNT — The number of entries in the STEP_ARR field for Row-Column based fail datalogging.
Storing the failing algorithm step is optional.
8.11.5.15 STEP_ARR — The array to record the MARCH steps where the failure was seen. This array can be
synchronized and used with either pin-cycle based logging or row-col based logging. But only one type of logging at
a time.
8.11.6 Generic Dimension Based Logging
8.11.6.1 DIM_CNT — The number of dimensions represented in the DIM_VALS array
8.11.6.2 DIM_NAMS — An array of string names for each dimension represented in the DIM_VALS array
8.11.6.3 DIM_DSIZ— The data size, in bytes, of the values in the DIM_VALS data to follow. This can be 1, 2, 4,
or 8. This field is part of a series of fields that are repeated as needed for each dimension in DIM_CNT.
8.11.6.4 DIM_DCNT — The number of values in the DIM_VALS data to follow. This field is part of a series of
fields that are repeated as needed for each dimension in DIM_CNT
8.11.6.5 DIM_VALS — An array of DIM_DCNT data values or size DIM_DSIZ bytes for a given dimension
defined in DIM_CNT and DIM_NAMS. This field is part of a series of fields that are repeated as needed for each
dimension in DIM_CNT.
8.11.6.5.1 The following is an example of how DIM_VALS data is organized and how fields are repeated for each
dimension. An example of bit layout is shown in figure R9-1, R9-2 and R9-3

 DIM_CNT k

 DIM_NAMS[0] 1st dimension name
 DIM_NAMS[1] 2nd dimension name
 DIM_NAMS[…] …
 DIM_NAMS[k-1] kth dimension name

 DIM_DSIZ 1st dimension data size (f1)
 DIM_DCNT Number (n1) of values for 1st dimension
 DIM_VALS[0] 1st value of 1st dimension, data size defined by f1
 DIM_VALS[1] 2nd value of 1st dimension, data size defined by f1
 DIM_VALS[…] …
 DIM_VALS[n1-1] last value of 1st dimension, data size defined by f1

 DIM_DSIZ 2nd dimension data size (f2)
 DIM_DCNT Number (n2) of values for 2nd dimension
 DIM_VALS[0] 1st value of 2nd dimension, data size defined by f2
 DIM_VALS[1] 2nd value of 2nd dimension, data size defined by f2
 DIM_VALS[…] …
 DIM_VALS[n2-1] last value of 2nd dimension, data size defined by f2
 …
 …
 DIM_DSIZ kth dimension data size (fk)
 DIM_DCNT Number (nk) of values for kth dimension
 DIM_VALS[0] 1st value of kth dimension, data size defined by fk
 DIM_VALS[1] 2nd value of kth dimension, data size defined by fk
 DIM_VALS[…] …
 DIM_VALS[nk-1] last value of kth dimension, data size defined by fk

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 22 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

8.11.7 Frame Based Logging
8.11.7.1 Following Fields are used to implement frame based logging with the MTR.
8.11.7.1.1 TFRM_CNT — This field stores the total number of frames in the frame based logging that are stored in
this record.
8.11.7.1.2 TFSG_CNT — This field stores the total number of frame segments for this test stores across all the
MTR records for this test. Each segment is defined as a series of frames which comply with a frame mask.
8.11.7.1.3 LFSG_CNT — This field stores the number of frame segments that are stored in the current record. The
rest are stored in the continuation records that follow.
8.11.7.1.4 FRM_IDX — This is the reference to the frame Specification record which contain the definition for the
frames in this record.
8.11.7.1.5 FRM_MASK — The mask field allows certain field from the frame definition to be eliminated for frames
in the log until a new mask is defined. Setting a bit to 1 means that field is masked. The least significant bit
corresponds to first field in FSR. A FRM_MASK of a segment remains valid across continuation record for a
segment.
8.11.7.1.6 FRM_CNT — The number of frames that comply with the current mask setting in FRM_MASK
8.11.7.1.7 LFBT_CNT — This field stores the number of bits in the current frame segment that are stored in the
current MTR record the rest are stored in continuation records.
8.11.7.1.8 FRAMES — The fail datalog bit encoded frame data representing the unmasked fields contained in one
or more (FRM_CNT) frames. Each field of the frame is defined by the currently referenced FSR (FRM_IDX).
Masked fields are defined by the currently referenced FRM_MASK and data from masked fields is NOT included in
this bit encoded data. The length of the bit encoded D*n data in bits is the (bits in unmasked fields) * (FRM_CNT).
See Figures R8-1, R8-2, R8-3 and R8-4 for an examples of bit layout .In addition, the first LSB bit in the first byte
corresponds to bit 0 of the first bit of the frame data as shown in Figure R8-2.
8.11.8 BitStream Based Logging
8.11.8.1 Following field enable bit stream based logging in a MTR
8.11.8.1.1 TBSG_CNT — Total number of bit stream clusters possibly spanning across multiple MTRs from the
current test
8.11.8.1.2 LBSG_CNT — The number of Bit stream segments stored in the current record
8.11.8.1.3 BSR_IDX — The reference to bit stream specification record that contains the format definition for the
bit stream.
8.11.8.1.4 STRT_ADR — This field stores the start address of the Segment.
8.11.8.1.5 WORD_CNT — The number of words starting with the STRT_ADR that have some fails and are logged
8.11.8.1.6 WORDS — Bit encoded fail data for one or more (WORD_CNT) words defined by the currently
referenced BSR (BSR_INDX). The length of the bit encoded D*n data in bits is defined by the BSR’s WRD_SIZ *
WRD_CNT. See Figure R7-1 and R7-2 for an example.
8.11.9 Compressed Bit map
8.11.9.1 TBMP_SIZE: This field contains the count of total bytes in the compressed bit map.
8.11.9.2 LBMP_SIZE: This field stores the count of bytes of the compressed bitmap that are stored in the current
record. The rest of the bytes will be stored in the successive record by using continue flag
8.11.9.3 CBIT_MAP: This is the array of bytes that stores the compressed bit map in the current record.
8.11.10 Frequency: Number of memory tests times records required to log the fails for the test (counting
continuation record)
8.11.11 Location: It can occur after all the memory design specific records i.e. any Memory Structure Record
(MSR),any Memory Controller Records (MCRs), any Memory Instance Records (IDRs), any Memory Model
Records(MMRs) , any Algorithms Specification Records (ASRs), any Frame Specification Records (FSRs) and any
Bitstream Specificaion Records (BSRs)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 23 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

NOTICE: SEMI makes no warranties or representations as to the suitability of the standard(s) set forth herein for
any particular application. The determination of the suitability of the standard(s) is solely the responsibility of the
user. Users are cautioned to refer to manufacturer’s instructions, product labels, product data sheets, and other
relevant literature respecting any materials or equipment mentioned herein. These standards are subject to change
without notice.
By publication of this standard, Semiconductor Equipment and Materials International (SEMI) takes no position
respecting the validity of any patent rights or copyrights asserted in connection with any item mentioned in this
standard. Users of this standard are expressly advised that determination of any such patent rights or copyrights, and
the risk of infringement of such rights are entirely their own responsibility.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 24 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 1
EXAMPLES OF USING FAIL DATALOG
R1-1 Storing Embedded Memory Design Information
R1-1.1 Following example show a case of a design with embedded memory shown in figure below. The design has
two embedded memory blocks which are controlled by a single memory controller. The address buses are 4 bit wide
and the data is two bit wide for each of the memory.

Addr_1 (4)

Data_1 (2)
Mem_1

Addr_2 (4)

Data_2 (2)

Mem_2

Ctrl_1

Design_1

Figure R1-1

Embedded Memory Example

R1-1.2 Figure R1-2 shows the record structure in a graphical form. The Memory structure record contains the
pointer to the single memory controller in this design. The controller record has a unique ID 1 assigned to it in the
memory controller name space. The Memory controller record contains pointers to Instance Description Records for
two memory instances in the design. Both the instance description records point to the same Memory model record
as instances are of same memory type. The memory Model Description Record (MDR) describes the details of the
memory’s logical structures.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 25 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Memory Structure Record
--
MSR {
NAME = “Design_1”;
FILE_NAM = “design_1.v”;
CTRL_CNT=1;
CTRL_LST ={1}
}

Memory Controller Record
--
MCR {
CTRL_IDX =1;
NAME = “ctrl1”;
INST_CNT=2;
INST_LST ={1,2};
}

Instance Description Record
--
IDR{
INST_INDX =1;
INST_NAME = “Mem_1”;
ORIENTATION=“LR”;
MODEL_REF=“”;
MODEL_ID = 1;
}

Instance Description Record
--
IDR {
INST_INDX =2;
INST_NAME = “Mem_2”;
ORIENTATION=“LR”;
MODEL_REF=“”;
MODEL_ID = 1;
}

Memory Model Record
--
MMR {
MDL_IDX =1;
NAME=“Model1”;
DMX_CNT = 2;
DMX_NAM = {“row”,”col”};
DMX_TYP = {0, 1}; //0 – row, 1-col
DMX_SIZE={4,2};
DMX_DIR = {2, 3};
PORT_CNT = 2;
PORT_TYP={“ADDR”, “DATA”};
PORT_DIR={“In,Inout};
PORT_NAME={“Addr”, “Data”}
PORT_WIDTH={4,2};
HEIGTH=“22um”;
WIDTH=“11um”;
FILE_REF=“Model1.layout”
}

Figure R1-2

Records for Embedded Memory Design Description

R1-2 Storing Direct Access/Standalone Memory Design Information
R1-2.1 This example shows a case of direct access memory where the memory ports are directly accessible from
the chip IO. The same case also applies for a standalone memory. The address ports are 4 bit wide and the data port
is 2 bit wide. The control port is one bit wide.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 26 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Addr_1 (4)

Data_1 (2)
Mem_1

Ctrl_1

Design_1

Figure R1-3
Direct Memory Example

Memory Structure Record
--
MSR {
NAME = “Design_1”;
FILE_NAM = “design_1.v”;
CTRL_CNT=0;
CTRLS ={}
INST_CNT=1;
INST_IDX={1}

}

Instance Description Record
--
IDR{
INST_INDX =1;
INST_NAME = “Mem_1”;
ORIENTATION=“LR”;
MIRROR=FALSE;
MODEL_REF=“”;
MODEL_ID = 1;
}

Memory Model Record
--
MMR {
MDL_IDX =1;
NAME=“Model1”;
DMX_CNT = 2;
DMX_NAM = {“row”,”col”};
DMX_TYP = {0, 1}; //0 – row, 1-col
DMX_SIZE={4,2};
DMX_DIR = {2, 3};
PORT_CNT = 2;
PORT_TYP={“ADDR”, “DATA”};
PORT_DIR={“In,Inout};
PORT_NAME={“Addr”, “Data”}
PORT_WIDTH={4,2};
HEIGTH=“22um”;
WIDTH=“11um”;
FILE_REF=“Model1.layout”
}

Figure R1-4

Design With Direct Memory Access

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 27 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

R1-2.2 In this case, since there is no embedded memory controller, the controller fields are empty in the Memory
Structure Record (MSR) and by the same reason there is no Memory Controller Record (MCR). The MSR records
instead points directly to the memory instance which in turn points to its Model Description Record.

R1-3 Storing Design Information For Designs with Embedded and Direct Access Memory
R1-3.1 This example shows a case of a design which has one embedded memory and a direct access memory. Both
of the memory instances in the example are shows to be of same type for simplicity however, there is no such
requirement of them to be the same type.

Addr_1 (4)

Data_1 (2)
Mem_1

Ctrl_1

Addr_1 (4)

Data_1 (2)
Mem_1

Ctrl_1

Ctrl1

Figure R1-5
Design with Embedded and Direct Access Memory

R1-3.2 The main point highlight in this example is that the Memory Specification Record (MSR) in this contains a
point to the memory controller for embedded memory as well as a pointer the instance description record of the
direct access memory. Each of these pointer fields are arrays hence multiple direct access memories as well as
multiple embedded memories can be described using this record structure.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 28 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Memory Structure Record
--
MSR {
NAME = “Design_1”;
FILE_NAM = “design_1.v”;
CTRL_CNT=1;
CTRLS ={1}
INST_CNT=1;
INST_LST={1}

}

Memory Controller Record
--
MCR {
CTRL_IDX =1;
NAME = “ctrl1”;
INST_CNT=1;
INST_LST ={2};
}

Instance Description Record
--
IDR{
INST_INDX =1;
INST_NAME = “Mem_1”;
ORIENTATION=“LR”;
MODEL_REF=“”;
MODEL_ID = 1;
}

Instance Description Record
--
IDR {
INST_INDX =2;
INST_NAME = “Mem_2”;
ORIENTATION=“LR”;
MODEL_REF=“”;
MODEL_ID = 1;
}

Memory Model Record
--
MMR {
MDL_IDX =1;
NAME=“Model1”;
DMX_CNT = 2;
DMX_NAM = {“row”,”col”};
DMX_TYP = {0, 1}; //0 – row, 1-col
DMX_SIZE={4,2};
DMX_DIR = {1, 1};
PORT_CNT = 2;
PORT_TYP={“ADDR”, “DATA”};
PORT_DIR={“In,Inout};
PORT_NAME={“Addr”, “Data”}
PORT_WIDTH={4,2};
HEIGTH=“22um”;
WIDTH=“11um”;
FILE_REF=“Model1.layout”
}

Figure R1-6
Record Structure for Design With Embedded and Direct Access Memory

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 29 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

R1-4 Access to Physical Information
R1-4.1 As mentioned earlier in the document, the standard provides records to store the logical information only
and only supports storing links to files with physical information. The links to physical information can be added
inside the Instance Description Record in which case there is no logic or physical information is stored in STDF.
The other place where links can be added is inside Memory Model Record (MMR). This leads to three possible
scenarios as shows in Figure R1-7 below.

Figure R1-7(a)
Storing Links to Physical information

1 2 3

CTRL 1

4 5

BIST Controller i Memory

JTAG

CTRL 2

Shared
output

Non Shared
output

Memory Instance

Memory Controller
instance

Memory port

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 30 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

MSR

MCR MCR

IDR1 IDR2 IDR3

MMR1 MMR2

Physical
Information

file

Model
Information

file

IDR4 IDR5

MMR3 MMR4

Case 1 Case 2 Case 3

Model
Information in
STDF No links

to Physical
Information

Model
Information in

STDF and links
to Physical
Information

No Model
Information

in STDF

Figure R1-8(b)
Storing Links to Physical information

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 31 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 2
EXAMPLES OF STORING ALGORITHM INFORMATION
R2-1 Storing Memory Test Algorithm Information in Memory Fail Datalog
R2-1.1 The standard allows storing information about the algorithms that are used in a test. Algorithm specification
record is used to describe the algorithms for a test in the STDF file. Figure R2-1 shows an example of an Algorithm
Specification Record (ASR) where the test applies one algorithm. The ASR stores the name of the algorithms, its
complexity and library name where the description of algorithms is stored. It also allows storing the cycle begin and
end information for the algorithm which can be used to translate cycles numbers from tester to location in the
algorithm.

Figure R2-1

Algorithm Specification Record Example

Algorithm Specification Record
--
ASR {
ASR_IDX=1;
STRT_IDX=0; //Cycle numbers start from 0
ALGO_CNT=1;
ALGO_NAME=”MARCH-C”; //
ALGO_LEN=”13N”; // Algorithm complexity is 13N
FILE_ID=”Mem_Algo_Lib”; //File containing the algorithm descriptions.
CYC_BGN=0
CYC_END=13312
}

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 32 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 3
EXAMPLE OF USING FRAME SPECIFICATION RECORD
R3-1 Using Frame Specification Record Example
R3-1.1 The Frame Specification Record allows specification of the structure of the datalog frames where the data is
communicated in stored in the form of serial frames. The example below shows how the frame shown in Figure R3-
1 is specified using a FSR record. In this example the frame contains 6 fields shows in figure. These fields are
described using the record fields in the red box. The FLD_TYPE entries indicate the type of fields using a standard
described encoding described earlier in the document. The FLD_NAM field is an array and stores the user defined
names of the fields. The FLD_SIZE information stores the size in number of bits for each of theses fields. These
three fields are position synchronized i.e. the first entry in FLD_TYPE corresponds to first entries in FLD_NAM
and FLD_SIZE fields.

Frame Specification Record
--

FSR {
FRM_IDX = 1; //Frame definition ID = 1;
FLD_CNT = 6; // Total four fields in the frame
FLD_TYP = {1,6,12,1,6,12}; //1-Mem-ID, 6- Addr, 12 - data
FLD_NAM = {“Mem1”, “Addr_1”, “data_1”, “Mem2”, “Addr_2”, “data_2”} // field names
FLD_SIZE = {1,4,2,1,4,2}; // field sizes in bits
}

Mem1 Addr_1 Data_1 Mem2 Addr_2 Data_2
1 bit 4 bit 2 bit 1 bit 4 bit 2 bit

Figure R3-1

Frame Specification Record Example

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 33 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 4
EXAMPLES OF USING BIT STEAM SPECIFICATION RECORD
R4-1 Bit Stream Specification Record Example
R4-1.1 The Bit Stream Specification Record allows storing the structure information of a datalog stored in a bit
stream format. The Bit stream is stored a sequence of Word segments. Each segment is a series of words in the
memory for which information in stored in the bit stream. This type of bit stream structure allows one to eliminate
the words with non-relevant words be removed from the log and thereby reducing the data volume of the log.
Figure R4-1 shows an example of a specification of word cluster where the ADDR_SIZ field stores the number of
bits allocated to store the starting address of the cluster. The WC_SIZ field stores the number of bit allocated to store
the count of the words from the start cluster starting address that are stored in the log. The WRD_SIZ field contains
the size of the memory words in bits. The used bits are shown with the uncolored boxes in each of the fields.

BSR
{

BSR_IDX = 1;
BIT_TYP = 0;
ADDR_SIZ = 1; // U*1 , assume 3 are used
WC_SIZ = 1; // U*1 assume 5 are used
WRD_SIZ = 14; // U*1, two lower bits not used

}

Address
Word
Count Word(s)

Figure R4-1
Bit Stream Specification Record Example

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 34 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 5
EXAMPLES OF USING SUPPORTED DATALOG TYPES
R5-1 Count only Log
R5-1.1 This type of log stores only the fail count in the Memory Test Record. Figure R5-1 shows an example of
MTR record. The fail counts are stored in the DIM_CNT, DIM_NAME, DIM_FCNT. This example also shows the
setting of test conditions using COND_LST and COND_CNT as well as the header fields which are similar to
Header fields for Functional Test Records (FTRs).

CONT_FLAG = 0; // No Continuation record exists
TEST_NUM = 1; // Test Id in the flow = 1
HEAD_NUM = 1 // the device is tested on Head number 1
SITE_NUM = 2; // The device is site number 2 on header number 1
ASR_REF = 2; // the memory algorithm used in the test is described in ASR # 2
TEST_FLG = 0; // No test flags set
LOG_TYP = “Memory test log”; //User give description of the log
TEST_TXT = “”; // No give description
ALARM_ID= “” ; //No Alarm ID set;
PROG_TXT= “” // No Additional program information
RSLT_TXT = “” // No additional test result information.
COND_CNT = 2; // Total two conditions set logged for the test
COND_LST = {“Frequency=100MHz”, “Voltage=3.3V”}; // The description of condition as <ConditionName=
Value>
TOTF_CNT= 1000; // total 1000 fails detected;
TOTL_CNT=1000; // All 1000 fails were logged
FILE_INC = 0; // The file is complete;
LOGTYPE=11111110; // Log type is Fail count only, other log types are masked
DIM_CNT=2; // Fail count on two dimensions logged;
DIM_NAME = {“ROW,”COL”};
DIM_FCNT = {10,5}; // 10 rows and 5 columns had failures

R5-2 Frame Based Logging
R5-2.1 This example shows the Frame based logging. Figure R5-1 shows how the MTR, FSR and ASR records are
used to log failures in the frame format. The frame contains six fields described in the FSR record. In this example
two segments of frame sequences stores in the log. In the first segment, two frames where all 6 fields are present are
stored. The second segment contains only one frame but has only 3 out of 6 field filed from the frame. The other 3
are masked. The masking feature is allowed to reduce the data volume due to repeating information or from place
for the missing information.

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 35 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Algorithm Specification Record
--
ASR {
ASR_INDX=1;
STRT_IDX=0; //Cycle numbers start from 0
ALGO_CNT=1;
ALGO_NAME=”MARCH-C”; //
ALGO_LEN=”13N”; // Algorithm complexity is 13N
FILE_ID=”Mem_Algo_Lib”; //File containing the algorithm descriptions.
CYC_BGN=0
CYC_END=13312
}

Memory Test Record
--
MTR {
CONT_FLG = 0; // All fail data can fit in single record
TEST_NUM = 2; // Test #1
TEST_HEAD = 1; // Test Head # 1
SITE_NUM = 2; // Site # 2;
ASR_REF = 1: // test structure described in ASR #1
COND_CNT = 2 // Total two conditions
COND_LST = {Freq=10MHz, Vdd=3.3V} // Condition specification
TOTF_CNT = 4 ; // total 4 failure observed
TOTL_CNT = 4 // All of them were logged
TFRM_CNT = 3; // Total 3 frames in the datalog
FSEG_CNT = 2;
LFSG_CNT = 2; // four frames in two segments
FRM_IDX = 1; // Use the frame definition no 1
FRM_MASK = 000000 // No fields masked
FRM_CNT=2;
LFBT_CNT=28; // Two frame with current mask
FRAMES= 0 0101 10 1 0000 10 // Frame 1

0 0110 01 1 1110 11 // Frame 2
FRM_IDX = 1; // Use the frame definition no 1
FRM_MASK = 000111 // Fields 4, 5 and 6 are masked
FRM_CNT=1;
LFBT_CNT=7; // Two frame with current mask
FRAMES= 0 0101 00 //Frame 3

}

Mem1 Addr_1 Data_1 Mem2 Addr_2 Data_2
1 bit 4 bit 2 bit 1 bit 4 bit 2 bit

0 0101 10 1 0000 10 // Frame 1
0 0110 01 1 1110 11 // Frame 2

Mem1 Addr_1 Data_1 Mem2 Addr_2 Data_2
1 bit 4 bit 2 bit 1 bit 4 bit 2 bit

0 0101 00 // Frame 1

Frame Specification Record
--

FSR {
FRM_IDX = 1; //Frame definition ID = 1;
FLD_CNT = 6; // Total four fields in the frame
FLD_TYP = {1,6,12,1,6,12}; //0-Mem-ID, 1- Addr, 2 - data
FLD_NAM = {“Mem1”, “Addr_1”, “data_1”, “Mem2”, “Addr_2”, “data_2”} // field names
FLD_SIZE = {1,4,2,1,4,2}; // field sizes in bits
}

Figure R5-1

Frame based Logging Example

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 36 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

R5-3 Bit Stream Based Logging
R5-3.1 This example shows how to store bit stream based log. There are total 4 failures in the test. Two fails are
clustered in two consecutive words starting at address 100 and the other two fails are in a word at address 1500.
These clustered are stored in bit stream segments. The segment structure is defined in BSR record number 1.

Algorithm Specification Record
--
ASR {
ASR_INDX=1;
STRT_IDX=0; //Cycle numbers start from 0
ALGO_CNT=1;
ALGO_NAME=”MARCH-C”; //
ALGO_LEN=”13N”; // Algorithm complexity is 13N
FILE_ID=”Mem_Algo_Lib”; //File containing the algorithm descriptions.
CYC_BGN=0
CYC_END=13312
}

Bit Stream Specification Record
--

BSR {

BSR_IDX = 1; //Bit stream definition ID = 1;
BIT_TYP = 0; // Stream contain fail data, 0 – good, 1- failure at the bit position
ADDR_SIZ = 1; //3 bits for address field
WC_SIZE= 1, // 4 bits for Word count field
WRD_SIZ = 7; //8 bit words in the memory
}

Memory Test Record
--
MTR {
CONT_FLG = 0; // All fail data can fit in single record
TEST_NUM = 2; // Test #1
TEST_HEAD = 1; // Test Head # 1
SITE_NUM = 2; // Site # 2;
ASR_REF = 1: // test structure described in ASR #1
COND_CNT = 2 // Total two conditions
COND_LST = {Freq=10MHz, Vdd=3.3V} // Condition specification
TOTF_CNT = 4 ; // total 4 failure observed
TOTL_CNT = 4 // All of them were logged
TBSG_CNT= 2; // Total 1 Bit streams from the test
LBSG_CNT=2; // 1 bit stream segment
BSR_IDX = 1; //Segment defition in BSR #1
STRT_ADDR=100 // First segment starts at adress 100
WORD_CNT = 2; // Two words in the current segment have fails
WORDS =

00001100 // Bits3,4 in the first word at address 100 has a fail

00000011 // Bit 0,1 in word at address 101 has a fail
BSR_IDX = 1; //Segment defition in BSR #1
START_ADDR = 1500 // Second cluster’ start address is 1500
WC_CNT=1; // Two words in the current segment have fails
WORDS = 0011 0000 // Bits 4 & 5 have fails at adress 1500

}

Figure R5-2
BitStream Based Datalog Example

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 37 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 6
EXAMPLES OF USING ORIENTATION CODE
R6-1 Orientation Code Examples
R6-1.1 As mentioned earlier, each Instance Description Record allows user to store the orientation information.
This information consists of a two byte code. The 1st character represents the direction of increasing column
direction and the 2nd character represents the direction of increasing row direction
R6-1.2 4 characters are used to describe the direction

U → Up
D → Down
L → Left
R → Right

R6-1.3 The naming of these directional indicators is based on notch down placement for wafer and bottom left
corner placement of package reference designator for the packages. These codes will need to be and rotate with
other notch/package referencedesignator placement (e.g., ‘U’ direction for columns means that the columns
addresses are increasing from left to right if the wafer is looked at in notch left setting).
R6-1.4 The two byte code with the 4 character encoding allows description of 8 possible memory orientations as
show in the figure below

RD

LURU

LD

UL

DLDR

UR

Courtesy PDF solutions

2 Character Code
8 possible Memory Core orientations
Notch at bottom

Indicates the direction of increasing Columns

Byte1 Byte2

Row address increase
Columns address increase

Notch

Figure R6-1(a)
Memory Orientations for Wafer

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 38 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

2 Character Code
8 possible Memory Core orientations
Reference pad at bottom left corner

Indicates the direction of increasing Columns RD

LURU

LD

UL

DLDR

UR

Byte1 Byte2

Row address increase
Columns address increase

Reference Pad

Figure R6-1 (b)
Memory Orientation for Package

R6-1.5 Figure R6-2 shows convention used in assigning codes to rows and columns. Figure R6-3 shows an example
of a memory with its code.

C
ol

 x
C

ol
 x

+1
C

ol
 x

+2

Row y
Row y+1
Row y+2

Memory

Direction of Increasing
Column Address

Direction of Increasing
Row Address

Row 0

C
ol

 0

Indicates memory corner with
(0,0) (col,row) coordinate
in the topological bitmap

Tip of triangle indicates the
direction of increasing column
addresses

Orthogonal direction away from
triangle indicates direction
of increasing Row addresses

Notch Courtesy PDF solutions

Figure R6-2
Memory Orientation Conventions

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 39 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

C
ol

 x
C

ol
 x

+1
C

ol
 x

+2

Row y
Row y+1
Row y+2

Memory

Direction of Increasing
Column Address

Direction of Increasing
Row Address

Row 0

C
ol

 0

Memory orientation is
based on notch down
placement

Columns addresses
increase from
left to the right Æ’R’

Row addresses
increase from
bottom to top Æ ‘U’

This memory is therefore
is in ‘RU’ orientation

Notch
Courtesy PDF solutions

Figure R6-3
Example Coding

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 40 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 7
EXAMPLES OF BIT STREAM DATA LAYOUT
R7-1 Bit Stream Data Mapping
R7-1.1 The Figure R7-1 shows the layout of the bits in a bit stream based logging for an example.

Bit Stream Data Mapping Example
(Record and Field Values)

BSD_INDX 1

BIT_TYP 1

ADDR_SIZ 2

WC_SIZ 2

WRD_SIZ 12

Address value uses 2 bytes (supports address values up to 216)
Word count uses 2 bytes (supports up to 216 words in bit stream segment)
Each word is 12 bits in bit stream segment

Bit stream contains fail data (0=pass / 1=fail)
Unique ID for this BSRU*2

U*1

U*1

U*1

U*2

LBSG_CNT 2

BSR_IDX 1

STRT_ADR 0x02C5

WORDS See below

Identifying BSD_INDX value of BSR defining the bit stream data to follow
Starting address for bit stream segment (BSR:ADDR_SIZ sets “s” to 1|2|4|8 bytes)

Bit stream data bits where “n” = Ceiling((WRD_CNT * WRD_SIZ) / 8)

Number of bit stream segments to follow in this MTR (0 to 216)U*2

U*2

U*s

D*n

MTR

BSR

.

.

WRD_CNT 3 Number of words in bit stream segment to follow (BRS:WC_SIZ sets “s” to 1|2|4|8 bytes)U*s

.

BSR_IDX 7

STRT_ADR 0x031C

WORDS See below

Identifying BSD_INDX value of BSR defining the bit stream data to follow
Starting address for bit stream segment (BSR:ADDR_SIZ sets “s” to 1|2|4|8 bytes)

Bit stream data bits where “n” = Ceiling((WRD_CNT * WRD_SIZ) / 8)

U*2

U*s

D*n

WRD_CNT 2 Number of words in bit stream segment to follow (BRS:WC_SIZ sets “s” to 1|2|4|8 bytes)U*s

BSD_INDX 7

BIT_TYP 1

ADDR_SIZ 2

WC_SIZ 1

WRD_SIZ 10

Address value uses 2 bytes (supports address values up to 216)
Word count uses 1 byte (supports up to 28 words in bit stream segment)
Each word is 10 bits in bit stream segment

Bit stream contains fail data (0=pass / 1=fail)
Unique ID for this BSRU*2

U*1

U*1

U*1

U*2

BSR
.

1st SEGMENT
(3 words)

2nd SEGMENT
(2 words)

 Figure R7-1

Example of layout of data bits in a Bit Stream based Log (1)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 41 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

Bit Stream Data Mapping Example
(Byte and Bit Layout)

00110000 10010000 10001100

01000000 0000000000000000

00000000

LBSG_CNT

Fixed at 2 bytes (U*2)

Byte:NByte:N+1

BSR_IDX

Fixed at 2 bytes (U*2)

Byte:N+2Byte:N+3

STRT_ADR
0 0 0 1 0 1

Variable number of bytes set by BSR[1]:ADDR_SIZ

1

Byte:N+4Byte:N+5

WRD_CNT

Variable number of bytes set by BSR[1]:WC_SIZ

Byte:N+6Byte:N+7

1 0 0 0 0 1 10 00 0 0 0 0 10 0

0 0 0 0 1 00 0

1 0 0 0 1 01 01 0 0 0 0 10 0

WORDS

Byte:N+8Byte:N+9Byte:N+10Byte:N+11Byte:N+12

1st SEGMENT, 1st WORD = 0x1A21st SEGMENT, 2nd WORD = 0x2131st SEGMENT, 3rd WORD = 0xC09NOT USED
(per segment)

Variable number of bytes used for WORDS field is defined on a PER SEGMENT basis

Ceiling((WRD_CNT * WRD_SIZ) / 8)

00110011 1 0 0 1 0 11 00 0 1 0 1 11 0

WORDS

Byte:N+18Byte:N+19Byte:N+20

2nd SEGMENT, 1st WORD = 0x0A52nd SEGMENT, 2nd WORD = 0x2F3NOT USED
(per segment)

0151631 78232439 32

0150 787

015 78015 78

015 78

015 78

00000000

BSR_IDX

Fixed at 2 bytes (U*2)

Byte:N+15Byte:N+16

0 0 0 1 1 10 0

015 78

11000000

STRT_ADR
0 1 1 1 0 0

Variable number of bytes set by BSR[7]:ADDR_SIZ

0

Byte:N+17Byte:N+18

0

015 78

WRD_CNT

Variable number of bytes set by BSR[7]:WC_SIZ

Byte:N+19

0 0 0 0 1 00 0

07

Variable number of bytes used for WORDS field is defined on a PER SEGMENT basis

Ceiling((WRD_CNT * WRD_SIZ) / 8)

1s
t
SE

G
M

EN
T

(3
 w

or
ds

)
2n

d
SE

G
M

EN
T

(2
 w

or
ds

)

00000000 1 0 0 1 0 00 0

Byte:N+1347 40Byte:N+1455 48

D*n data field – 2 bytes indicating number of bits to follow
(3 words @ 12 bits = 36 total bits (0x24)

00000000 0 1 0 1 0 00 0

Byte:N+19Byte:N+20 1516 823

D*n data field – 2 bytes indicating number of bits to follow
(23 words @ 10 bits = 20 total bits (0x14)

D*n size

D*n size

 Figure R7-2

Example of layout of data bits in a Bit Stream based Log (2)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 42 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 8
EXAMPLE OF BITS LAYOUT IN FRAME BASED LOGGING
R8-1 Bits Layout in Frame Based Logging
R8-1.1 Figure R8-1 and Figure R8-2 show an example of data bit layout in frame based datalog.

Frame Data Mapping Example
(Record and Field Values)

See next page for byte and bit layout

FRM_IDX 1

FLD_CNT 2

FLD_TYP[0:2] 1, 2 Predefine field type for fields 0, 1
Count of fields in this frame
Unique ID for this FSRU*2

U*1

kxU*1

LFSG_CNT 3

FRM_IDX 1

FRM_MASK 0x00

FRM_CNT 1

FRAMES

Frame field mask value for frame data to follow
Count of frames to follow using the FRM_FRM_IDX and FRM_MASK values

Identifying FRM_IDX value of FSR defining the frame data to follow
Total frame segments in this MTRU*2

U*2

B*n

U*4

MTR

FSR

.

See below Frame data for non-masked frames as defined by previous FRM_IDX and FRM_MASK D*n

.

1st SEGMENT
(1 frame)

FLD_SIZE[0:2] 4, 4 Size, in bits, for fields 0, 1U*1

.

FRM_IDX 2

FLD_CNT 3

FLD_TYP[0:2] 6,11,12 Predefine field type for fields 0, 1, 2
Count of fields in this frame
Unique ID for this FSRU*2

U*1

kxU*1

FSR
.

FLD_NAM[0:2] “Addr”, “Expect”, “Actual” Predefine field type for fields 0, 1, 2kxC*n

FLD_SIZE[0:2] 12, 8, 8 Size, in bits, for fields 0, 1, 2U*1

.

FLD_NAM[0:2] kxC*n “Mem”, “Port” Symbolic names for fields 0, 1

FRM_IDX 2

FRM_MASK 0x00

FRM_CNT 1

FRAMES

Frame field mask value for frame data to follow
Count of frames to follow using the FRM_FRM_IDX and FRM_MASK values

Identifying FRM_IDX value of FSR defining the frame data to follow U*2

B*n

U*4

See below Frame data for non-masked frames as defined by previous FRM_IDX and FRM_MASK D*n

FRM_IDX 2

FRM_MASK 0x02

FRM_CNT 2

FRAMES

Frame field mask value for frame data to follow
Count of frames to follow using the FRM_FRM_IDX and FRM_MASK values

Identifying FRM_IDX value of FSR defining the frame data to follow U*2

B*n

U*4

See below Frame data for non-masked frames as defined by previous FRM_IDX and FRM_MASK D*n

2nd SEGMENT
(1 frame)

3rd SEGMENT
(2 frames)

LFBT_CNT 8 Count of bits for this segment stored in the following FRAMES fieldU*4

LFBT_CNT 28U*4

LFBT_CNT 40U*4

Count of bits for this segment stored in the following FRAMES field

Count of bits for this segment stored in the following FRAMES field

Figure R8-1

Data bit layout in a Frame based datalog

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 43 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

10

00000000

LFSG_CNT

Byte:NByte:N+1

0 0 0 0 1 10 0

015 78

0000000000000000

FRM_CNT

Fixed at 4 bytes (U*4)

Byte:N+9Byte:N+10 Byte:N+7Byte:N+8

FRM_MASK

Variable number of bytes
Ceiling(FSR:FLD_CNT / 8)

Byte:N+6

0 0 0 0 0 00 0

0 0 0 0 0 10 00 0 0 0 0 00 0

1 1 0 0 0 10 0

Byte:N+17 07

07

015 781631 2324

Variable number of bytes used based on
frame’s field sizes, field masking, and

number of frame count on a PER
SEGMENT basis

1s
t
SE

G
M

EN
T

(1
 fr

am
e

: 8
 b

its
)

00000000

FRM_IDX

Fixed at 2 bytes (U*2)

Byte:N+2Byte:N+3

0 0 0 0 0 10 0

015 78

NOT USED

“Mem”
1st Frame,
1st Field

0x1

“Port”
1st Frame,
2nd Field

0x3

Ceiling((Σ(FSR:FLD_SIZE[x]) * FRM_CNT) / 8) for
unmasked fields

0000000000000000

LFBT_CNT

Fixed at 4 bytes (U*4)

Byte:N+13Byte:N+14 Byte:N+11Byte:N+12

0 0 1 0 0 00 00 0 0 0 0 00 0

015 781631 2324

Byte:N+4Byte:N+5 015 78

00000000 0 0 0 0 1 00 0

D*n data field – 2 bytes indicating number of bits to follow
(2 bits)

Byte:N+15Byte:N+16 015 78

00000000 0 0 1 0 0 00 0

D*n data field – 2 bytes indicating number of bits to follow
(8 bits)

FRAMES D*n size

D*n Size

Figure R8-2

Bit Data bit layout in a Frame based datalog (Contd)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 44 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

2n
d

SE
G

M
EN

T
(1

 fr
am

e
: 2

8
bi

ts
)

0000000000000000

LFBT_CNT

Fixed at 4 bytes (U*4)

Byte:N+29Byte:N+30 Byte:N+27Byte:N+28

0 1 1 1 0 00 00 0 0 0 0 00 0

015 781631 2324

00100011 11000001

0000000000000000

FRM_CNT

Fixed at 4 bytes (U*4)

Byte:N+25Byte:N+26 Byte:N+23Byte:N+24

FRM_MASK

Variable number of bytes
Ceiling(FSR:FLD_CNT / 8)

Byte:N+22

0 0 0 0 0 00 0

0 0 0 0 0 10 00 0 0 0 0 00 0

1 0 0 0 0 11 00 0 1 1 0 01 0

FRAMES

Byte:N+33Byte:N+34Byte:N+35Byte:N+36

NOT USED
(per frame)

0151631 782324

07

015 781631 2324

00000000

FRM_IDX

Fixed at 2 bytes (U*2)

Byte:N+18Byte:N+19

0 0 0 0 1 00 0

015 78

NOT USED

“Addr”
1st Frame,
1st Field
0x3A1

“Exp”
1st Frame,
2nd Field

0xC8

“Act”
1st Frame,
3rd Field

0x48

Variable number of bytes used based on frame’s field sizes, field masking, and number of frame count on a PER SEGMENT basis

Ceiling((Σ(FSR:FLD_SIZE[x]) * FRM_CNT) / 8) for unmasked fields

Byte:N+20Byte:N+21 015 78

00000000 0 0 0 0 1 10 0

D*n data field – 2 bytes indicating number of bits to follow
(3 bits)

Byte:N+31Byte:N+32 015 78

00000000 0 1 1 1 0 00 0

D*n data field – 2 bytes indicating number of bits to follow
(28 bits 0x1C)

D*n size

D*n Size

Figure R8-3

Bit Data bit layout in a Frame based datalog (Contd)

11000001

0000000000000000

FRM_CNT

Fixed at 4 bytes (U*4)

Byte:N+44Byte:N+45 Byte:N+42Byte:N+43

FRM_MASK

Variable number of bytes
Ceiling(FSR:FLD_CNT / 8)

Byte:N+41

0 0 0 0 1 00 0

0 0 0 0 1 00 00 0 0 0 0 00 0

1 0 0 0 0 11 00 1 0 1 0 01 0

FRAMES

Byte:N+52Byte:N+53Byte:N+54 01516 7823

07

015 781631 2324

Variable number of bytes used based on frame’s field sizes, field masking, and number of frame count on a PER SEGMENT basis

Ceiling((Σ(FSR:FLD_SIZE[x]) * FRM_CNT) / 8) for unmasked fields

00000000

FRM_IDX

Fixed at 2 bytes (U*2)

Byte:N+37Byte:N+38

0 0 0 0 1 00 0

015 78

NOT USED

“Addr”
1st Frame,
1st Field
0x3A1

“Act”
1st Frame,
3rd Field

0x48

10000011 1 1 0 0 1 00 1

Byte:N+55Byte:N+56 015 78

“Addr”
2nd Frame,
1st Field

0x729

“Act”
2nd Frame,

3rd Field
0xC1

1st Frame2nd Frame

3r
d

SE
G

M
EN

T
(2

 fr
am

e
: 4

0
bi

ts
)

0000000000000000

LFBT_CNT

Fixed at 4 bytes (U*4)

Byte:N+48Byte:N+49 Byte:N+46Byte:N+47

1 0 1 0 0 00 00 0 0 0 0 00 0

015 781631 2324

Byte:N+39Byte:N+40 015 78

00000000 0 0 0 0 1 10 0

D*n data field – 2 bytes indicating number of bits to follow
(3 bits)

Byte:N+50Byte:N+51 015 78

00000000 1 0 1 0 0 00 0

D*n data field – 2 bytes indicating number of bits to follow
(40 bits 0x28)

D*n Size

D*n size

Figure R8-4

Bit Data bit layout in a Frame based datalog (Contd)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 45 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

RELATED INFORMATION 9
EXAMPLE OF GENERIC MULTI-DIMENSIONAL LOGGING
R9-1 Example of Data Layout in Generic Multi-Dimensional Logging
R9-1.1 Figure R9-1, R9-2 and R9-3 show and example of data layout in generic multi-dimension log

DIM_CNT 3

DIM_NAMS “Addr”, “Worst_Bit”, “Pulse_Cnt”

DIM_DCNT 0x100

DIM_VALS See below

Names of dimensions 0, 1, 2
Number (n) of values on 1st dimension (Addr)

Data values for 2nd dimension (Worst_Bit) where “s” is set by DIM_DSIZ

Number (k) of dimensionsU*1

k*C*n

U*4

N*U*s

MTR
.

.

DIM_DSIZ 2 Size in bytes for 1st dimension data valuesU*1

DIM_DCNT 0x100

DIM_VALS See below

Number (n) of values on 2nd dimension (Worst_Bit)

Data values for 2nd dimension (Worst_Bit) where “s” is set by DIM_DSIZ

U*4

N*U*s

DIM_DSIZ 1 Size in bytes for 2nd dimension data valuesU*1

DIM_DCNT 0x100

DIM_VALS See below

Number (n) of values on 3rd dimension (Pulse_Cnt)

Data values for 3rd dimension (Pulse_Cnt) where “s” is set by DIM_DSIZ

U*4

N*U*s

DIM_DSIZ 1 Size in bytes for 3rd dimension data valuesU*1

1st Dimension
(Addr)

2nd Dimension
(Bit)

3rd Dimension
(Pulse_Cnt)

Figure R9-1

Example of Generic Multi-dimensional Data logging

DIM_CNT

Fixed at 1 byte (U*1)

Byte:N

DIM_NAMES

0 0 0 0 1 10 0

07

Byte:N+3

1 0 0 1 0 00 1

07

10000010

Byte:N+1Byte:N+2

0 0 0 1 0 00 0

08 70

C*n data field
(# of chars to follow)

“A”“d”

Byte:N+4

1 0 0 1 0 00 1

07

“d”

Byte:N+5

1 1 0 0 1 00 1

07

“r”

DIM_NAMES

Byte:N+8

1 0 1 1 1 10 1

07

11101010

Byte:N+6Byte:N+7

0 0 1 0 0 10 0

08 70

C*n data field
(# of chars to follow)

“W”“o”

Byte:N+14

1 0 1 0 0 10 1

07

“i”

Byte:N+15

1 1 0 1 0 00 1

07

“t”

DIM_NAMES

Byte:N+18

1 1 0 1 0 10 1

07

00001010

Byte:N+16Byte:N+17

0 0 1 0 0 10 0

08 70

C*n data field
(# of chars to follow)

“P”“u”

Byte:N+24

1 0 1 1 1 00 1

07

“n”

Byte:N+25

1 1 0 1 0 00 1

07

“t”

C*n size

C*n size

C*n size

Figure R9-2

Example of Generic Multi-dimensional Datalogging (Contd)

This is a draft document of the SEMI International Standards program. No material on this page is to be construed as an official or adopted standard. Permission is granted to
reproduce and/or distribute this document, in whole or in part, only within the scope of SEMI International Standards committee (document development) activity. All other
reproduction and/or distribution without the prior written consent of SEMI is prohibited.

 Page 46 Doc. 4782C © SEMI®

Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134-2127
Phone:408.943.6900 Fax: 408.943.7943

LE
TT

ER
 (Y

EL
LO

W
) B

A
LL

O
T

DRAFT
Document Number: 4782C

Date: 8/5/2011

11111111

DIM_DSIZ

Fixed at 1 byte (U*1)

Byte:N+30

0 0 0 0 1 00 0

1 1 1 1 1 11 1

DIM_VALS

Byte:N+286Byte:N+287

Last “Addr” Value = 0xFFFF

015 78

07

Value size in bytes set by DIM_DSIZ and number of values set by DIM_DCNT

1s
t
D

im
en

si
on

(A
dd

r)
1000000000000000

DIM_DCNT

Fixed at 4 bytes (U*4)

Byte:N+28Byte:N+29 Byte:N+26Byte:N+27

0 0 0 0 0 00 00 0 0 0 0 00 0

015 781631 2324

10001100 1 0 0 0 1 01 0

Byte:N+31Byte:N+32

1st “Addr” Value = 0x0000

015 78

00000000 0 0 0 0 0 10 0

Byte:N+33Byte:N+34

2nd “Addr” Value = 0x0001

015 78

DIM_DSIZ

Fixed at 1 byte (U*1)

Byte:N+292

0 0 0 0 0 10 0

0 0 0 1 0 10 0

DIM_VALS

Byte:N+548

Last “Worst_Bit” Value = 0x5

07

07

Value size in bytes set by DIM_DSIZ and number of values set by DIM_DCNT

2n
d

Di
m

en
si

on
(W

or
st

_B
it)

1000000000000000

DIM_DCNT

Fixed at 4 bytes (U*4)

Byte:N+290Byte:N+291 Byte:N+288Byte:N+289

0 0 0 0 0 00 00 0 0 0 0 00 0

015 781631 2324

0 0 0 0 1 00 0

Byte:N+293

1st “Worst_Bit” Value = 0x2

07

0 0 0 0 1 10 0

Byte:N+294

2nd “Worst_Bit ” Value = 0x3

07

1s
t
D

im
en

si
on

(P
ul

se
_C

nt
)

DIM_DSIZ

Fixed at 1 byte (U*1)

Byte:N+553

0 0 0 0 0 10 0

1 0 0 0 0 00 0

DIM_VALS

Byte:N+809

Last “Pulse_Cnt” Value = 0x20

07

07

Value size in bytes set by DIM_DSIZ and number of values set by DIM_DCNT

1000000000000000

DIM_DCNT

Fixed at 4 bytes (U*4)

Byte:N+551Byte:N+552 Byte:N+549Byte:N+550

0 0 0 0 0 00 00 0 0 0 0 00 0

015 781631 2324

0 0 1 0 1 00 0

Byte:N+554

1st “Pulse_Cnt” Value = 0xA

07

0 1 0 0 0 10 0

Byte:N+555

2nd “Pulse_Cnt ” Value = 0x11

07

Figure R9-3

Example of Multi-dimensional Datalogging (Contd)

NOTICE: SEMI makes no warranties or representations as to the suitability of the standard(s) set forth herein for
any particular application. The determination of the suitability of the standard(s) is solely the responsibility of the
user. Users are cautioned to refer to manufacturer’s instructions, product labels, product data sheets, and other
relevant literature respecting any materials or equipment mentioned herein. These standards are subject to change
without notice.
By publication of this standard, Semiconductor Equipment and Materials International (SEMI) takes no position
respecting the validity of any patent rights or copyrights asserted in connection with any item mentioned in this
standard. Users of this standard are expressly advised that determination of any such patent rights or copyrights, and
the risk of infringement of such rights are entirely their own responsibility.

