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Partial least squares discriminant analysis (PLS-DA) has been available for nearly 20 years yet is poorly understood
by most users. By simple examples, it is shown graphically and algebraically that for two equal class sizes, PLS-DA
using one partial least squares (PLS) component provides equivalent classification results to Euclidean distance to
centroids, and by using all nonzero components to linear discriminant analysis. Extensions where there are unequal
class sizes and more than two classes are discussed including common pitfalls and dilemmas. Finally, the problems
of overfitting and PLS scores plots are discussed. It is concluded that for classification purposes, PLS-DA has no
significant advantages over traditional procedures and is an algorithm full of dangers. It should not be viewed as
a single integrated method but as step in a full classification procedure. However, despite these limitations, PLS-DA
can provide good insight into the causes of discrimination via weights and loadings, which gives it a unique role in
exploratory data analysis, for example in metabolomics via visualisation of significant variables such as metabolites
or spectroscopic peaks. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Partial least squares discriminant analysis (PLS-DA) was reported
formally a decade ago [1] although its first use is purported to be
around 20 years ago [2], so the method has been around a long
time. The method is now routinely incorporated into most pack-
ages used by chemometricians and the results of PLS-DA cited in
numerous papers, especially in metabolomics.
Despite a strong theoretical basis [1], the advantages and

disadvantages of the method are rarely understood by users.
PLS-DA is possibly one of the most misunderstood and misused
methods for discrimination in chemometrics. Very few authors of
papers understand the importance of the parameters used to obtain
and assess the discriminant model and how critical these are for
model performance. For example, under certain circumstances,
PLS-DA provides the same results as the classical approach of Euclid-
ean distance to centroids (EDC) and under other circumstances, the
same as that of linear discriminant analysis (LDA) [3], yet PLS-DA is
usually described as a single method, and sometimes, its perfor-
mance is compared with other approaches such as LDA: in fact,
describing PLS-DA as a method in its own right is statistically
ambivalent, and it should instead be regarded as an algorithm that
is one in a series of steps (such as preprocessing, variable selection,
selecting samples for validation, and column centring) in a classifi-
cation procedure. Barker and Rayens have commented on the
relationship between PLS-DA and other statistical approaches for
discrimination [1], and this connection is often discussed in the
statistically oriented literature but not usually presented in an
explicit way for the general user. It is usually not necessary when
using common chemometrics software to have to make explicit
decisions as to what parameters are required for decision making,
and as such, by using default parameters that may well be inappro-
priate for the problem in hand, it is easy to come to erroneous
conclusions without even realising this: chemometric methods
are at their most useful when problems are difficult to solve, and

it is precisely in such situations that an understanding and appro-
priate choice of parameters is critical. Only a very small minority
of presentations and papers fully describe how the data have been
treated prior to modelling, and as such, the description of the clas-
sification technique is often of little value to the reader or listener;
the author may as well have stated he or she used additions or
multiplications in their calculations. In contrast, more simple statis-
tical approaches such as LDA and EDC and quadratic discriminant
analysis (QDA) [3,4] have well-known properties and involve well-
established assumptions about the data; because fewer decisions
have to be made about the parameters (as will be discussed later),
they are harder to misuse, and the appropriateness of the model
can bemore directly related to the statistical properties of the data.

In this paper, we will primarily discuss the role of PLS-DA as a
classification technique, that is, a technique to determine what
group a sample is most likely to belong to from a set of analytical
measurements. The other use of PLS-DA as an exploratory tech-
nique will be discussed in the conclusions.

2. PARTIAL LEAST SQUARES DISCRIMINANT
ANALYSIS ALGORITHM

There are numerous algorithms for partial least squares (PLS) and
its enhancements for discriminant analysis. In this paper, for
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simplicity, we describe just one approach with occasional
comments about other methods. We will focus on an algorithm
PLS1 [5,6] where there are two groups of samples and the aim
is to decide which of the two groups a sample belongs to. The
extension of PLS1 to more than two groups will be briefly
described as well as PLS2, which can also be used when there
are more than two groups. However, the main discussion will
be constrained to situations where there are two groups, and
the aim of the discriminant function is to decide which group a
sample belongs to using information such as its spectrum or
chemical profile.

Partial least squares discriminant analysis can be regarded as a
linear two-class classifier. That is, the method (or a method that
includes PLS-DA as one of its steps) aims to find a straight line
that divides the space into two regions. Figure 1 illustrates a
possible discriminant function for two groups; samples to the left
belong to the group represented by blue circles and samples to
the right to the group represented by red triangles. The aim of
many different algorithms (EDC, LDA, PLS-DA, linear support
vector methods, etc.) is to find this discriminator, or separator, or
decision function. Of course, when there are more than two vari-
ables, it will be represented by a hyperplane in multidimensional
space. To simplify, in this paper, we present mainly an example
characterised by two variables. Sometimes, the samples are
projected onto lines at right angles to this discriminator, often
called canonical variates—in which case their distance along this
separator is considered a discriminant score, analogous to a princi-
pal component (PC) score which involves projecting onto the line
of maximum variance.

The difference between various approaches for two-class
linear discrimination is the position and slope of the separator,
which in turn relates to the criterion used to determine the sep-
arator and therefore the assumptions in the model. PLS-DA is no
different to any other linear decision function but, because of the
historic development of chemometrics, often is described algo-
rithmically rather than statistically.

For brevity, we describe only one PLS algorithm in this paper.
However, usually by judicious scaling or centring, other approaches

can give exactly equivalent results. It is not the primary purpose of
this paper to compare PLS algorithms.

2.1. Terminology

For a set of I samples, the X data matrix represents a set of J
analytical measurements such as spectra of samples that form
two groups. The vector c of length I represents a numerical label
for each sample according to its group membership. In the
implementation discussed in this paper, we use a label of +1
for IA samples that are a members of group A and �1 for IB
samples that are a members of group B, where the total number
of samples is IA+ IB= I.
Partial least squares discriminant analysis is derived from PLS

regression (PLS-R) [6] and involves forming a regression model
between the X and c as illustrated in Figure 2. In PLS-R, c (also
sometimes denoted y) is a set of continuous numbers, for
example, the concentration of an analyte. In PLS-DA it contains
discrete numbers usually at two levels, one level for what is
sometimes called an in-group (A) and the other for the remain-
der of the data, called the out-group or, in a two-class model,
group B. We choose +1 and �1 for the labels in this paper,
although 0 and +1 are sometimes employed; however, centring
the values of c makes the algebraic derivations very much
simpler, hence our choice of labels.
The fundamental PLS-DA equations are as follows

X ¼ T P þ E

c ¼ T qþ f

Note the common score matrix T for this implementation. E and f
can be considered residuals. In the following algorithm, the
successive columns of the score matrix T (PLS components) are
orthogonal, but the rows of the X loadings matrix P are not.
However, because the scores are orthogonal, the models with
successive PLS components are additive. Note also that TP is
not the best-fit least squares model for X. It can be somewhat
confusing in the literature to use a similar notation for PC
analysis (PCA) as for PLS when the matrices have quite different
properties, for example, X loadings (P) in PLS are not orthogonal,
unlike in PCA, and the sums of squares of the scores (often called
eigenvalues) do not necessarily reduce monotonically with
successive components.

2.2. Model building

It is assumed that data have been preprocessed (e.g. standardised
or row scaled) previously as appropriate. In this paper, we do not

Figure 1. A two-class linear discriminator for two groups characterised
by two variables.

Figure 2. Partial least squares discriminant analysis (PLS-DA) model for
two classes.
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centre c, but there are variants on this theme. If there are equal
numbers of samples in each group, c by default will be centred.
Extensions to unequal class sizes will be discussed later.
However, X is mean centred down the columns for the standard

implementation of PLS as in the following; variants on this will be
introduced in Section 4. The PLS1 algorithm we use is as follows.

(1) Calculate the PLS weight vector w

w ¼ X ′c

(2) Calculate the scores, which are given by

t ¼ Xwffiffiffiffiffiffiffiffiffi
∑w2

p

(3) Calculate the x loadings by

p ¼ t′X

∑t2

(4) Calculate the c loading (a scalar) by

q ¼ c′t

∑t2

(5) Subtract the effect of the new PLS component from the data
matrix to obtain a residual data matrix

residX ¼ X � tp

(6) Calculate the residual value of c

residc ¼ c � tq

(7) If further components are required, replace both X and c by
their residuals and return to step 1. We will not discuss the criteria
for deciding how many components to retain in this paper.

A weights matrix W can be obtained, each successive column
corresponding to a successive PLS component.

2.3. Prediction

Once a model is built, it is then possible to predict the value of c
both for the original data (autoprediction) and for future samples
of unknown origins, or for test set samples of known origins,
as follows.
The relationship between X and c can be expressed by

c ¼ Xbþ f ¼ Tqþ f

where b is a regression coefficient vector of dimensions J× 1;
hence, an unknown sample value of c can be predicted by

ĉ ¼ xb

The estimation of b can be obtained as follows

b ¼ W PWð Þ�1q

The class a sample belongs to is determined by its value of ĉ .
The simplest decision rule is if the value is above 0, assign it to

class A and below to class B. We will examine this decision rule
later, but it is most usual to choose a value halfway between
the numerical class labels, even though, as we show, this may
not be the most appropriate value.

3. RELATIONSHIP BETWEEN PARTIAL LEAST
SQUARES DISCRIMINANT ANALYSIS, EUCLID-
EAN DISTANCE TO CENTROIDS, AND LINEAR
DISCRIMINANT ANALYSIS

3.1. Euclidean distance to centroids

Euclidean distance to centroids is the simplest type of linear
classifier that can be envisaged. The principle is that a sample
is assigned to the group of samples whose centroid it is nearest
using the squared Euclidean distance in the variable space.
Formally,

d2iA ¼ x i � xAð Þ x i � xAð Þ′

where diA is the Euclidean distance of sample i to the centroid of
group A and xA is the centroid of group A. Note that we use row
vectors to represent the measurements for a sample. A similar
equation can be obtained for group B. The group whose
distance is smallest is the one that the sample is defined as
belonging to.

The boundary between two classes occurs when

d2iA ¼ d2iB

We can call this the separator or boundary between two classes.
If two classes are not linearly separable, then perfect prediction is
not possible using a linear model.

We will consider an example of two classes consisting of equal
numbers of samples characterised by two variables; extensions
when group sizes are unequal and there are more than two
groups are discussed in later sections. In Figure 3, two groups
are illustrated. The contours of the squared Euclidean distances
from the centroids of each group are presented in Figure 3(a).
It can be observed that these are circular with a linear separator
or decision function where the two distances are equal. In
Figure 3(b), the contours for d2iB � d2iA are illustrated, representing
the difference in squared distances. A positive value corresponds
to membership of class A and a negative value to class B. A value
of 0 represents the separator. We will see later that the position of
this separator can be adjusted using Bayesian methods (Section 4).

When there are more than two variables, the separator
becomes a plane in hyperspace. Although EDC is a common
method, it has several drawbacks. The first is that it is assumed
that each variable has approximately equal variance, which
may not be the case if measurements are on very different
scales or different in nature. The second is that it is assumed that
the variance structure of each group is the same. In many real
situations, these limitations mean that the simple Euclidean
model is inadequate.

3.2. Partial least squares discriminant analysis with one
component

For PLS-DA, instead of calculating the difference between two
squared distances from the centroid, a value of c is estimated
from training or test set or validation data. If c is set to 1 for all
training set values of group A and c to �1 for group B, we can
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estimate this for unknowns. A simple rule might be that if c is
positive, assign to group A, otherwise to group B. The estimated
values of c from the one-component PLS-DA model can be
contoured as in Figure 4. It can be seen these are linearly related
with the separator at c=0. The position of the separator for a
one-component PLS-DA model is the same (in this case) as for
an EDC model.

Hence, using a single PLS component, the classification model
is the same as for EDC and so has the same disadvantages as EDC.
Of course, if variables are standardised in advance, then they are
likely to be on a similar scale, and EDC or one-component PLS-DA
may be appropriate.

3.2.1. Proof that Euclidean distance to centroids and one-component
partial least squares discriminant analysis provide the same
classification model

To simplify this proof, we assume that there are an equal number
of samples in each group and that the X matrix is mean centred.
Under such circumstances, xA ¼ �xB, that is, the mean of group
B is negative to that of group A, and the overall mean is zero.
For EDC, define D, which is the difference between the

squared distance to the mean of group B minus that of group
A. A positive value of D is indicative of a member of group A
as the distance to the mean of group B is greater than to the
mean of group A, analogous to c.

D ¼ x � xBð Þ x � xBð Þ′ � x � xAð Þ x � xAð Þ′
¼ x þ xAð Þ x þ xAð Þ′ � x � xAð Þ x � xAð Þ′
¼ 4xx ′A

because other terms cancel out.
For PLS-DA using one component, we have the following.
Since the class sizes are equal tA ¼ �tB

t′c ¼ ∑
A
tA � ∑

B
tB

¼ I=2ð Þ tA � tBð Þ ¼ ItA

where ∑
A
tA represents the sum of scores for group A, and

remembering that c has a value of +1 for group A and �1 for
group B,

so c ¼ IttA= ∑t2
� �

We define H, which contains the normalised weight vectors of
the PLS components, i.e. h=w/√(∑w2) for each component,
which when there is one component is a vector.
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(b)
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Figure 3. Illustration of Euclidean distance to centroids (EDC). (a)
Contours of the squared distance from the centroid of two groups, with
the equidistant separator indicated in bold and black; (b) contours of
the difference between squared distances with the separator indicated
as in (a).

PLS (1 component)
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Figure 4. Estimated values of c for a one-component partial least
squares (PLS) discriminant analysis model. Blue = positive and red=neg-
ative, with c=0 as separator.
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So because t= Xh

c ¼ IXhxAh=∑t2

However, for a one-component centred model

w ¼ ∑
A
xA � ∑

B
xB

� �′

¼ I=2ð Þ xA � xBð Þ′

¼ Ix ′A

so h∝x ′A
hence; c∝Xx ′AxAx

′
A

so c∝Xx ′A
as xAx ′A is a scalar

or for a single sample c∝xx ′A

Hence, c obtained from PLS-DA is proportional to D for EDC, and
when c=0,D=0 and the boundary or decision threshold is the same.

3.3. Linear discriminant analysis

Linear discriminant analysis can be expressed either in a Bayesian
or non-Bayesian form. The former allows prior probabilities to be
taken into account. For example, if one knows in advance that
there is around 75% chance that a sample belongs to one group
rather than the other, this is called the Bayesian prior and can
be used as a starting probability for LDA, the experimental
observations being used to improve this estimate. However,
we will use the non-Bayesian and more classical form later.
Section 4 will provide additional comments about Bayesian
extensions. As before, we restrict discussions in this section to
the case of two equal-sized groups.
Instead of using the Euclidean distance as a measure, the

Mahalanobis distance [7,8] is employed. Formally,

d2iA ¼ x i � xAð ÞS�1 x i � xAð Þ′

where S is a variance covariance matrix. For LDA, if there are two
groups, this is the pooled variance covariance matrix over all
groups, i.e.

S ¼ IA � 1ð ÞSA þ IB � 1ð ÞSBð Þ= IA þ IB � 2ð Þ
or for two equal-sized groups

S ¼ SA þ SBð Þ=2
where SA is the variance covariance matrix for group A and SB for
group B. Note that there are other definitions of S, for example,
for QDA, it is the variance covariance matrix of the relevant
group and differs for each group to be modelled, rather than
the pooled variance covariance matrix.
The corresponding LDA plots are presented in Figure 5. Note

that the contours are no longer circular, but ellipsoidal. The
separator represents the class decision function. The line sepa-
rating the classes differs from that obtained using the EDC
model. They would only be the same if both classes were
uncorrelated and with equal variance in all directions.
An advantage of LDA over EDC is that it takes into account the

different scales of and correlations between variables. Standar-
disation usually puts variables on a similar scale, and so there is
less advantage under these circumstances. A traditionally cited
disadvantage of LDA is that the number of variables needs to
be less than the number of samples. However, identical results

are obtained if LDA is performed on PC scores so long as all non-
zero PCs are used in the model, as this just represents a rotation.
Hence, if there are more variables than samples, it is simply
necessary to perform PCA first and then retain all nonzero PCs.
Hence, LDA in practice can be applied when the number of
variables exceeds the number of samples.

A significant disadvantage of LDA is that it does not take into
account the differing variance structures of each group, for
example, one group may be more dispersed than the other
one. For a dispersed group, a relatively large distance from a
mean may be less significant than for a compact group. LDA uses
a single pooled variance covariance matrix and therefore is not
always appropriate if the variance structure differs for two or
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Figure 5. Illustration of linear discriminant analysis (LDA). (a) Contours
of the squared distance from the centroid of two groups, with the equi-
distant separator indicated in bold and black; (b) contours of the differ-
ence between squared distances with the separator indicated as in (a).
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more groups. Under these circumstances, it is often preferable to
use nonlinear or multilinear methods, for example QDA, which
allow different structures for each group; however, it is important
to recognise that PLS-DA as usually implemented is a linear
method and does not therefore take into account situations in
which each group has very different structures.

3.4. Partial least squares discriminant analysis with all
nonzero components

In our case, there can be no more than two nonzero components.
The PLS-DAmodel with two components is illustrated in Figure 6. It
can be seen that the separator is the same as for LDA; hence, PLS-
DA with all nonzero components has the same disadvantages as
LDA. The only simplification computationally is that there is no need
to perform PCA prior to PLS if the number of variables exceeds the
number of samples. However, classification performance is identical
for both methods using the approach described in this article.

The relationship is illustrated in Figure 7. Note that for two
variables, we can only have two PLS models, but when the

number of variables is increased, there will be intermediate
situations. For brevity, we do not review these as they are hard
to visualise. However, EDC and LDA represent well-established
statistical approaches with well-understood properties.
The difference between the boundaries for a one-component

PLS (or EDC) model and a full PLS (or LDA) model is illustrated in
Figure 8. A model with all nonzero components is usually more
appropriate to one with one component, especially if each
variable has quite different characteristics. However, if each class
has very different variance structure, it is sometimes preferable
to stick with a simpler model, as LDA or PLS-DA with all nonzero
components assumes that each class has a similar structure: this
is inevitable as PLS is by origin a method for calibration and by
default assumes all measurements are equally significant.

3.4.1. Proof that linear discriminant analysis and a full partial
least squares discriminant analysis model provide the same classifi-
cation model

For LDA, define D, which is the difference between the squared
Mahalanobis distance using the pooled variance covariance ma-
trix from the mean of group B minus that of group A. A positive
value of D is indicative of a member of class A as the distance to
the mean of group B is greater than to the mean of group A,
analogous to c.

D ¼ x � xBð ÞS�1
pooled x � xBð Þ′ � x � xAð ÞS�1

pooled x � xAð Þ′

¼ x þ xAð ÞS�1
pooled x þ xAð Þ′ � x � xAð ÞS�1

pooled x � xAð Þ′

¼ 4xS�1
pooledx

′
A

However, the pooled variance covariance matrix can be
simplified because xA ¼ �xB, and IA= IB= I/2 and is the average
of the variance covariance matrices of each group, providing
the overall data matrix is centred for simplicity (this makes no

PLS (all components)
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Figure 6. Estimated values of c for a two-component partial least squares
(PLS) discriminant analysis model. Blue=positive and red=negative, with
c=0 as separator. When there are two variables, this represents all nonzero
PLS components.

Figure 7. Relationship between partial least squares discriminant analysis
(PLS-DA) and common statistical approaches when there are equal class
sizes and the X matrix is centred. EDC, Euclidean distance to centroids;
LDA, linear discriminant analysis.

PLS (1 and all component models)
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Figure 8. Difference between the one-component and two-component
partial least squares (PLS) models.
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difference but reduces the number of terms in the derivation).
The formal definition when both groups are of equal size is

given by

Spooled ¼ SA þ SBð Þ=2
¼ XA � 1xAð Þ′ XA � 1xAð Þ

� �
þ XB þ 1xAð Þ′ XB þ 1xAð Þ
� �

=

2 I=2� 1ð Þð Þ

using the sample variance where XA represents the samples from
group A and 1 is a unit vector.
Take note that

X ′X ¼ X ′
AXA þ X ′

BXB

The equation can be simplified, in the special case that there are
equal numbers of samples in each group and the overall data
matrix is centred as follows

Spooled ¼ X ′X � Ix ′AxA
� �

= 2I � 2ð Þ
because other terms cancel out.
For PLS-DA using all nonzero components, we have the

following derivation.
Because the class sizes are equal, tA ¼ �tB , where these are

vectors, as opposed to scalars for a one-component model,
providing the overall X matrix has been centred first. Hence,

T ′c ¼ I=2ð Þ tA � tBð Þ ¼ It′A

so c ¼ IT T ′T
� ��1

t′A

But because T=XH

c ¼ IXH H′X ′XH
� ��1

xAHð Þ′

However if all nonzero components have been determined
and the number of components equals the number of variables,
H is a square matrix. Note that if there are fewer nonzero compo-
nents than variables, the dataset could be first reduced using
PCA. Under such circumstances,

HH�1 ¼ I

where I is the unit matrix: note that this is only valid when H is a
square matrix and so all nonzero components have been found.
This simplifies the preceding equation to

c ¼ IX X ′X
� ��1

x ′A

or for a single sample

c ¼ Ix X ′X
� ��1

x ′A

However, the value of D for LDA is given by

D ¼ 4xS�1
pooledx

′
A

¼ 4x X ′X � Ix ′AxA
� ��1

2I � 2ð Þx ′A
∝x X ′X � Ix ′AxA

� ��1
x ′A

At this stage, we need a lemma [9] that states that if matrix A is
invertible (as is X′X) and matrix B is of rank 1 (which is the case
for x ′AxA), then

Aþ Bð Þ�1 ¼ A�1 � 1
1þ g

A�1BA�1

¼ A�1 I � 1
1þ g

BA�1

� �

∝A�1

where g is the trace of BA�1.
Hence, it can be seen that c obtained from PLS-DA using all

nonzero components is proportional to D obtained using LDA,
and so the boundary corresponding to D= 0 and c=0 is the
same.

4. PARTIAL LEAST SQUARES DISCRIMINANT
ANALYSIS FOR UNEQUAL CLASS SIZES

When the group sizes are unequal, using the PLS-DA method de-
scribed earlier unchanged will not usually result in the most ap-
propriate decision boundary. Figure 9(a) shows the boundary
obtained when the Xmatrix is column centred for a model based
on all nonzero components; a similar result is obtained using a
one-component model. This boundary is shifted towards the
larger group and so misclassifies many samples from this group.
The reason is that centring shifts the centre of gravity towards
the larger group and so a decision threshold of c=0 is no longer
appropriate. For LDA and EDC, this is not a problem as each cen-
troid is of equal significance; however, many samples are in each
group.

The solution to this is to weight centre the X matrix for PLS by
subtracting the average of the means of the two groups, that is,
xA þ xBð Þ=2 , from the columns. The columns are no longer
centred; however, the centre of gravity for c is now the same
as for X. The result is presented in Figure 9(b). The new boundary
is the same as that obtained for LDA or EDC (for one PLS compo-
nent). Hence, by changing the column means, the position of the
PLS-DA boundary is shifted as illustrated in Figure 10. There are
several alternatives that give similar results, but it is always nec-
essary to understand how the columns have been shifted and
what decision threshold is used for c without which the results
of PLS-DA may not be appropriate. Many users of packaged soft-
ware do not understand this and therefore are in danger of using
inappropriate models unless each group is of equal size and
rarely state these details in presentations.

The relationship between the values of c for the mean-centred
and weighted-centred models is as follows.

We will determine the value of c for the mean-centred model
that corresponds to c= 0 for the weighted model.

Define N= IA/IB. For equal class sizes, this is 1.
For weighted centring, we note that xA ¼ �xB but that the

overall mean x is nonzero unless the group sizes are equal.
Hence,

x ¼ �
IA xA þ IBxBÞ= IA þ IBð Þ

¼ �
NIBxA þ IBxBÞ= IA þ IBð Þ

¼ �
NIB � IB ÞxA= NIB þ IBð Þ ¼ N � 1ð Þ

N þ 1ð ÞxA
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The predicted c for the mean of the dataset is given by

ĉ ¼ xb ¼ N � 1ð Þ
N þ 1ð ÞxAb ¼ N � 1ð Þ

N þ 1ð ÞĉA

However, we would like the decision threshold to be 0, so that
positive values of c correspond to members of group A and
negative values to group B, so the threshold is shifted for the

unweighted model relative to the weighted model, by N�1ð Þ
Nþ1ð Þ ĉA .

If N= 1, there is no shift, and the two values are equal. As the
proportion of samples in group A increases, the unweighted
threshold is shifted away from the weighted threshold towards
the centre of class B.

Hence, when there are unequal class sizes, it is necessary to ad-
just the column means for X to obtain an appropriate separator.
There are of course other ways, for example by mean centring c,
which is equivalent, but the cut-off threshold is no longer 0 and
should be halfway between the means of the two groups. Hence,
when the group sizes are unequal, it is essential to understand
how the columns of the data matrices have been processed and
what decision threshold is suitable. If this has not been performed
correctly, the results of prediction may be misleading unless the
groups are very well separated, in which case almost any method
will work and it is best to use a simpler approach.
For EDC, there is no such problem as the mean of each group is

of equal importance, no matter how many samples characterise
the group.
For LDA, many statisticians also include an additional probabi-

listic term [8] in addition to the classical equation. It is not the
purpose of this paper to discuss probabilistic models in detail,
but this is often called a Bayesian approach. The additional term
relates to the probability that a sample is a member of each
group. The default is that the probability of membership of each
class is 0.5 when there are two groups, and under such circum-
stances, the results described earlier are derived. The probabilis-
tic term is usually called a Bayesian prior and represents the prior
probability of class membership. For example, we may know that
only a 10th of samples belong to one of two categories; there-
fore, before we perform the measurement, the probability of be-
longing to group A is 0.1 and that to group B is 0.9.
In our example, we may want to investigate what happens if

we use the relative group sizes as our prior probabilities. If one
third of the samples belong to group A and two thirds to group
B, then we could construct the model using prior probabilities of
0.33 and 0.67. This has the effect of shifting the position of the
separator in LDA (Figure 11). The separator is shifted away from
the centroid of the largest group, rather than towards it (as is the
case for unweighted centring). To increase the probability of a
sample belonging to a group, the relative size of the groups
should increase rather than decrease. PLS-DA with a centred X
block has the opposite effect of moving the separator closer to
the centroid of the largest group because the centre of gravity
of the data is closer to this group and is intuitively incorrect.
An advantage of LDA over PLS-DA is that prior probabilities

can easily be incorporated, if required, so prior knowledge can
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Figure 9. Partial least squares (PLS) discriminant analysis boundaries
(bold black line) for two groups with unequal class sizes (a) centring
the X matrix or (b) using weighted centring on the X matrix and
full-component models.
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Figure 10. Change in the boundary c=0 when the X matrix is weight
centred. PLS, partial least squares.
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be added to the model where necessary. This is not easy in PLS,
which is usually expressed algorithmically.

5. MULTIGROUP PARTIAL LEAST SQUARES
DISCRIMINANT ANALYSIS AND COMPARISON
WITH LINEAR DISCRIMINANT ANALYSIS AND
EUCLIDEAN DISTANCE TO CENTROIDS

When there are more than two groups, it is traditional to extend
the PLS-DA model so that c instead of being a vector becomes a
matrix C. Each column represents a group or class. Each sample
is considered to be a member of the relevant class (c=+1) or
not (c=�1). Hence, if there are three groups A, B, and C, the
second column of C would represent class membership of group
B; samples from groups A and C will have values of c=�1, and
samples from group B values of c=+1. We will call the class
denoted by c =+1 as the ‘in-group’ representing one of the
original groups and the class denoted by c =�1 as the ‘out-
group’. The principle is illustrated in Figure 12.
There are two fundamental approaches. The most usual is to

perform three PLS1-DA models, one for each column, in what
is often called a one-versus-all approach. For brevity, below we
illustrate only the models involving all nonzero components
corresponding to LDA. Similar results can be obtained for one-
component PLS-DA models corresponding to EDC.

For three groups, there will be three PLS1-DA models. The aim
is to perform a PLS-DA model between the corresponding
column of C and the X matrix. The relative group sizes will be
unequal in at least two out of the three models and, usually, all
three (for three classes). If the number of samples in each of
the original groups is equal, then in all cases, the ratio of samples
in the in-group to that in the out-group will be 1: 2. To reflect
this, we perform weighted centring (Section 4) for each of the
PLS-DA models. Other combinations could be envisaged, but
broadly similar conclusions will be obtained.

The three PLS-DA models together with the corresponding
LDA models are illustrated in Figure 13 and are as expected,
the same. However, a problem occurs when we superimpose the
PLS-DA or LDA separators, we find that they do not divide the data
space into three clear regions, and so there is ambiguity for many
samples, as illustrated in Figure 14.

This is because the three separators do not intersect, which is
a consequence of the weighted centring. The average of the
mean in-group and out-group is different for each of the three
models. Even if X were mean centred, the models would inter-
sect at the average of the overall dataset, which in itself would
not be satisfactory.

The problem of ambiguous models in multiclass PLS1-DA is
usually overcome by developing elaborate decision rules as to
class membership of each sample. For example, if sample A has a
predicted value of c=0.8 for a model of group A against the rest,
c=1.4 of a model of group B against the rest and c=�0.5 for a
model of group C against the rest, it is usually assigned to group
B as this represents the most positive value, but some methods
might assign it to group A because it is closest to 1. These assign-
ments are ambiguous especially because relative group sizes may
differ for each model and so will the pooled variance covariance
matrix, so there is in practice no really satisfactory agreed universal
decision rule. It is important to recognise that classification
methods differ from each other in performance where the answer
is not completely straightforward. If all three groups were well
separated, almost any simple method would work. Hence, there
are many difficulties in employing a one-versus-all PLS1-DA model
and comparing it with other approaches.

For LDA or EDC, this is not a serious limitation, as it is easy to
obtain a three (or more)-group model, the LDA three-group
model for our example is illustrated in Figure 15. It is simply nec-
essary to determine the Mahalanobis distance to the centroid of
each group and choose the group that a sample is nearest to.
This results in an unambiguous classification and so overcomes
the limitations of one-versus-all PLS1-DA.

An alternative to PLS1 is to use PLS2 [5,6]. It is not the purpose
of this paper to expand on the PLS2 algorithm, but in brief, the c
block is treated as a single matrix, so that there is a single calcu-
lation. There are many difficulties with PLS2-DA, which is rarely
successful. An important problem relates to the difficulty of sat-
isfactorily transforming the columns of X, because each column
of C would require a different type of weighted centring, but X
can be transformed only once. Furthermore, PLS2-DA assumes
that there are interactions between columns of the C matrix,
which can cause difficulties. If two columns of C are known, the
third is dependent on these columns. The problems are too
numerous to discuss in detail in this paper. Yet there are very
regular reports of the use of PLS-DA (either PLS1 or PLS2) in
the literature when there are more than two groups in the data,
often with a very detailed comparison of performance against
other methods. It is unlikely that the majority of authors of these
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Figure 11. Bayesian example: the prior probabilities are equal to the
relative group sizes. LDA, linear discriminant analysis.
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Figure 12. Partial least squares discriminant analysis (PLS-DA) model for
three groups.
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papers have much understanding of the pitfalls in their results,
and indeed, many do not even distinguish between PLS1 and
PLS2 in their papers.

6. PARTIAL LEAST SQUARES DISCRIMINANT
ANALYSIS SCORES PLOTS AND PREDICTIONS
FOR TRAINING SETS

It is very common to present PLS-DA scores plots, usually by
plotting the scores of PLS component 2 versus component 1.

PCA scores plots are well established, and there are a very large
numbers of papers published reporting data this way: PCA [10] is
a valuable approach for data visualisation, especially in cases
where there are many more variables than samples and can be
used to look at an entire set of samples.
Partial least squares discriminant analysis scores plots on an

entire set of samples can, in contrast, be highly misleading,
especially if the number of variables far exceeds the number of
samples. We will use a simple example consisting of a matrix of
dimensions 40 × 200 consisting of random numbers generated
using a uniform distribution between�1 and +1: for the purpose

Figure 13. Partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA)models for three groups characterised by two variables
using weighted centring and all nonzero partial least squares discriminant (PLS) components (left PLS-DA models and right one-vs-all LDA models).
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of this paper, the precise method of generating these random
numbers is not important. Of the 40 rows, 20 are assigned to
group A and 20 to group B. There should be no significant
difference between these groups. These wide datasets are quite
common especially in metabolomics studies where samples are
often difficult to obtain but a large number of variables such as
metabolites, gas chromatography–mass spectrometry peaks, or
nuclear magnetic resonance signals can be measured.
The PCA scores plot of the first two PCs (mean-centred data) is

presented in Figure 16. There is no particular distinction between
the two groups, although some clumping of samples can be

observed: it is important to understand that randomness is not the
same as uniformity. If we tossed an unbiased coin several times
and we obtained a sequence HTHTHTHT (where H = heads and
T = tails), this sequence is extremely unlikely to occur randomly.

When we perform PLS-DA and plot the scores of the first two
PLS components against each other, we obtain the pattern
shown in Figure 17, which falsely suggests there is an excellent
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Figure 14. Superimposing the three partial least squares discriminant
analysis (PLS1-DA) separators obtained in Figure 13.

LDA

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 15. Linear discriminant analysis (LDA) three-group model.
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Figure 17. Partial least squares (PLS) discriminant analysis scores plot,
centred data, corresponding to the dataset of Figure 16.
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Figure 16. Principal component analysis (PCA) scores plot, PC1 horizontal
and PC2 vertical of a randomly generated dataset consisting of 40 samples
each characterised by 200 variables, divided arbitrarily into two groups.
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separation between the groups. The problem is that because
there are so many variables, there are some correlations just by
chance. Consider tossing an unbiased coin 10 times. Sometimes,
there will be 9H or 2H as well as 5H, as illustrated in Figure 18. If
this experiment were repeated 1000 times, there will be many
cases of seven or more Hs. A clever classification algorithm might
pick those cases where there are, for example, seven or more Hs
and ignore or reduce the significance of the other situations and
then might conclude that the coin is biased. PLS-DA by analogy
looks for the variables that correlate best with the classifier. Even
if, for example, a set of metabolites has an underlying even
distribution between two groups of samples, if 1000 metabolites
are analysed and there are, for example, just 10 samples in each
of two groups, by chance, there will appear to be an uneven
distribution of a few metabolites, just as an unbiased coin will
sometimes show more Hs than Ts. It is therefore possible to find
these, which would have a high weight or loading for the more
significant PLS components and form a model for which it
appears that the two groups are separated. When the number
of variables strongly exceeds the number of samples, this is easy.
For randomly generated data, we expect it, and it would be
surprising if this did not happen. A consequence is that the
predictions appear to be very good also, with samples classified
correctly into their respective groups using the most common
criteria as illustrated in Figure 19.

When classification methods are used as black boxes, or part
of a very complex protocol, it is easy to make the mistake of pro-
ducing over-optimistic models or overfitting. An expert would
know that a way to avoid this is to split samples into training
and test sets, but even then, there can be problems, for example,
variable reduction might be performed on the raw data, leading
to ‘bad variables’ being removed from the model and the test set
appearing to show a separation. There are a number of solutions.
The first is to create a null or random dataset and follow all the
methods through using this dataset [3,11], to see if there is any
separation, and if this looks significant, the methodology almost
certainly overfits the model. The second is to permute the
classifier so that a group label is randomly attached to each
sample to try to destroy the structure [12]. Usually, a large
number of permutations are necessary, and the results from
the unpermuted dataset are compared with those from the
ensemble of permutations.

But above all, the danger is the presentation of PLS-DA scores
plots on training sets: yet there is no software that prevents this;
indeed, users of packages would not purchase the software if
they were not allowed to show PLS-DA scores plots on training
sets. And many investigators who are nonexperts in the
chemometrics field often prefer to show desired patterns, even

if they are false ones, and will usually choose the PLS training
set scores plot over the PCA scores plot, if it suits their precon-
ception. It is hard for the data analysis expert to withhold
graphs and often even harder to explain to their colleagues
that the graphs they are showing have little meaning and
persuade their colleagues to publish graphs that appear incon-
clusive instead.
Hence, PLS-DA scores plots, while widely used, can in the

wrong hands be very dangerous.

7. CONCLUSIONS

Partial least squares discriminant analysis is often regarded as a
method in its own right. There are numerous papers and confer-
ence presentations where its use is described with no further
elaboration. However, as we have shown, even in the simplest
of cases, PLS-DA can perform like EDC or like LDA, both classical
methods but regarded as quite distinct approaches with
different underlying assumptions about the structure of the data
and well-recognised statistical properties. As a minimum, the
PLS-DA algorithm should be regarded just as one building block
in a series of steps used to develop a classification procedure,
including for example, validation, preprocessing, variable selec-
tion, and so on. Most equations contain several terms, and all
are necessary to get to an answer, so by analogy PLS-DA should
be regarded as just one step in a full classification procedure. All
presentations and papers should at the minimum describe how
the data had been preprocessed and what decision rules have
been used.
But a danger is that PLS-DA is now strongly engrained in most

commercial chemometrics software. Although expert users will
understand the pitfalls, it is likely that only a very small fraction
of nonexperts do. Many methods currently in use in chemometrics
were first developed by experts in data analysis, who would safely
evaluate the use of their procedures. But with the widespread
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Figure 18. Expected spread of results for the toss of an unbiased coin
10 times.
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availability of software, very few users have this knowledge base.
There are many inherent decisions needed to get to an answer
using PLS-DA such as the choice of threshold, the use of PLS1 or
PLS2 when there are several classes and column centring that
are critical steps in the analysis and can make radical differences
to the result. Yet there are numerous papers in the literature that
compare the performance of, for example, PLS-DA, without speci-
fying adequate details, with other classification approaches: most
of these papers are of limited value.
Partial least squares discriminant analysis is sold as a tech-

nique because it can provide what appears to be a very effective
solution to classification, especially graphical presentations such
as scores plots, whereas more traditional statistics do not have
this flexibility. However, with the vast increase in the use of such
approaches in areas such as medicine and biology, the possibil-
ities of major disasters are high, particularly when many studies
involve small sample sizes and large numbers of variables. PLS-
DA is also often presented as a method that can cope with large
variable-to-sample ratios, yet LDA with prior reduction of dimen-
sionality can perform just as well. Simpler statistical approaches
are more robust in that there are less decisions to be made
and so less opportunities of overfitting or of misleading classifi-
cation results and, furthermore, have well-known properties that
can be related back to the data.
Hence, for classification, there are few reasons to use PLS-DA,

despite its widespread availability. However, this paper has
focussed on the use of PLS methods for classification: they were
originally developed for calibration, and the extension to classifi-
cation methods was perhaps misunderstood. An advantage of
PLS methods is that they can provide insight into the variables
via weights and loadings. LDA and EDC do not easily relate the
classifier to the underlying variables. They originated in the work
of Fisher and colleagues [13] in the 1930s, where typically two or
three variables might be measured for a dataset: the classic iris
dataset contains just three variables. In modern applications
such as metabolomics, we do not only want to decide whether
a sample belongs to one of a number of known groups, but
which variables, often related to chemicals, are best discrimina-
tors. Here, PLS can be advantageous as direct information about
the variables is available. As an exploratory graphical method
that suggests which variables are most likely to be responsible
for discrimination, used often in exploratory studies, PLS-DA
has a significant role to play.
However, PLS-DA has little advantages over existing approaches

as a method for discrimination, and it is often alarmingly misused
by nonexperts who encounter this as an option in a variety of
common chemometrics packages, without understanding its
underlying strengths and weaknesses. In a previous era where
the majority of users of chemometrics techniques were experts,
the method would have been used with care, but current usage
has put this widely available method into serious disrepute. A

method that was developed as a good exploratory tool for experts
is not necessarily appropriate as a widespread approach for nonex-
perts. Would we trust a competent car driver to pilot an airplane
without specialist training? The amount of experience an expert
in data analysis has may be greater than that required for an air-
plane pilot, or even a professional magician. Amateur magicians
may not get their tricks right and need extensive experience and
knowledge if they wish to practice as professionals.

Many methods that have since become incorporated into
packages were first developed by specialists who had substantial
expertise and understanding of the underlying maths. The advo-
cacy of these methods has made some such as PLS widespread,
but with the unintended consequences that the user often has
limited understanding of how to safely apply the methods, and
hence, an uncontrolled literature can build up in which quite
dubious applications are reported and widely believed.
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