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ABSTRACT

Cognitive biases are an ingrained part of the human decision-
making process. Nearly all machine learning algorithms that mimic
human decision-making use human judgments as training data,
which propagates these biases. In this paper, we conduct an em-
pirical study in which 150 applicants are rated for suitability for
three separate job openings. We develop an algorithm that learns
from human judgments and consequently develops biases based on
these human-generated inputs. Next, we explore and apply tech-
niques to mitigate these algorithmic biases, using a combination
of pre-processing, in-processing, and post-processing algorithms.
The results from our study show that biases can be mitigated using
these approaches but involve a tradeoff between complexity and
effectiveness.
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1 INTRODUCTION

Over the past few decades, dozens of cognitive biases that affect
human judgment and decision making have been identified by
notable behavioral economists such as Kahneman and Tversky [1].
When humans make judgments or decisions, they frequently use
heuristic strategies (i.e., decisional short cuts) These heuristics often
lead to cognitive biases, which are systematic and predictable errors
in judgment that result from over-reliance on these heuristics. For
example, the anchoring effect demonstrates that humans tend to be
heavily influenced by the first piece of information they hear, such
as the list price for a car they wish to purchase; future negotiations
deviate from that initial amount which serves as an anchor.
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Cognitive biases become an unintentional input into these de-
cisions. Researchers have discovered that many humans are often
unaware of their own cognitive biases [2]; moreover, even when
they are made aware of a specific cognitive bias, i.e., anchoring,
they often cannot correct or eliminate them [3]. Cognitive biases in
decision-making have material impacts on people’s lives - examples
of these include decisions in hiring, advertising, criminal justice,
granting credit, personalized medicine, and targeted policymaking.

Machine learning algorithms were designed to make decisions
not only faster but also more accurately and fairly; in other words,
these algorithms are designed to eliminate or reduce cognitive bi-
ases. However, since human judgments typically serve as inputs
to decision-making machine algorithms, these cognitive biases be-
come integrated into the resulting algorithms, propagating the
biases. Recently, with the advent of machine learning algorithms,
increasing attention has focused on identifying, reducing and elim-
inating these biases and ensuring fairness.

We conduct an empirical study to evaluate strategies of bias
mitigation in algorithms trained on human-generated data in a hu-
man resources task. In this task, we ask humans to judge a pool of
fictional job-seeking applicants either with or without an image of
the applicant’s face. We then build a convolutional neural network
(CNN) and train it on these human-generated ratings and evalu-
ation or findings. Our contribution in this paper is the empirical
evaluation of several different types of methods to reduce these
biases using a combination of techniques.

2 BACKGROUND AND RELATED WORK

To understand the long-term implications of implicit and explicit
biases in decision-making in machine learning, increasing atten-
tion has been put on the fairness, accountability, and transparency
of algorithms, particularly in the steps used in making decisions.
However, this area of research is relatively new, finding its roots
in a 1996 paper on bias in computer systems by Friedman and Nis-
senbaum [4] and a 2008 paper discussing discrimination in machine
learning by Pedreshi et al. in [5]. Discrimination, defined by [6],
is defined as the preference (or bias) either for or against a set of
social groups that result in the unfair treatment of its members with
respect to some outcome. Fairness, in simplest terms, can be viewed
as the inverse of discrimination; however, a complete definition of
fairness in data is influenced by both culture and context and thus
hard to define; Narayanan identified 21 definitions of fairness [7]
while in [8] Kleinberg et al. indicated that all definitions of fairness
could not be simultaneously satisfied.

Defining fairness and detecting possible biases in datasets are
important first steps in addressing them. Consequently, developing
metrics to detect bias has been the work of a growing number of
research scientists (e.g., [9-11]). Other researchers have developed
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Figure 1: An example instantiation of a generic fairness pipeline consists of loading data into a dataset object, transforming it
into a fairer dataset using a fair pre-processing algorithm, learning a classifier from this transformed dataset, and obtaining

predictions from this classifier. Adapted from [12].

open-source toolkits to identify the potential for bias, which makes
detection of fairness in algorithms easier to achieve (see [12] for a
detailed discussion and list of toolkits).

Monitoring biases and fairness helps us address flaws in an
algorithm once it is built and trained, but can these biases, once
identified, be mitigated? As illustrated in Figure 1, 2these may occur
during three separate stages: during algorithm pre-processing, dur-
ing algorithm in-processing, and during algorithm post-processing.
We examine several of the techniques included in the toolkit de-
scribed in [12].

2.1 Algorithm Pre-processing

Pre-processing is the most effective stage to address biases and
involve transforming the training data set. One limitation of pre-
processing is that it is often challenging to eliminate biases until
they are seen. Learning fair representations [13] develops a new
dataset that encodes the data well but obfuscates information about
protected attributes; in other words, the model loses any informa-
tion that can identify whether the person belongs to the protected
subgroup while retaining as much other information as possible.

Optimized pre-processing [14] uses a data-driven optimization
framework to transform data to reduce algorithmic discrimina-
tion probabilistically. The authors apply a randomized mapping
to transform the raw dataset into a new unbiased dataset that is
used to train the model. This randomized mapping involves editing
the features and labels in the data with group fairness, individual
distortion, and data fidelity constraints and objectives. Although
effective, their results understandably illustrate a trade-off between
algorithmic distortion and accuracy.

In [15], three methods are proposed to remove discrimination
from the training dataset. A classifier is subsequently learned on
this discrimination-free dataset. This approach’s rationale is that,
since the classifier is trained on discrimination-free data, it is likely
that its predictions will be (more) discrimination-free as well. The
first, massaging the data, is based on changing the class labels in
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order to remove the discrimination from the training data. Instead
of changing the labels, with re-weighting, the tuples in the training
dataset are assigned weights. By carefully considering the weights
of each tuple, the training dataset can be made discrimination-free
without having to change any of the labels. Not all classifier learn-
ers can incorporate weights in their learning process; therefore,
they also apply a sampling approach. The weighted dataset is trans-
formed by sampling the objects with replacement according to their
determined weights.

In [16] a method is introduced to reduce disparate impact, which
we (and the authors in [16]) define as “the 80 percent rule” advocated
by the US Equal Employment Opportunity Commission [17]:

Given data set D = (X, Y, C), with protected attribute X (e.g., race,
sex, religion, etc.), remaining attributes Y, and binary class to be
predicted C (e.g., “will hire”), we will say that D has a disparate
impact if

P(C = YES|X = 0)

— "~ <1=08
P(C = YESIX = 1)

for positive outcome class, YES and majority protected attribute 1
where P(C=c|X=x) denotes the conditional probability (evaluated over
D) that the class outcome is c € C, given protected attribute x € X.

Similar to the massaging technique used in [15], the disparate
impact reduction method used in [16] edits the feature values to
increase group fairness while preserving rank-ordering within
groups.

2.2 Algorithm In-processing

In-processing is the most efficient stage to handle bias since it is
often unsupervised, and it can thus be self-correcting. Moreover, it
does not involve adulterating the underlying training dataset. In
[18], adversarial debiasing applies a technique called adversarial
training first pioneered in [19] in which multiple networks with
competing goals to force the first network to “deceive” the second
network. This technique learns a classifier to maximize prediction
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accuracy and simultaneously reduce an adversary’s ability to deter-
mine (and thus exploit) the protected attribute from the predictions,
which leads to a fair classifier.

Prejudice remover [20] adds a discrimination-aware regulariza-
tion term to the learning objective. This method employs two regu-
larizers: an L1 regularizer to avoid over-fitting and an L2 regularizer
to enforce fair classification.

2.3 Algorithm Post-processing

With large or complex datasets, the post-processing stage may be
an ideal time to handle biases: first, metrics can be applied most
accurately at this stage; second, the algorithm does not need to be
rerun. In [21], a technique called equalized odds post-processing
determines optimal probabilities to change output labels in order
to optimize equalized odds, which ensures that no error type dis-
proportionately affects any particular group (as opposed to demo-
graphic parity, which requires that a decision be independent of
a protected attribute). One benefit is that equalized odds enforces
both equal bias and equal accuracy in all demographics, punishing
models that perform well only on the majority.

Calibrated equalized odds post-processing [22] takes the work
examined in [21] a bit further by optimizing calibrated classifier
score outputs to find probabilities with which to change output
labels. We find that calibration of equalized odds is often challenging
to do in practice.

Reject option classification [23] works by boosting (providing
favorable outcomes to unprivileged groups and unfavorable out-
comes to privileged groups) by examining a confidence band around
the decision boundary with the highest uncertainty. It applies mas-
saging and re-weighting techniques like those used in [15], but in
post-processing.

3 EXPERIMENTAL DESIGN

Our design objective was to develop and apply a dataset that demon-
strated algorithmic bias. This section describes the steps used to
create our dataset used to train our machine algorithm and evaluate
bias.

3.1 Obtaining Data

We began by obtaining three job descriptions describing jobs for two
early-career, and one mid-career job positions from an executive
search firm. From this, we obtained information (resumes and cover
letters) for a pool of 50 actual job applicants for each position
(150 total). We de-identified each applicant (i.e., we anonymized
information that might convey the protected classes of age, race,
gender, national origin and religion). Job positions and applicants
were all located in the United States.

We asked three human resource (HR) recruiters (average experi-
ence in evaluating applicants = 10.7 years) to independently rate
each applicant’s suitability for the corresponding job description
on a five-point Likert scale (1 = a poor fit, 5 = an excellent fit).
For each applicant, we averaged their score. Inter-annotator relia-
bility, determined by Fleiss’ k, was 0.71, representing ‘substantial’
agreement [24]. We used the ratings provided by human resource
professionals as our gold standard data.
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Next, using the Amazon Mechanical Turk (MTurk), a crowd-
sourcing website!, we asked human assessors to rate a pool of
applicants on the same five-point scale using the job description
and the de-identified applicant resumes and cover letters. Each
applicant was evaluated by 5 MTurk assessors, and the average of
these scores was recorded (the need of 5 assessors was empirically
determined in a pilot study). Fleiss’ «, for this set of assessors, was
0.62, also representing a ‘substantial’ inter-annotator agreement.
We also obtained self-provided demographic information about
the MTurk assessors. The results of this evaluation became our
baseline.

Last, as our treatment, we obtained random facial images from
the Chicago Face Database (CFD) [25] and added them to the de-
identified information for job applicants used in the baseline. The
CFD contains photographs of 158 males and females from four races
(Asian, Black, Latinx, and White) as well as normalized subjective
information about each image; however, none of the subjective
CFD information was used in our training data or provided to
the assessors. The distribution of races was applied evenly across
gender and race. The applicant’s de-identified information and a
randomly selected facial image was given to a separate set of MTurk
assessors, which rated each applicant on a five-point Likert scale.
Fleiss’ k, for this set of assessors was 0.51, representing a ‘moderate’
inter-annotator agreement.

3.2 Developing our Models

We developed a CNN to incorporate the textual features of each
applicant’s materials as derived from the 2015 version of the Lin-
guistic Inquiry and Word Count software tool (LIWC 2015) [26]
and use them, along with the ratings provided by crowdworkers,
for training. The objective of using two models is to examine if
the addition of the CFD portrait images biased the findings. In our
first model, we used the baseline data; in our second model, we
used the treatment data. Each model’s output was the predicted
rating (reflecting the five-point scale of the gold standard and the
MTurk assessors), representing five separate classes. These were
compared to the ratings for each applicant from the gold standard
data, rounded to the nearest integer value.

3.3 Evaluating our Models

We developed a CNN model using the gold standard rating data as
well as features from the LIWC using a 2:1 split between training
and test sets (the development of the CNN is part of a larger exten-
sion of this study to be published later). Our training dataset was
balanced among the five classes by resampling using SMOTE [27].
We applied 5-fold cross-validation and used a SoftMax activation
function in the output layer. We find that our model provided a low
error rate (indicating the absence of bias, or a ‘fair’ model), which
we attribute to the substantial inter-annotator agreement between
our human resource professionals. The accuracy of predicting test
labels on our gold standard model is 0.969.

Next, we wish to see if we can replicate this information using
our baseline data. The only difference between this baseline model
and the gold standard model evaluated previously is the use of
different assessors; however, in this model, we train on the baseline

lwww.mturk.com
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Figure 2: Representative images from the Chicago Face Database (CFD) used in our study.

model data and test on the corresponding unseen applicants in the
gold standard data. Our model provided a low error rate, indicating
that the use of 5 MTurk assessors can provide similar results as
three HR recruiters. The accuracy of predicting test labels on our
gold standard model is 0.952.

Last, we wish to see if we can replicate this information using
our treatment data. The only difference between this model and
the baseline model is the inclusion of CFD images; however, in
this model, we train on the treatment model data test on the corre-
sponding unseen applicants in the gold standard data. Our model
provided a higher error rate. The accuracy of predicting test labels
on our gold standard model is 0.767. Thus, the introduction of CFD
face images provided bias in the assessment phase.

3.4 Assessing Bias

We initially investigate the LIWC features for the applicant infor-
mation that differs between the baseline and the gold standard data.
LIWC features were not provided to any of the assessors, so this
only provides an indirect examination of the rating differences be-
tween the two datasets. Given the small difference in the accuracy
rates, the findings were minor. We did find that applicants that
provided cover letters that contained more words, more analytical
terms, and more authentic terms (as reported by LIWC) were rated
slightly more highly (0.15 points) by MTurk assessors than HR
recruiters. Likewise, the differences in ratings due to LIWC features
between the treatment group and the expert group was also minor,
with MTurk assessors rating resumes and cover letters with more
analytical terms more highly (0.21 points) than HR recruiters and
those using more pronouns were rated 0.14 points lower than the
HR recruiters.
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More important to determining bias was the impact of the CFD
face images on rating each applicant. MTurk assessors provided
with face images of Black, and Latinx faces rated them lower, on
average, by 0.61 points and 0.43 points, respectively. Applicants
who were given Asian faces were rated higher by 0.29 points. These
reinforce findings that demonstrate the use of facial characteristics
in evaluating others [28, 29].

With respect to age and gender, females were rated lower, on
average, by 0.23 points in the treatment dataset. We used CFD
face images that contained people ranging in age from 18 to 56,
with an average age of 28.8; assessors rated applicants aged 34 or
older lower by 0.24 points, those that were 23 or younger rated
lower by 0.56 points. This effect implies that our assessors maintain
an anticipated age range in mind for each position and infer an
age of each candidate from their facial characteristics. This backs
up findings in the literature (e.g., [30, 31]). Thus, the differences
between the baseline and treatment groups indicate bias based on
the face images.

We examined the trustworthiness feature provided for each im-
age by CFD. Although assessors were not provided with this value,
we found a strong Pearson’s correlation between the rating given
and the trustworthiness of the face provided. (r = 0.734). This backs
up research which finds that trustworthiness can be inferred from
facial characteristics [32].

4 MITIGATING BIASES

The primary objective of this paper is to evaluate methods to in-
crease fairness in our biased dataset. In this section, we discuss pre-
processing, in-processing, and post-processing methods to mitigate
biases from the treatment dataset. We use an increase in accuracy
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Table 1: Accuracy and increase in accuracy for each pre-processing algorithm evaluated.

Algorithm Accuracy A Accuracy
OPP 0.841 0.074
MRS-M 0.844 0.077
MRS-R 0.873 0.106
MRS-S 0.857 0.090
DIR 0.887 0.110
Table 2: Accuracy and increase in accuracy for each in-processing algorithm evaluated.
Algorithm Accuracy A Accuracy
AD 0.910 0.143
PR 0.869 0.102

as a reasonable proxy for reducing bias. Accuracy is defined as:

total # applicants rated correctly
Acc =

total # applicants evaluated

where the correct rating is determined by the average rating pro-
vided in the gold standard, as rounded to the nearest integer be-
tween 1 and 5.

4.1 Pre-Processing Algorithm Evaluation

The most obvious method, as shown with the similarity of the
baseline and the gold standard data, is not to use facial images in
application materials; however, this is not practical in the context
of this job-seeking task for several reasons. First, in many cultures,
providing a facial image along with the application materials is
standard practice. Second, presuming that application materials are
not de-identified, images of many of those applying for a job can
be found through social media. Third, if an applicant is invited to
interview in person, the same types of rating biases, as seen in our
treatment data, will occur.

We now turn our attention to the methods discussed in Section
2.1. We find that it would be challenging to apply the Learning
fair representations (LFR) algorithm even with a CNN because
the facial characteristics are not provided by discrete features.
This leaves three approaches to examine: optimized pre-processing
(OPP), massaging-reweighting-sampling (MRS), and disparate im-
pact reduction (DIR). For MRS, the massaging, re-weighting, and
sampling apply to three distinct techniques and are applied in-
dependently; we abbreviate them as MRS-M, MRS-R, and MRS-S
respectively.

Applying each of these to the treatment test dataset, we ob-
tain the following improvements in accuracy (corresponding to a
reduction in bias), as shown in Table 1
From Table 1, using the best of these pre-processing steps, we can
increase the accuracy by 11% over the raw accuracy score.

4.2 In-Processing Algorithm Evaluation

Turning our attention to the two in-processing methods described
in Section 2.2, we now evaluate the adversarial debiasing (AD) and
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prejudice remover (PR) on the treatment data. As with the pre-
processing algorithms used in Section 4.1, each of these is applied
independently of any other treatments. The accuracy for each of
these in-processing algorithms is given in Table 2

According to Table 2, the best of these in-processing approaches,
AD, increased the accuracy (and removed the bias) by over 14%.;
however, the integration of these in-processing steps into our CNN
involved significant additional complexity (using a generative ad-
versarial network, or GAN, would have reduced the complexity)

4.3 Post-Processing Algorithm Evaluation

We now examine the three post-processing algorithms described
in Section 2.3. These include the equalized odds post-processing
(EOP), the calibrated equalized odds postprocessing (CEOP), and
reject option classification (ROC). Since these apply to the post-
processing step, they are the most straightforward to implement.
The accuracy for each of these three is provided in Table 3

From the pre-processing approaches we evaluated, as shown in
Table 3, we can increase the accuracy by a minimum of 13%.

4.4 Combining Algorithms

Each of these bias mitigation techniques shows promise indepen-
dently. What happens when we combine methods? We now turn
our attention on combining each of the three stages into a single
model. We test each of the 72 algorithmic combinations (6 pre x
3 in x 4 post, which includes the omission of using a technique at
each stage) and provide results for the best five combinations in
Table 4

Examining Table 4 in more detail, the best of these combinations
uses the DIR technique for pre-processing and AD technique for
in-processing and achieves accuracies (0.949) that approach those
in our baseline group (0.952). This indicates for our biased dataset,
it is possible to mitigate the biases, but at what cost?

As mentioned earlier, the in-processing algorithms added signif-
icant complexity to our CNN model in that they required several
steps that required extensive re-tuning. If we just applied pre- and
post-processing algorithms, we can achieve slightly lower accuracy,
as observed in Table 5
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Table 3: Accuracy and increase in accuracy for each post-processing algorithm evaluated.

Algorithm Accuracy A Accuracy
BOP 0.903 0.136
CEOP 0.901 0.134
ROC 0.897 0.130

Table 4: Accuracy and increase in accuracy for the top 5 pre-, in- and post-processing algorithm combinations.

Algorithms (pre, in, post) Accuracy A Accuracy
DIR,AD, EOP 0.949 0.182
DIR,AD, CEOP 0.947 0.180
DIR, AD, ROC 0.941 0.174
MRS-R, AD, CEOP 0.933 0.166
MRS-R, AD, EOP 0.931 0.164

Table 5: Accuracy and increase in accuracy for the top 5 pre- and post-processing algorithm combinations.

Algorithms (pre, in, post) Accuracy A Accuracy
DIR, EOP 0.942 0.175
DIR, CEOP 0.941 0.174
DIR, ROC 0.937 0.170
MRS-R, CEOP 0.927 0.160
MRS-R, EOP 0.927 0.160

By avoiding the in-processing algorithms, we can obtain a sig-
nificant reduction in bias for our dataset, while incorporating far
less complexity in the model.

5 CONCLUSIONS AND FUTURE WORK

Although bias is inherent in human decision making, one objective
of machine learning algorithms is to provide accurate results. To
accomplish accuracy, there is a need to maximize fairness and
minimize biases. In this paper, we show that by using several pre-
in- and post-processing algorithms, we were able to mitigate biases
effectively, and these were most effective when they are combined.

Our empirical examination involved creating a dataset where
information from 150 job applicants was rated with respect to a set
of job descriptions. This data exhibited biases due to the inclusion
of randomly selected faces from an established dataset. By training
our algorithm (a CNN) on this biased data and demonstrate that
it provided biased results. We then evaluated ten algorithms that
occur during three different stages of our decision-making model
(pre-processing, in-processing, and post-processing) to increase
fairness in our biased dataset. We saw that every one of the ap-
proaches exhibited the ability to increase accuracy (which we use
as a proxy for reduction of bias and increasing fairness); however,
the pre- and in- processing methods of disparate impact reduction
and adversarial debiasing, respectfully, provided the most impactful
on mitigating biases. By combining methods at different stages, we
were able to reduce nearly all biases introduced by the facial images.
We then looked at the additional complexity each algorithm would
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add and found that we could achieve very good results by eliminat-
ing the complex and cumbersome in-processing algorithms. This
result implies that there is a tradeoff between more accuracy and
more complexity.

There are several limitations to our study. First, we examined a
single dataset, so although our results hold promise, the external
validity beyond this human resource dataset is uncertain. Moreover,
this study is an initial examination of bias reduction and will be
expanded to other datasets since fairness is dependent on context
and culture.

In future work, we plan to examine other algorithms that show
promise for deep learning, such as deep weighted averaging classi-
fiers [33], as well as exploring the role of incentives to reduce bias
and increase fairness. Fairness implies that all cognitive biases are
equal, but some research shows humans (and the data they produce)
are susceptible to certain cognitive biases more often than others,
so therefore we plan to examine those cognitive biases that impact
fairness the most. We also propose new metrics [34] to help identify
these biases and plan to refine these metrics with large datasets.
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