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Abstract

When dealing with datasets where the observations are obtained from the same cross-
sectional units at multiple time points, most of the times, heterogeneity arises across
he cross-sectional units. If one ignores this heterogeneity, assuming that the data are
pooled, the parameters estimations run the risk of being inconsistent. This thesis studies
the difference between panel data and pooled data models with regard to their construc-
tion procedure and their predictive performance.

An application is discussed per credit risk modelling for a mortgage portfolio. Therein,
different models were constructed, covering pooled and panel linear models and pooled
and panel logistic models. By model performance and testing comparison, we found that
by adding the heterogeneity effect in the regression model the discriminatory power is
improved. At the same time, however, it provides lower predicted losses than the ob-
served ones. We have also noted that, most of the times, the pooled model fails to
estimate accurate predictions.

This thesis has been carried out jointly with TU Delft / Department of Applied
Mathematics and the Central Risk Management / Model Validation department of
ABN AMRO Bank.
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Introduction

The Basel Committee on Banking Supervision (BCBS) has introduced the 1988
Accords, also known as Basel 1. That is a set of recommendations for regulations in
the banking industry, focused on financial stability, developing capital requirements for
banks based on the riskiness of their financial positions. Since then, the Basel Commit-
tee has published several proposals in order to revise the Basel I framework. In 2004,
a first revision, Basel II [BCBS, 2006], has introduced the foundation of three pillars:
minimum capital requirements, supervisory review and market discipline — aiming to
promote a stronger risk management framework.

Financial institutions have placed significant reliance on quantitative analyses and
mathematical models in order to assist decision-making (strategy, budgeting, planning,
balance sheet steering, etc.). The increasing complexity of quantitative models has given
rise to a new type of risk : model risk. Managing model risk has subsequently come
under scrutiny from regulators. Basel II [BCBS, 2006] has introduced the requirements
of validating models, see [BCBS, 2006, Art.302-305].

The supervision of model risk relies on an independent Model Validation function.
Model Validation (thereafter MV), under regulatory guidance, is in charge of monitoring
all phases of model development and implementation with the purpose of mitigating
model risk. In addition, MV assesses the compliance of models to internal policies
and external regulations. Such MV function is yet present in many industries (IT,
pharmaceuticals, etc.) although, with banking capital regulation, it tends to be in a
more mature stage when it comes to financial institutions than other sectors.

In ABN AMRO Bank, the MV department is in charge of mitigating model risk.
It covers numerous model risk dimensions such as data, methodology, implementation
and use. The outcome of the validation process affects every level of the organisation
— from individual client acceptance to strategic decision making and steering. Despite
a broad risk and model landscape, this thesis focuses on a major risk run by financial
institutions: credit risk.

One of the components of credit risk is the risk of default on a debt that may arise
from a borrower who fails to make the required payments. Bank-issued credit makes
up the largest proportion of credit in existence. Thus, banking is about credit creation
promoting credit risk as one of the core risks that financial institutions face.




Chapter 1. Introduction

Within Basel II framework, banks can opt for different approaches to assess their
credit risk: a Standardised approach, Foundation Internal Rating-Based (IRB) approach
and the Advanced Internal Rating-Based approach. Within Standardised Approach,
banks have to divide their credit exposures into classes, based on certain observable
characteristics of the exposures (e.g. a corporate or mortgage loan). For all classes,
a fixed risk weight is determined by the supervisor. The minimum ratio of capital
to the total weighted exposure is 8%. Under IRB approaches, four inputs are needed
for credit risk determination and capital calculations: the probability of default, the
loss given default, the exposure at default and the remaining maturity of the loan.
IRB approaches permits a bank to use internal ratings as primary inputs to capital
calculations. More precisely, the Foundation IRB Approach allows banks to determine
the probability of default for each borrower whilst the supervisor supplies the other
inputs (loss given default, the exposure at default and the maturity). On the other
hand, the Advanced IRB Approach permits banks to estimate all four inputs needed for
credit risk determination and capital calculations, that is, probability of default (PD),
loss given default (LGD), the exposure at default (EAD) and the maturity.

Since ABN AMRO Bank uses the Advanced IRB approach to calculate its regulatory
capital for credit risk, it is allowed to estimate its own credit risk components and con-
struct its own models. This thesis focuses on the construction of the Loss Given Default
model for mortgage loans. The LGD represents the ratio of the Exposure at Default
(EAD) expected to be lost if a counterparty goes into default. It is of crucial importance
that the LGD estimations are accurate, and the models have adequate discriminatory
power. That is because underestimation of the LGD estimations means that extreme
losses on the loan portfolio are not covered and, at the same time, overestimation of
losses lead the bank to hold additional capital, which does not yield a return. Therefore,
it is desirable that both aforementioned situations are avoided and, also, that the LGD
model is able to discriminate between high and low losses.

The current LGD models of the bank are based on the standard statistical ap-
proaches, like pooled OLS regression and pooled logistic analyses. However, these meth-
ods ignore the fact that the LGD dataset for the defaulted contracts has a panel data
form. Panel data or longitudinal data are a combination of cross-sectional and time-
series data where the observations are obtained from the same cross-sectional units of
households, individuals, firms, countries, etc. at multiple points in time. Hence, the
datasets containing panel data are two-dimensional with ¢ denoting the cross-section
dimension and ¢ the time-series dimension. The LGD datasets of the Bank for the
defaulted contracts is consisted of a number of contracts that are observed more than
one time. That is because the defaulted contracts belong to the defaulted dataset until
they will cure and go to the performing portfolio. Or, in the case of “non-cure” , the
debt is considered a loss (write off) or the contract is recovered without loss for the
bank (paid-off), and then the contract is moved out from the defaulted portfolio. This
process may take months or years. Therefore, these dataset can be considered as panel
datasets.

Collecting information from the same individuals or firms over time leads to the




natural assumption that these individuals are heterogeneous. The methods of panel data
estimation capture and control for this heterogeneity by taking into consideration all the
unobserved individual- and time-specific variables. However, the pool data regression
models, that the Bank uses, are not able to capture this individual heterogeneity and
instead they choose to ignore it. Some people believe that the ignorance is bliss. In
this case, this ignorance might lead to biased and inconsistent statistical inferences due
to the omitted variables phenomenon. The purpose of the present thesis is therefore to
construct the pooled and panel defaulted LGD models and compare their perfomances.

We expect that by adding the unobserved heterogeneity term in the regression model,
leading to a panel data model, will immediately improve its accuracy and give predictions
closer to the realized ones. Moreover, the ability to discriminate among the low and
high loses might me better for the panel data model rather than the pool model.

We formulate the following research question:

e Is the panel data LGD model, for the defaulted contracts, preferable than the
pooled data LGD model?

To answer this question we take into account the following sub questions:

e Does the panel data LGD model has better discriminatory power than the pooled
data LGD model?

e Does the panel data LGD model gives more accurate predictions than the pooled
data LGD model’s predictions?

This paper is structured as follows. Chapter 2 describes the mathematical back-
ground of the panel data models and explains the methodology that will be used in the
next chapter. In Chapter 3, the LGD pooled and panel data models for the defaulted
contracts are constructed, and their performance is compared by means of discrimi-
natory and calibration ability. Finally, in Chapter 4, we provide a summary of our
conclusions and suggest some ideas for future research.
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The analysis of datasets that combine cross-sectional and time-series data is one
of the most active areas of research in econometrics. These data are called panel or
longitudinal, and they contain a number of observations where the same cross-sectional
units have been repeatedly observed over different time periods [Verbeek, 2004].

Panel data forms a special case of the so-called pooled data, where each cross-section
observation is not necessarily collected from the same unit |Greene, 2012]. An example
of panel data is the Panel Study of Income Dynamics (PSID), a collection of the Institute
for Social Research at University of Michigan. The first wave, in 1968, interviewed 4800
families while in 2001 the PSID included more than 7000 families. For the first 29 years,
from 1968 to 1996, families were interviewed once a year, whereas from 1997 onward
data are collected biennially. In 2002, Lundberg and Rose used the panel data from the
PSID with regard to the years 1968-1992, in order to study the effects on fatherhood
and, consequently, the differential effects on sons and daughters according to the father’s
labour supply and hourly wages.

The aforementioned economists have obtained inferences by first assuming that the
data are pooled data and then panel data, and, based on this, they observed different
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Chapter 2. Panel data modelling

estimates. These differences may be due to the ability of the panel data models to cap-
ture the heterogeneity and the unobservable effects across the different cross sections or
time series units [Baltagi, 2013, Chap2|. In addition, panels allow a researcher to study
the dynamics of changes and relate the behaviour of a cross-section unit across different
time periods, which is very difficult with cross-sectional evidence — see [Baltagi, 2013,
Chapl]. For example, panels allow us to estimate the proportion of low paid workers
in a population and examine whether this status is transitory or long-lived over the
employee’s life cycle in the labour market. Cross-sectional data can estimate what pro-
portion of the population’s workers is low paid at a certain point in time. Only panel
data can show how this proportion changes over time and if a worker who is low paid
in a certain period of time will remain low paid in a different one.

The panel data can be categorized as balanced and unbalanced, depending on the
number of times that each cross-section unit is conserved or not. If the dataset con-
sists of N different cross-sectional units, for instance N individuals, and each individ-
ual is observed throughout all T time periods, then, the dataset is a balanced panel
[Greene, 2012]. Therefore, the total number of observations in the panel is NT. How-
ever, when some individuals are not observed over all T points in time, but only Ti
times, then, the total number of observations in the dataset is Zf\il T;, and the dataset
is considered to be unbalanced. Moreover, if the panel data regression model man-
ages to capture the unobservable cross-section-specific or time-specific effect among the
observations, then, it is called “one-way error component” or “static”, whereas, when
the model measures both individual and time heterogeneity, it is called “two-way error
component” or “dynamic” [Baltagi, 2013, Chap3] [Verbeek, 2004]. This thesis focuses
on one-way error component models with cross-sectional specific effect on unbalanced
panel data, since this will be the case in the application example in Chapter 3.

In this chapter, different panel data regression models are explained, and tests re-
garding the most appropriate model for the data will be described. With this in mind,
Section 2.1 describes linear panel models, and Section 2.2 considers specific features of
binary choice panel models.

2.1 Linear models

A panel data regression model indexes all variables by an 7 and a t, where ¢ denotes the
cross-section dimension (individuals, clients, firms, etc.) and ¢ represents the time-series
dimension. The general framework of a one-way error unbalanced panel data model is:

Yie = o+ T, 0 + gy, i=1,.,N;t=1,..Ti, (2.1.1)

where y;; is the dependent variable, « is a scalar, § is K x 1 and Xj; is the i-th obser-
vation on K explanatory variables. The term u;; is the disturbance that consists of the
unobservable firm-specific effect p; and the remainder disturbance vy, i.e.

Usp = Ui + Vg (212)




2.1. Linear models

It is important to note that u; does not vary over time, and it captures any unit-
specific effect which is not included in the regression, whereas the term v;; does vary over
time and unit; hence, it can be considered as the usual disturbance in the regression.

To estimate the above model, it is essential to determine the nature of the unobserved
variable p,;. If we treat p; as N fixed unknown parameters, the model in is referred
to as the fixed effects model. An alternative approach is treating the u; as random and,
therefore, transform the model in into a random effects model. However, if such
unobservable effects do not exist in the data, then, the preferable model is the pooled
model.

2.1.1 Pooled data

When the individual heterogeneity p; does not exist and the model has the following
form

Vi = o+ 2,0 + €, 1=1,..,N;t=1,..,T1i, (2.1.3)

with strictly exogenous regressors x;;, same finite variance o2 for all disturbance terms e;;
(homoscedasticity), uncorrelation among the different error terms (nonautocorrelation),
independence across observations i and no multicollinearity among the independent
variables, then, the ordinary least squares (thereafter, OLS) estimation method produces
consistent and efficient parameter estimators [Greene, 2012, Chapter 10].

The OLS estimator for 3, which now includes the constant term «, can derive from

b= (Z xitmgt)ilzxityita (2.1.4)
it it

which can be written in a vector form as
b= (X'X)'Xy, (2.1.5)
with variance

V(| X) =o*(X'X) (2.1.6)

2.1.2 Fixed effect model
The fixed effects model is given by

i = 0+ i + B+ vy,  i=1,. N;t=1,..,Ti, (2.1.7)

where we assume that the individual specific effect pu; is a fixed parameter, the error
terms v;; are [ID(0,02) and the 2, is independent of the v; for all i and t. This model
is appropriate when we are interested in the behavior of N specific individuals or firms
and not on a randomly selected set of N individuals from a large population. This will
be discussed later.




Chapter 2. Panel data modelling

The meaning of the term “fixed effects” refers to the fact that even though the fixed
variable p; varies between units, it remains constant over time. Assuming that the
w; differs for each entity, we can take into account the uniqueness and peculiarity of
each individual. If we consider the fixed effects p; as part of the intercept, then, any
correlation among them and the regressors is allowed. Therefore, by meeting all OLS
assumptions, we can perform least squares dummy variable (LSDV) regression on m
or within effect estimation method.

The LSDV estimator is obtained by applying OLS on the fixed effect model, including
a dummy variable for each individual i in the model. That is,

N
Yirt = & + Z ,u@] + x;tﬁ + Vit (218)
j=1
where the 6;; is the Kronecker delta. Then, we can obtain estimates of «, 8 and y;.
However, a large number of individuals in panel data results in too many individual
dummies, and hence complex computations [Verbeek, 2004, Chapter 10].

Fortunately, another strategy can be used in order to obtain the same estimator for 3
in a simpler way: the within effect estimation. This strategy requires first the calculation
of the individual means over time of the dependent and independent variables on [2.1.7]
to get

Yi. = 0+ L + 63_7@ + Uy, (219)

and then transform the model in deviations from individual means and perform OLS
on the transformed model:

Yir — Yi. = Blxi — @) + (vie — 03), (2.1.10)

where y; = Z vi/Ti, ;. Z x;/T; and ;. Z vi/T;.

This transformatlon is called the within transformatlon while the resulting regres-
sion model 2.1.10] does not include the FE estimators of the individual effects u; and
the constant term «. The resulting within estimator for f is

B =(X'X)"' Xy, (2.1.11)

with Var(B) = 02(X'X)~" where 2}, = 23 — #;, and § = y;; — ;.. Therefore,

D=
=

-+
Il
fu

B=0 > (i — T )(wa — ZZ v — ) (i — ). (2.1.12)

=1

However, for the calculation of the estimators for o and p;, we need to impose the
following restriction: Zfil i; = 0. Following that, it is easy to calculate the & and [ :

v=y.—fz.  and i = G —a— B, (2.1.13)




2.1. Linear models

N T
where 7 = Z(Z yit/T;)/N and similarly for the other variables.
im1 t=1
After all, an important question lies in how we can test the existence of fixed effects

in panel data. The fixed effect model is compared to the pooled model by means of an
F-test with null hypothesis that all fixed individual effects u; are equal to 0. The test

statistic is ) )
(Rpool - RFE)/(N - 1) %) Ja

where R?_, is the residual sums of squares from the OLS estimations of the pooled

F =

(2.1.14)

'POO
model, whereas R%p occurs from the LSDV or within regression of the FE model, K
is the number of independent variables, n = valel denoting the total number of

observations in the dataset, and (N-1) and (n-N-K) are the degrees of freedom of the
numerator and denominator, respectively. Note that when individual fixed effects exist,
the OLS estimators of 5 from the pooled model are biased and inconsistent, since the
fixed effects were omitted or ignored. This comes in contradiction with the unbiased
and consistent FE estimators of 5. Therefore, if the null hypothesis Hy is rejected, we
can conclude that the FE model is preferable to the pooled OLS.

2.1.3 Random effect model

The random effects model is defined as
Y=o+ + B+ +ow, =1, N;t=1,.,Ti (2.1.15)

where u;; = p; + v; is the error term of and both the firm specific effect u; and
the remainder disturbance v are stochastic with p; ~ I1D(0, ai) and v;; ~ I1D(0,02).
In addition, p;’s, v;¢’s and z;’s are assumed to be independent of each other and
among themselves [Baltagi, 2005]. This model is appropriate when the N cross-sectional
units are randomly drawn from a large population and the obtained inferences regard
this population. Thus, the p; are strictly uncorrelated with the explanatory variables

[Greene, 2012].
For the computation of the variances 03 and 02, we will use the matrix notation of

2.1.15 which is
Y=o, +XB+u=2720+u, (2.1.16)

u=Z,p+v,

where n = Zf\il T;, y is a vector with dimension n and § of dimension K, X is an
n x K matrix, Z is the matrix containing all regressors X, and the constant term «, ¢,
denotes a vector of ones with dimension n and ¢’ = (¢, #’). In addition, Z, = diag(cr,),
po= (p1,...,pn) and v = (v11, ..., 011y, ..., UNTy ). Therefore, the variance-covariance
matrix €2 for unbalanced data can be written as

Q= E(u) = 032,72, + o)1, (2.1.17)

9



Chapter 2. Panel data modelling

where 7,7, = diag(Jr,) and Jr, is a T dimensional matrix of ones. From the form of
the disturbance covariance matrix 2 we can obtain

ai—l—az fori=jt=s
fori=j,t+#s (2.1.18)
otherwise,

cov(ui, ujs) = o’
0

1 fori=j,t=s

o2

corr(ui, ujs) = { =5 fori=j,t#s (2.1.19)

2 2
Uquoﬂ

0 otherwise.

[Fuller and Battese, 1974] suggested a way to obtain estimations equivalent to GLS

for[2.1.15] They proposed to multiply [2.1.15/ by 0,Q2~/2 and apply OLS on the resulting
regression equation. Thus, the matrix Q2 is needed, and, for this reason, we will

compute the spectral decomposition representation of ) for getting the Q~'/? easier.
The decomposition will be

Q = diag[(T;o7, + o2)Jr, + o2Er), (2.1.20)

where jT,L. = Jp/T;, Ex, = I1, — jTZ. and Ir, is the identity matrix of dimension 7;. As a
result, B
O = diag[(Jr,/w:) + (Br,/0,)], (2.1.21)

with w? = Tjo + o}. Following the steps of the Fuller and Battese (1974) method,
2.1.15 becomes

(yir — 0:5) = (1 — ) + (ziy — 02;)' B + €, (2.1.22)
Ti Ti
where 0; = 122, y; = Z(yzt/TZ) and z; = Z(mzt/Tz) The GLS estimator for ¢ using
=1 =1
the true variances can be obtained from
dars = (Z'(Q)'2)1 2/ () 'y, (2.1.23)

and the best quadratic unbiased (BQU) estimators for [2.1.22| with respect to the vari-
ances, are

/
o UQu
A 2.1.24
(@) (2424
/
P
@2 = Y (2.1.25)

tr(P)’

w2 —52 . . T
with &2 = =27, Q = diag[Er,] and P = diag[Jr,].

Unfortunately, the true disturbances are unknown, and the GLS estimators in
and [2.1.25] cannot be computed. A number of papers suggested different approaches in

order to obtain feasible GLS (FGLS) estimations. For example, Wallace and Hussain

10



2.1. Linear models

(1969) [Wallace and Hussain, 1969] proposed to substitute the real u with the OLS
residuals tors, K
fiors =y — Zoors =y — Z[(Z'Z71)Z'y] (2.1.26)

whereas Amemiya (1971)[Amemiya, 1971] suggested to use the Within residuals
Qo = U=y — Gy — X =y — dup — X[(X'QX)1X'Qy], (2.1.27)

where § and & are described in [2.1.12) and [2.1.13]

However, in this thesis, the [Swamy and Arora, 1972] method was used, which com-
bines the mean square errors of two different regressions: the Within regression and
Between regression. The Within regression is the same as[2.1.10] and it can be written
as

Qy = QXS+ Qu. (2.1.28)
The second regression is based on the individual means, and it is given by

i = o+ X5 + U, (2.1.29)
which is equivalent to

Py=PZ3 + Pv. (2.1.30)

The resulted OLS residuals from [2.1.30| represents the Between residuals
W =y— 28 =y— (2 PZ) 7' Py. (2.1.31)

Therefore, by substituting the Within residuals @ from [2.1.27)and the Between resid-
uals 4° from [2.1.31 into the equations for the variances in [2.1.24] and [2.1.25| one gets
the following estimators

)~
) u'Qu
- 2.1.32
T W N_-K+1U ( )
1°P0® — (N — K)o?
2 _ WP Jo, (2.1.33)
b n—tr(Z'PZ2)"\2'2,2,7)
where Z'Z,, = diag(Jr,). Finally, the FGLS estimator of § will result by using the &2
and &i to construct the variance-covariance matrix §2 in [2.1.23]

[Breusch and Pagan, 1980] described a Lagrange multiplier (LM) test for balanced
panel data to determine if there is a significant random effect in the data, based on the
null hypothesis that the variances of the individual specific terms are zero, Hy : ai = 0.
[Greene, 2012, Chapter 14] shows a modified version of this test for unbalanced data.

The LM statistic is given by

o)

) Y [(Ti&)? — efei]
LM = [=— 12 (2.1.34)

11



Chapter 2. Panel data modelling

where €; is the error term of the pooled OLS regression. The test statistic follows chi-
square distribution under the null hypothesis with one degree of freedom. When the
null hypothesis is rejected, it is indicated that heterogeneity exists among cross-section
units, and the random effects model is more appropriate than the pooled OLS.

2.1.4 Fixed or Random Effects

[Hausman, 1978] has proposed a test to examine which model among fixed effects and
random effects models can treat the data better. The test is based on the correlation
among the individual effects p; with the regressors x;;, because, as aforementioned,
when the two variables are uncorrelated, the p; is randomly distributed, and thus, the
random effects model is preferable. Therefore, the random effects estimator for [ is
consistent and efficient only under the null hypothesis of no correlation among p; and
z;+ [Verbeek, 2004]. This comes in contradiction with the fixed effect estimation, which
is consistent and efficient under both hypotheses. For the test statistic, the differences
of the two parameter estimations are considered and also the following property is used

@(BFE - BRE) = Q(BFE) — @(BRE) (2.1.35)

, with BFE and BRE denoting the estimators for g from the fixed effects model and
from the random effects model, respectively, and with V’s as their covariance matrices
[Verbeek, 2004]. Following that, the test statistic can derive from

H = (Brr — Bre)'[VBre — VBre] ™ (Bre — Bre). (2.1.36)
The Hausman test statistic has a chi-square distribution with K degrees of freedom and,

when the null hypothesis is rejected, one can conclude that the fixed effect model can
handle better the heterogeneity across the individuals than the random effects model.

2.2 Binary response models

A discrete choice model intends to describe, explain and forecast choices among a number
of discrete outcomes. In a continuous outcome, calculus is used to derive an optimal
solution to the model.

Let define a set of observations of units ¢ over time ¢, say {y;;s : i = 1,..., N;t =
1,...,T}. This set is either referred to as pooled cross sectional time series data or panel
data. In case the set is assumed to be either dominated by the time period or fewer units
as compared to the time period length, the set is regarded as a pooled cross sectional
time series data or simply pooled data. On the other hand, in case, the set is assumed
to have observations dominated by the numbers of units over the time period. These
units are (typically) a random sample — the idiosyncratic differences across individuals
are not of interest: one deals with panel data. The key idea is that asymptotics hold as
T approaches infinity as N is thought of as fixed.

12



2.2. Binary response models

The distinction between the two cases offers different ways of dealing with the statis-
tical analysis of such sample set. Henceforth, the two approaches are discussed below.

A number of applications are translated into observations that are discrete, a con-
trario of continuous outcomes. Estimation of such models is usually done via parametric,
semi-parametric and non-parametric maximum likelihood methods.

2.2.1 Pooled data

Let us define y;; as a binary choice variable taking values in {0, 1} with a probability p;
of success, translating the likelihood of the event to occur. That is,

Dit := P(yit) = 1.

Following [Verbeek, 2004], the discrete variable y; can be modelled as a linear function
of indepent variables {x; : i;t} such as

Yit = TP + €, (2.2.1)
where €;; denotes the error term. With the exogeneity assumption that E(e;|z;) = 0,
is a linear probablity model, which is, however, ill-posed as the expected value
E(yit|xis) = x4 € R may lie out of [0,1] and as error terms may be heteroskedastic
since V(ey|zy) = xu8(1 — xy43).
Note that

Pit = E(yidlwir) = Fxi0), (2.2.2)

for some transformation function F'(-). Choosing F(-) to be a cumulative distribution
function ensures that

F(z) € [0,1Vz, F(—w©) =0, F(») =1, (;]; > 0.

As such, the choice of a specific cumulative distribution F'(-) defines the models of
interest that we introduce in the following.
The probit model uses F(-) as a standard normal distribution which yields

pit = ¢(xuf3), (2.2.3)
where ¢(-) denotes the standard normal distribution function. The logit model assumes

F(-) to follow a standard logistic distribution so that the choice probability takes the
form of

~expzyB) 1

14 exp(zyB) 1+ exp(—zuf)
Another representation of the model is the underlying latent model. Consider the

latent variable vy, as not observed and defined per y;; := 1,0,

Yir = TieB + wir, E(uie) = 0, (2.2.5)

(2.2.4)

it
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Chapter 2. Panel data modelling

where the error terms u;; are assumed to be uncorrelated across individuals, see [Baltagi, 2005|
Greene, 2012]. In addition, it is assumed that individual observations (y;, ;) are iid,
explanatory variables are exogenous and error terms are normally distributed and ho-
moskedastic.

The models described above are adequate for pooled data. However, a core assump-
tion of pooled data is that individuals are homogeneous and time-series and cross-section
analyses with missing controlling individual heterogeneity run the risk of obtaining bi-
ased estimates. To this matter, panel data modelling is a way of controlling individual
heterogeneity, by introducing an idiosyncratic compnent u;. The variable u; captures
the unobservable individual effects and, based on its relation among the explanatory
variables of the regression model, one can discriminates a so-called fixed effect and
random effect model.

The next sections explain how to model panel data with fixed effects, and how to
handle random effects. Then, a criterion to approach the best model is described and,
in the last section, appropriate tests for misspecification of the model variables are
introduced.

2.2.2 Fixed effect model
The fixed effect model can be defined as following:

Ut =i+ B+ vy, i=1,.,N, t=1,.T, (2.2.6)

with
P(yy = 1) = Pr(y;, > 0) = Pr(vy > —p; — xy43) = F(p; + xi45)

where F(.) denotes a distribution function which is symmetric around zero and the
explanatory variables z;; are independent from each other. The variables v;; express
the disturbance term for every individual ¢ at time ¢, following the distribution with
a cumulative distribution function F(.) and which is homoskedastic. This model is
appropriate when there is an individual-specific unobserved effect p; in the data, which
is considered as a fixed unknown parameter and there is no restriction on its relation
among the explanatory variables x;; [Baltagi, 2005].

The usual method of estimating the parameters of interest in a binary choice model,
in this case the unobserved effects p; and regressor coefficient (3, is the computation of
their maximum likelihood estimators (thereafter, MLE). The log-likelihood function of
this model is

log L.(5, 1y ooy pin) := Zlog Pr(yit| s + za3),
it
, which is equal to

Zlog F(ui +x6) + Z(l — Yi) log (1 — F(p; + ﬂfitﬁ))- (2.2.7)

it it
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2.2. Binary response models

Differentiating this function will result to the score functions s(/) and s(u) of the pa-
rameters $ and p, and the MLE can be obtained from these functions. These estimators
are consistent when 7; goes to infinity [Verbeek, 2004].

However, this method has a number of deficiencies |[Greene, 2007]. First, the pa-
rameter estimators of the time invariant variables (e.g. sex, race or religion) cannot
be obtained, as in the linear model. Another shortcoming for this method arises when
the number of individuals N in the dataset is large, since it would be probably difficult
to derive all individual fixed effects estimators p; by maximizing This prob-
lem has a straightforward solution, according to [Greene, 2004a), |Greene, 2004b], for
solving iteratively the resulting system. At the same time, as stated by [Baltagi, 2005|
Greene, 2012, [Verbeek, 2004], the increase of the number of y; while N — oo arise incon-
sistent parameter estimators when 7; is fixed. This is the incidental parameters problem
[Neyman and Scott, 1948| [Lancaster, 2000]. [Abrevaya, 1997] illustrates the existence of
upward bias in the MLE estimator of 3 in the context of a panel logit model with T" = 2.
In more details, he proved that as N — oo, plimB = 2. Monte Carlo simulations are
performed by [Greene, 2004b] on a panel probit model with N=1000, showing that the
bias persists for even larger T', e.g. T = 10 and T" = 20. Also, the observations for

T T
individuals with > y;; = 0 or > y; = 1 are not included in the estimation because they
do not affect the lég—likelihoold 1function [2.2.7] This results from the fact that for such
individuals the fi;,,; is infinite, see [Chamberlain, 1980]. Such problem is known as
the “perfect prediction problem” [Maddala, 1986].

In the case of the linear model, which was discussed in Section 1.1.2, we have in-
troduced the “within transformation” of the model, where for T; fixed we could dis-
card the idiosyncratic constant p; before estimate 5 and get consistent estimates for
[Hsiao, 2003]. This becomes possible when using deviations from group means. How-
ever, for most probability models, the inconsistency of p; is transferred to g as well,
since their estimators are dependent [Baltagi, 2005]. Even by converting the y;; to devi-
ations, like y;; — v;,—1 , removing p;, will yield a variable with unknown characteristics
[Verbeek, 2004 [Greene, 2012].

For the binomial panel fixed effect model, |[Chamberlain, 1980] suggests to discard

the individual fixed effects by conditioning on the minimum sufficient statistic for pu;,
T;
that is, >, v;:. Consequently, the derived function that needs to be maximised is the

i=1
conditional likelihood function

T;
log L(B, prr, -y i) = Y 108 Pr(yialpss + 21483, yia- (2.2.8)
it t=1

This strategy is possible for the logit model, but there are not sufficient statistics for
the probit model |Greene, 2012]. For a logit model we have

ehitith

Pr(yy =1) = T orrmd ' =
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Chapter 2. Panel data modelling

, and, therefore, from the conditional maximum likelihood for T; = 2 yields

e(1i2+$i1)3 >

+log<

1 + e®@etza)s

1
IOgL = log (1 T e(xi2+$i1)ﬁ>

The individuals who do not switch status from 0 to 1 and 1 to 0 are excluded in
estimation, as happened in the unconditional case [Baltagi, 2005].

The conditional maximum likelihood function (9) is free of the incidental parameters,
1; - Hence, we get a consistent conditional logit estimator for j3, Benp without esti-
mating p;. For applications where the Chamberlain conditional estimator was used, see
[Bjorklund, 1985| [Cecchetti, 1986| Willis, 2006]. Note that, by discarding u;, we made
it impossible to derive an estimation for them based on the conditional log-likelihood. A
possible solution is proposed by [Greene, 2004a]: that is to compute on a second step es-
timates for u; by maximizing the unconditional log likelihood function [2.2.7 with respect
to p;, using the consistent estimator of (3, BC]\}LE. However, the resulting estimator for
p; will be inconsistent, as its variance will be biased and no solution exists when Y y;; is
either 0 or 1. Overall, using the Chamberlain (1980) [Chamberlain, 1980] approach, the
incidental parameters problem is addressed; nonetheless, the perfect prediction problem
remains.

Other papers have considered different approaches of obtaining consistent estimators
for 5 without the fixed-T assumption. An approach includes removing the first order bias
in By, asin [Hahn and Kuersteiner, 2002, [Hahn and Newey, 2004, [Fernandez-Val, 2009,
Dhaene and Jochmans, 2015]. On the other hand, [Bester and Hansen, 2009] suggests
an ex-ante correction method using a modified objective function. However, these
methods only solve the incidental parameters problem and not the perfect prediction.
[Kunz et al., 2017] introduced a bias reduced (BR) estimator for a binary response
panel model with a fixed T. Their estimator was based on the idea of [Firth, 1993|
Kosmidis and Firth, 2009] to get a biased estimator for § in linear exponential fam-
ily models for cross-section data. They proposed to deduct the first-order bias of
the Bype from the score function s(f), resulting in a modified score function §(f).
[Kunz et al., 2017 extended this approach to the panel data case, where they showed
analytically that the BR estimator always produces finite estimates with regard to the
fixed effects. Moreover, using Monte Carlo simulations in a probit model for an un-
balanced panel over a five-year period, they illustrated that their BR estimator gives
reliable and bias-reducing estimates of S as well as better performance compared to
other proposals estimators, including the MLE. In their paper, they suggested the use
of an adjusted response variable 3;; (pseudo-responses) defined as

. 1 fi

Yit := Yir + ihitwfit, (2.2.9)
where fi; = f(u; +x45) abd h; denotes the i-th diagonal entry of the projection matrix
H of dimension NT x NT

H:=W'"X(X'WX)'W?
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2.2. Binary response models

, with X being the matrix of the NT" observations on K independent variables and W the

NT x NT diagonal matrix with entries w;; = Therefore, by substituting the

F; (1 F )
pseudo-responses for responses y;; into the log-likelihood function [2.2.7 and maximizing
it with respect to Sy and p;, separately, the modified score functions for 8y and p; are
obtained. That is,

. 1Y ’
S(Bk) — SBR 522 hitl‘itl’kit, (2210)
i=1t=1 it

l

8(pi) = 8" (i) = Z zti (2.2.11)

where s(fx) and s(u;) are the standard MLE score functions from . The B, and
are calculated simultaneously via using an iteratively re-weighted least squares (IWLS)
procedure [Kosmidis and Firth, 2009]. In this thesis, the BR estimator was developed
in the context of a logit panel model. According to [Kunz et al., 2017] , the equations

2.2.92.2. 11 will be

N 1
Yig = Yit + hi,t(iAi,t)
N T 1
5(Bk) = SBR(ﬁk) = Z <yi,t — N+ hi7t(§ - Ai,t)>xk,i7ta

5(ui) = s () = i (Z/z't — A + hz‘t(§ - Ait))v

where h;; is based on the values of w; = Ay (1 — Ay). Following that, [Baltagi, 2005
Greene, 2012, [Verbeek, 2004] mentioned in their works the importance of whether there
is homogeneity, i.e. pu; = p, in the model and, therefore, no individual fixed effects or
if there is heterogeneity. They proposed a Hausman-type test as a means to compare
the pooled logit MLE with the Chamberlain’s conditional MLE (CMLE), for which
[Hsiao, 2003| gives proof. The null hypothesis of the test is the absence of individual
effects and, when this holds, both estimators are consistent and efficient. Under the
alternative hypothesis, the pooled MLE is inconsistent, since the fixed effects are ignored,
whereas it is possible that the CMLE does not use all data, which makes it inconsistent.
For the case of BR estimator, the Hausman test [Hausman, 1978] can be also used since
this estimator is consistent and efficient under both null and alternative hypothesis. The
Hausman test statistic is

& o= (Bor — Pure) [V (Bsr) = V(Bure) ™ (Bor — Bure), (2.2.12)

where V are the covariance matrices. This statistic follows a chi-squared distribution
under the null hypothesis with K degrees of freedom, where K is the dimension of
B without the intercept term of the model. If V(BBR) is larger than V(@BR), their
difference is assumed to be zero and, consequently, the Hausman test statistic is zero.
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Chapter 2. Panel data modelling

2.2.3 Random effect model

The random effects model is represented by
Y =i + B+ vy, i =1, N, t =1,..T,,

where P(y;; = 1) = F(xy4/3). The individual specific effect y; in this model is a random
variable while p; ~ iid(0,07) and vy ~ 7id(0,07) are independent of each other and of
x4 for all 7 and ¢t. The explanatory variables are exogenous, while the error terms follow
the distribution of the cumulative function F(.)and are homoskedastic. Also for ¢ # s,
one has E(uyv;) = ai. As a result, the error terms v;; from different time periods
2
o
t depend on their correlation with — +“ 5 (see [Baltagi, 2005] and [Greene, 2012]).
24+0
As mentioned earlier, a common method of computing £ in a binary choice model is
by maximising the log-likelihood function in order to obtain the MLE. The likelihood
function for the individual i is the joint probability across all T; observations and for a

random effects model is

Li = PT(yi’l, cesi, Ty X) = f Jf(ui717 ced Ty )dum...di,Ti. (2213)

These T; integrals are not independent, thus the computation of the MLE based on
T;-dimensional integrals is hard and not feasible as soon as T; > 4 . To overcome
this problem, one can condition the joint density of (u;1,...,u;r;) upon pu; and get
independent error terms w; . Hence, the joint density of (u;1, ..., u; 1) is

T;

+0
f(ui,la ey UzTJ = f

0 t=1

Uit
[ 1 e, (29.14)
Ly

where the individual probability density functions are
Uit
J f(uiyt\,ui)duiyt = Pr(yiﬂg\,ui + iEi,tﬁ) (2215)

L

After these steps, the L; can be derived from T; one-dimensional integrations. An

assumption on the distributions of v;; and p; is left to be made. It is better to consider

the same distribution for them, in order to avoid nonstandard distributions for u; + v.

As a first approach, someone can consider the logistic or normal distribution, as they

are the most common in practice. Unfortunately, a multivariate logistic distribution

for v; 1, ...,v; 1, will not be the best choice, due to its property of having all correlations
1

equal to 5 (for more details see [Maddala, 1986]). However, the multivariate normal

distribution appears to be perfect for this method. In more details, we can assume that

E(:uz,t‘X) =0, V(MZ,t‘X) = 17 Cov(ui,taui,s’X) = 0—3 fO’I”S # 1.
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2.2. Binary response models

and
pi ~ iid(0,072), viy ~ id(0,1 — 07

Having these distributions, we deduce to the random effects probit model for panel
data, where the distributions functions that are needed for the likelihood function [2.2.14
and 2.2.19] are:

i T T; )
gb (:u’ J/f) 7 Zf yi,t = ]_
4/1_0'“

P(yislps + xi48) = o+ 008 : (2.2.16)
1— 7 2t . = O
¢ /1 _ O_Z ) Zf y ,t
1 12
i) = - ), 2.2.17

where ¢(.) denotes cumulative distribution function of a standard normal variable.
Butler and Moffit (1982) [Butler and Moffitt, 1982] outline an algorithm to compute
(23), assuming normality distribution for the individual effects u;, where Gaussian
quadrature procedures are used. For a detailed description of this approach consult
[Butler and Moffitt, 1982]. Moreover, according to [Greene, 2012], if individual random
effects exist in the data and are ignored, the MLE for § obtained from a pooled probit
will be inconsistent. For that reason, it is crucial to examine whether this kind of effects
exists in the data and decide what model is more appropriate for them. |Greene, 2012]
advocates the use of the likelihood ratio (LR) among the pooled and random effects
pooled model with HO : ai = 0, and test statistic

LR = —2(logLy — logLy), (2.2.18)

where logf} r and logiU indicate the log-likelihood values of the restricted model, in that
case, the pooled model and the unrestricted random effects model, respectively. The
statistic LR follows Chi-square distribution with one degree of freedom. Instead of this
test, the Wald test and Lagrange multiplier (LM) test can be used (see |Greene, 2012]).

2.2.4 Fixed or Random Effects

In panel data arises the question of whether fixed individual effects are more appropriate
for the data rather than random effects. In the concept of binary data, we can distinguish
between these two models by using a third model [Mundlak, 1978, [Chamberlain, 1984]
Wooldridge, 2002]. The model assumes that the individual effects y; are linearly depen-
dent to the individual means z; for all time varying regressors x; ;.

where e; ~ [TN(0,0?) represent the errot term and ¢ is the coefficient of the individuals
means x;. Wooldridge and Chamberlain propose in their analyses to calculate the means
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Chapter 2. Panel data modelling

of xit over all observations (all individuals and years) instead of individually means.
However, this will create a complication in the unbalanced panels. By adding [2.2.19] to
the fixed effects regression model [2.2.6, we got this random effects formulation

y;t = [ + ;0 + $;7t5 + € + Uiy, 1=1,...N, t=1,..1T;, (2220)

with Pr(y;; = 1) = F(p + Zj0 + 7,8 + €;).

Mundlak [Mundlak, 1978] shows that if § # 0, the individual effects y; are correlated
with the regressors x;, of the model, and the model is a random effects model
which deals with the problem of the aforementioned relation. At the same time, a pure
random effects model will be derived if § = 0. Therefore, by comparing these two models,
we can draw conclusions on the dependence between ;1 and x;; and, consequently, on
the existence of fixed or random effects. A Wald test can be applied here with null
hypothesis of 6 = 0, which is the hypothesis of the random effects model |Greene, 2012].
Ify; and x;, are correlated but a pure random effects model is used, which ignores that
association, then, the resulting estimator will be biased. The Wald test statistic is

W =48§V(6)1, (2.2.21)
where V(S) denotes the covariance matrix of 4 and follows a chi-square distribution with

N degrees of freedom.
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This chapter discusses two approaches in credit risk modelling on a mortgage port-
folio. For sake of compliance, a number of features related to the models can not been
disclosed e.g. client-specific data, levels of model outcomes and driver description have
been removed or anonymized.

In this chapter, we study different approaches to model the LGD for mortgage assets.
As mentioned, the Loss Given Default represents the percentage of the Exposure at
Default (EAD) which is expected to incur a loss from a default event. There are a
number of ways to calculate loss given default via e.g. probability of recovery, loss
averaging derivation, etc. We chose to model the LGD by defining two events: cure and
no-cure, so that
LGD = (1 — Cure rate) - LGN,

where the Cure rate is the percentage of the defaulted counterparties curing from default
and the Loss given no-cure (thereafter, LGN) is the loss for non-cured defaulted loans.
Therefore, the LGD model relies on two underlying models.

The chapter is divided into three sections. Section 1 and Section 2 deal with the
two underlying LGD submodels, respectively, on the so-called Cure rate and LGN.
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Chapter 3. Data analysis in credit risk modelling

Therein, pooled and panel data regression analysis are performed for the two models as
well as performance backtesting tests. Then, Section 3 implements the resulting pooled
and panel LGD models and compares their performances. The structure of this chapter
is illustrated in Figure |3.1]

Cure rate model LGN model
NHG model Non-MHG model
4 . 2 I S
Consfruct Consfruct Consfruct
Pool data model Pool data model Pool data model
Construct Construct Construct
Panel data model Panel data model Panel data model
| )
Compare their Compare their
performance using In- performance using In-
sample and Qut-fo- sample and Qut-fo-sample
sample tests tests
LGD model
Y

Compare thei performance of
ihe Pooled and Panel data LGD
models using In-sample and
Qut-fo-sample tests

Figure 3.1: Structure of the chapter.

A performing counterparty is said to be defaulted according to [BCBS, 2000] or is
considered unlikely to pay its debt or fails to pay in time its financial obligation due to
the bank within the contractual defined period. Notwithstanding the duration of this
defined period, a counterparty which is past due more than 90 days on any financial
obligation to the bank, is considered to be in default.

The portfolio with all the defaulted clients gives information about the status of ev-
ery contract. If it is indicated as “cure” then the counterparty returns to the performing
portfolio, otherwise is qualified as “uncured”. In the last case, either the debt is consid-
ered a loss (write off) or the contract is recovered without loss for the bank (paid-off).
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3.1. The Cure rate model

The date that the “cure” or “uncure” is assigned is the client’s default end-date (default
is closed) and the year of the default end-date is called outflow year.

The LGD model was developed for rating both healthy and defaulted clients which
belong to the performing and already defaulted portfolio, respectively. Consequently,
the selection of the scope years for each portfolio is important in order to be aligned the
contracts of the two datasets. The selection of the defaulted dataset must align with
the performing one. For retail exposures, the estimates should be based on a business
cycle of data [BCBS, 2006].

In this thesis, the LGD model that will be developed, it is based on a 5-year dataset
which contains all the contracts that were in default during these years. Each of these
contracts is observed at most 5 times based on whether the mortgage loan has cured
and left the defaulted portfolio, or not. Therefore, this is an unbalanced panel dataset,
where contracts represent the cross-section dimension and years denote the time-series
dimension.

This dataset contains all the credit characteristics of mortgage loans at client level.
For example, the Loan to market value (LTMV') variable is contained in this dataset
denoting the ratio of the contract’s total debt to the market value of the collateral.
Another variable, is the one that counts the number of payment terms in arrears for
every defaulted contract or the one that indicates if the defaulted contract is cured and
left this dataset or not. For confidentiality issues we do not enter into more details
about the dataset’s variables. For that reason, in the rest of this thesis we will not
refer to these variables with their real names, but instead we will call them Driverl,
Driver2, etc. The full analysis and description of these drivers is disclosed only to the
thesis committee.

3.1 The Cure rate model

The C'ure rate defaulted model was constructed first, in order to understand the prob-
ability of a loan to stand out of a defaulted status (in a regulatory sense).

3.1.1 Model construction

For the development of this model the entire 5-years dataset was used. Bivariate analysis
was performed to assess the relationship among the response variable and the possible
regressors. The dependence regarding the different continuous and categorical regressors
was measured by means of a Chi-square test, and, the strength of dependence among all
the variables was assessed, using a Kendall tau correlation coefficients. Considering the
results of these tests, the explanatory variable x; for the C'ure rate model was chosen.
The results of these tests are confidential and therefore were removed from this report.
Hence, here we will call the explanatory variable Driverl.

The Cure rate being a probability, one defines the following pooled and panel data
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models, respectively: For a unit ¢ € {1,..., N} and time period ¢t € {1, ..., T} ,
Cure ratey = Pr(a + 51 - Driverly + e > O), (3.1.1)

where Driverl is the independent variable, €;; is the regressor error term and coefficients
a, /1 € R, and

Cure ratey = Pr(a + p; + B - Driverly + vy > 0), (3.1.2)

where p; being the unobservable effect for each unit ¢ and v; being the remainder
disturbance term of the model. The coeficients o and [3; are again real numbers.

2.1.1.a Pool data modelling

The performance of the panel data model will be benchmarked against a pooled data
model, as introduced per Chapter 2. In order to model a probability outcome, one
benchmark the cure rate to a logit model which is free of the probit model assumption
of normal errors. Under the same notations,

1

Cure ratey = Aa + f - Driverly) = 1+ exp —(a + B1 - Driverly)
- : it

(3.1.3)

The resulted maximum likelihood estimators for this logistic model on the pooled data
are presented in Table One can see that the intercept and the coefficient of Driverl
are both significant at 1% level. Moreover, the regression coefficient of the input variable
is —0.30, underlying the negative relation of the Driverl with the probability for the
client to cure, as expected.

Table 3.1: Regression analysis results for Pooled logistic model

Explanatory variables Pooled Logit model
constant 1.262
standard error 0.027
z-value 46.54
p-value <.0001
Driver1 -0.302
standard error 0.005
z-value -55.94
p-value <.0001
LogL -9534.156
Number of observations 17008

According to [Verbeek, 2004], for a logit model it is important to be examined for
heteroscedastic errors and omitted variables, as these will result to incorrectly spec-
ified likelihood function and inconsistent estimators. An appropriate framework for
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testing these assumptions is the Lagrange multiplier (LM) test, with null hypothesis
of homoscedastic regression errors and no omitted variables, respectively. However,
the Cure rate pooled model was not studied regarding any omitted variables, since
the model’s variables were already chosen from the Bank. To examine whether the ho-
moscedasticity assumption holds, the quadratic term of the chosen Driverl was included
in the regression model. Details about this LM test can be found in Appendix A. The
results of the LM test are presented in Table [3.2] The test statistic is 3.68 and is lower
than the chi-square critical value with one degree of freedom, which is 3.84. As a conse-
quence, we will not reject the null hypothesis of having constant residual’s variance in
the model.

Table 3.2: LM test for heteroscedasticity in pooled logistic model

HO: o7 = o7 foralli
LM = 3.68
Prob = y*(1) = 0.057

Then, correlation analysis was conducted among Pearson regression residuals and
the predictor variable, in order to examine the weak exogeneity assumption for the logit
model. The Kendall coefficients [Chok, 2010] in Table point out the low dependency
between them, since the correlation coefficient with value 0.149 is smaller than 0.50.

Table 3.3: Kendall rank correlation analysis among regression Pearson residuals and the
explanatory variable for pooled logistic model

Variables kendall Tau b Correlation Coefficients
(Prob = |rl under H0:g = 0)
Residuals and Dnverl 0.149
(=.0001)

2.1.1.b Panel data modelling

As mentioned in Chapter 2, when modelling with panel data it is necessary to develop
two different models, one with fixed unobserved individual effects and one with random
effects. Upon which, one can decide which model is the most appropriate for our data.
First, we focus on the Fixed effects logit model using the Firth’s biased reduction
method as [Kunz et al., 2017] proposed, where we assume that the error terms vy follow
a standard logistic distribution. The maximum likelihood estimators (MLE) were ob-
tained, after the first-order bias was removed from the score functions of the unknown
parameters. The iteratively re-weighted least squares (IWLS) algorithm
[Kosmidis and Firth, 2009] was used, as described in Chapter 2. In this model no as-
sumption was made regarding the relation among client specific effects p; and regressor
x1. However, for the next model we assumed that the two previously mentioned regressor
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terms are uncorrelated and also y; and vy are both normally distributed [Verbeek, 2004].
The last described model is the Random effect logit model, where the MLE’s were de-
rived using the conditional joint density of (w1, ..., ui, p;) upon f;.

Table 3.4: Two competing panel data models

Model Mame Model Expression
1
Fixed Effects Logit 1 4 g-latucB xoriveri (i)
Random Effects probit &(a+p, % Driverly o + ;)

Table presents the form of these two binary response models and their output
estimators are given in Table For both models the regression coefficient of Driverl
is significant and negatively signed as in the pooled model. If fixed effects per unit is
considered, the estimator reduces to —0.171, while for the pooled and random model is
—0.302 and —0.481, respectively. The three models capture almost the same relation
among the response variable and the regressor, as evidenced by the little difference
among the magnitude of the three regressor coefficients. Additionally, one can observe
that the Fixed effect logit model scores the highest log-likelihood (LogL) value, but
according to [Greene, 2012] this is not a fit measure so that the model choice cannot be
chosen upon.

The decision for the most appropriate model to represent our data was taken after
two different statistical tests were employed. First, we considered the Mundlak’s ap-
proach [Mundlak, 1978] which is described in Chapter 2, and suggests to assume that
i; has a linear relation with the individual means of all the time varying regressors
Driverl;. In our case, the predictor variable Driverl is not constant across time so its
averages were computed. After adding these individual means to the regression model,
an augmented binary choice random effects model was derived. For that model the stan-
dard normal distribution function was chosen, since it will be compared among another
probit model. Table (3.5 shows the “pure” random effects probit model in the second
column and the augmented one in the third column. Comparing the estimators of the
variable Driverl from the two models we suspect that the random effects model is not
the preffered one, since these estimators are very different. By including the individual
means in the model the resulting estimators decreases to —0.051, whereas for the "pure”
Random effects model is —0.481. A Wald test was carried out, testing the null hypothesis
that the coefficient of the extra regressor in the augmented model is null [Greene, 2012].
The resulting Wald statistic in Table indicates that the null hypothesis of the ran-
dom effects, and, exogeneity among the regressors and the individual effects, is rejected
[Baltagi, 2005). Thus, a Fixed effect model is deemed more appropriate to model the
data over a Random effect model.
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Table 3.5: Regression analysis results for Fixed effects logit and Random effects probit
models

Models
Explanatory variables Fixed Effects Logit Random Effects Augmented probit
probit (Mundlak’'s model)

constant 1.441 1.882 1.465
standard error 0.151 0.092 0.133
z-value 9.56 20.53 10.94
p-value 0.017 <.0001 <.0001

terms in arrear -0.171 -0.481 -0.051
standard error 0.011 0.016 0.037
z-value -15.118 -29.29 -12.06
p-value <.0001 <.0001 <.0001

terms in arrear mean - - -0.964
standard error - - 0.031
z-value - - -30.709
p-value - - <.0001

82 - 0.205 0.343

G - 0.795 0.657

LogL -3508.9235 -7002.509 -6528.77

Number of observations 170008 17008 17008

Number of contracts 9234 9234 9234

Table 3.6: Wald test for choosing Fixed effects logit or Random effects probit model

HO: Random effect is more appropriate
test that 8=0: chi2(1) = (by) [(Ve, J*-1)]( by) = 892.894
p-value < 2 2e-16
alternative hypothesis: fixed effect model

Following, a Hausman test [Hausman, 1978] was performed based on the differences
between the fixed effect biased reduction logit MLE and the usual logit MLE, in order
to determine which model is preferred. The latter estimator ignores fixed effects and
will be inconsistent under the null hypothesis of client specific effects existence, as
[Baltagi, 2005] explains. The Chi-sqaure value of the test is given in Table and is
28.23, large enough to reject the null hypothesis. Consequently, the Fixed effects model
appears to be more suitable for the data.

The fixed effect logit model is based on the same assumptions of constant errors vari-
ance, no omitted variables and independence among regression residuals and predictors
as the pooled logit model [Verbeek, 2004]. However, the Bank’s modelling team has
already selected the final variable for the model, and as a consequence the LM test for
omitted variables was not employed. For the variance of residuals, a LM test statistic
was calculated, which is explained in Appendix A. The resulting value of this statistic
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Table 3.7: Hausman test for choosing Fixed effects logit or Pooled logit model

HO: Pooled logit is more appropriate
¥2(1)= (b-B)[(V_b-V_B)*-1)](b-B) = 28.23
p-value < 0001
altemative hypothesis: one model is inconsistent

is displayed in Table [3.8 and its low magnitude indicates that we cannot reject the null
hypothesis and the appearance of homoskedastic errors in the regression model. As
regards the third assumption, a Kendall correlation analysis [Chok, 2010] was imple-
mented between the regression Pearson residuals and the covariate Driverl (see Table
3-9). The tau coefficient value of —0.194 concludes to a low negative correlation. Fi-
nally, the dependence between the individual effects p; and the regressor variable was
assessed by the means of Kendall rank correlation [Chok, 2010]. The output coefficient
is presented in Talble and is higher than 50%, suggesting a rather strong correlation
among them. This result was expected after the rejection of the Random effects model
from the Wald test in Table 3.6

Table 3.8: LM test for heteroscedasticity in fixed effect logit model
HO: r.r:-2 = g2 forall i

LM = 3.36
Prob = y2(1) = 0.0578

Table 3.9: Correlation analysis among regression Pearson residuals and the explanatory
variable for fixed effect logistic model

Variables Kendall Tau b Cormrelation Coefficients
(Prob = |r] under HO: Rho=0)
Residuals and Driver? -0.194
(=.0001)

Table 3.10: Correlation analysis among regression individual fixed effects and explana-
tory variables

variables Kendall Tau b Correlation Coefficients
(Prob > |r| under HO: Rho=0)
Individual effects and 0.645
pDriverl (<.0001)

In conclusion, the two models which will be compared, Pooled logit and Fixed ef-
fect logit models, for modelling Cure rate regarding the defaulted units in a mortgage

portfolio are shown in Table below.

28



3.1. The Cure rate model

Table 3.11: Regression analysis results for Pooled Logit model and Fixed effects bias
reduction Logit model for the defaulted Cure rate model

Models
Explanatory variables Pooled Logit Fixed Effects Logit
constant 1.262 1.441
standard error 0.027 0.151
t-value 46.54 9.56
p-value <.0001 0.017
Driver1 -0.302 -0.171
standard error 0.005 0.011
t-value -55.94 -15.118
p-value <.0001 <.0001
LogL -9534.156 1.441
Number of observations 170008 0.151
Number of contracts 9234 9.56

Using equations and the two estimated final models are given by the
following Pooled logit model:

1

C tei = , 3.1.4
e T exp — (1,262 — 0.302 - Driverly) (3.14)
and the following Fixed effect logit model:
1
Cure rate; = (3.1.5)

1+ exp —(1.441 + p; —0.171 - Driverlit) '

3.1.2 Model performance

After constructing a model, it is very important to assess the accuracy of its predictions.
According to [Giancristofaro and Salmaso, 2007], when we evaluate the predictive abil-
ity of a model it is not enough to assess its performance only on the data used to fit
it, because the results will be biased in favour of the model. Therefore, it is better
to also evaluate its predictive power on an independent sample of the same popula-
tion. When a model performs better for the data used to develop it than for any
other sample, then its resulting estimates are sample-specific without generalizability.
As [Picard and Cook, 1984] mentioned in their paper, this phenomenon is often called
principle of optimism. For this reason, a backtesting procedure was applied to the
two Cure rate models using In-sample and Out-of-sample tests, testing the predictive
power of the models on the units used to develop them and also on excluded units from
the development dataset. The most important questions rely on whether the models
are able to distinguish correctly the cured from non-cured units, and how accurate the
predicted rates to the observed are [Giancristofaro and Salmaso, 2007].
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2.1.2.a In-sample test

In this test, the observations which will be used to validate the models are part of the
construction datasets, explaining the name “In-sample” test. Specifically, the develop-
ment dataset is the entire dataset. All units that were observed in the dataset to be
in default during the last year were then used as a validation dataset. Therefore, the
models [3.1.4] and [3.1.5] were applied on the validation data, and, a number of statistical
tests were employed to evaluate their discriminatory and calibration ability.

Discriminatory power

According to [BCBS, 2006, Chap 3] “The procedure of applying a classification tool to
an obligor for an assessment of her or his future status is commonly called discrimina-
tion.” Therefore, discriminatory power of a model is the ability to discriminate correctly
among different status, such as defaulting and non-defaulting clients. Our models will
be assessed regarding their ability to distinguish correctly the cured loans from the
non-cured.

Model accuracy. In order to assess the ability of the model to adequately discrim-
inate the unit, one translates the occurence of a cure event into a binary classification
problem. To this matter, one artificially converts a continuous value, here the probabil-
ity of curing, into a binary variable by defining a cutoff value ¢, with test results being
designated as positive or negative depending on whether the resultant value is higher
or lower than the defined cutoff. More formally,

¥ =Lir=q, (3.1.6)

where T' denotes the predicted probability of cure and ¢ a threshold constant. For the
discriminatory power of the models the sensitivity (Se) and specificity (Sp) measures
were calculated as well as the false cure predictions (False Positive fraction / FPF) and
false non-cure prediction (False Negative fraction / FNF) [Lopez-Raton et al., 2014].
Se(c) is the probability that the model correctly predict that a counterparty will cure,
given a specified threshold probability c, whereas Sp(c) denotes the probability that a
model correctly classifies a non-cured counterparty as non-cured, given the threshold c.
The FPF and FNF are the probabilities for wrongly status classification by the model.
FPF occurs if the model incorrectly predict that a loan will cure and FNF would occur
in case a loan was classified mistakenly as non-cured. These measures are defined in
mathematical terms as:

Se(c) =P(§ =1y = 1), (3.1.7)
Sp(c) = P(§ = Oy = 0), (3.1.8)
FPF =P(j = 1|y = 0), (3.1.9)
FNF =P(j =0y = 1), (3.1.10)
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where y denotes the observed cure variable [Lopez-Raton et al., 2014].

According to [Greene, 2012], one must choose wisely the value of threshold ¢ and
not randomly. For example, by selecting ¢ = 0.5 in a dataset with very small amount
of zeros or ones regarding the response variable y the prediction rule (5) might not
be able to predict any zero (or one). For this reason, four different methods were
considered to find an optimal cutpoint c¢[Lépez-Raton et al., 2014]. First, the Youden
Index method was used where the cutpoint ¢ maximizing this quantity Y'I(c) = Se(c) +
Sp(c) — 1 [Youden, 1950], whereas in the ROCO01 method ¢ minimizes the distance
among the ROC plot and point (0, 1), i.e minimizes this measure (Sp(c) —1)? + (Se(c) —
1)? [Metz, 1978]. The next method which minimizes the |Sp(c) — Se(c)| in order to
achieve as close to exactly the same as possible percentages of correct cure and non-cure
classification is called SpEqualSe. In the last approach, MaxSpSe, ¢ maximizing the
min(Sp(c), Se(c)). For more details about these approaches and alternative ones see
[Lépez-Ratén et al., 2014].

For the four aforementioned methods the four different measures and an overall
accuracy of the two models are computed and shown in Tables and below. The
accuracy , or “the fraction of the study population that is decided correctly” [Metz, 197§]
is the proportion of the correct classified contracts over all the defaulted ones. What
is interesting in these tables is the surprisingly different optimal threshold probabilities
¢ for the two models. For the FE logit model a probability close to 0.75 was proposed
as the optimal one from all the four methods, whereas for the Pooled logit model the
optimum value for c is different for every method and it ranges between 0.30 and 0.44.
This means, that most of the times the FE model assigns probabilities equal or higher
than 0.75 to the cured loans and at the same time the other model assigns much lower
probabilities to the cured contracts, as is reflected from its low optimal cutpoints.

Furthermore, the results in Tables and indicate very high values of sen-
sitivity and specificity for the Fixed effect (FE) model under all the four approaches.
Pooled logit model scored lower number of accurate predictions than the FE model
regarding the four different optimal thresholds. All in all, the FE model managed to
discriminate almost all the contracts correctly under the threshold ¢ = 0.74, reaching
overall accuracy very close to 100%. While the Pooled logit model predicts wrongly cure
for non-cured contracts in a level of 34.94% and non-cure for cured contracts 11.97%,
based on Youden Index method, scoring an accuracy 76.44%. In the case of MaxSpSe
approach and SpEqualSe where the cutpoint ¢ is higher, the pooled model has about
the same accuracy as in Youden Index method and the FPF is reduced at 22.9%, but
the FNF grows at 26.20%. This phenomenon is mentioned in [Greene, 2012], where he
says that by changing the value of the threshold probability ¢ so as to classify correctly
more observations with y = 1, results to increase the incorrectly classifications for data
with y = 0.

In Appendix B plots of the Se(c) and Sp(c) measures for the two models against
nine different cutpoint probabilities can be found. From these plots it can be seen that
the FE model can predict actual cure contracts better than the pooled model for all the
thresholds. Specifically, when ¢ € {0.1,...,0.7} the model with the unit-specific effects
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predicts successfully all the cured loans. However, as regards the non-cure contracts the
FE model predict actual non-cured contracts more accurate for ¢ > 0.3.

To conclude, according to the aforementioned statistics measures the Pooled model
has less discriminatory power than the FE model for thresholds ¢ € {0.3,...,0.9}, but
when ¢ = 0.1 and ¢ = 0.2 its specificity is better than the one of FE model.

Table 3.12: Model accuracy results for the Pooled logit model

Method Cutpoint  Accuracy Sensitivity Specificity FPF FNF
Youden Index 0.30 T6.44% 28.03% 65.06%  1197% 24.94%
ROCO1 037 T6.38% 280.63% T222% 1937% 27.78%
SpEqualSe 043 T6.38% 73.80% Tr10%  2620% 2290%
Max SpSe 0.44 T5.47% 73.80% TrA0%  26820% 2290%

Table 3.13: Model accuracy results for the Fixed Effects logit model

Method Cutpoint  Accuracy Sensitivity Specificity FPF FNF
Youden Index 0.74 99.81% 99.83% 99.83% 017%  017%
ROCO01 0.74 99.81% 98.83% 99.83% 01A7%  017%
SpEqualSe 0.75 99.86% 0958.83% 100% 017%  0.00%
Max5SpSe 0.74 99.81% 99.83% 99.83% 017%  017%

Kolmogorov-Smirnov test, Accuracy Ratio and AUC. The discriminatory abil-
ity of the two models was also assessed by computing the Kolmogorov-Smirnov (KS)
statistic, Accuracy Ratio (AR), the Area Under the ROC Curve (AUC). The KS test can
be used to examine whether the two data samples originate from the same distribution,
with test statistic the maximum distance of the two cumulative distributions functions
(CDF) |Rezac¢ and Rezac, 2011, Rasero, 2006]. In our case, the two data samples are
the cure and non-cured loans from the defaulted loans in-sample validation dataset.
Hence, the higher the value of this test statistic the higher the distance among the two
CDF, and therefore, the better discrimination among the cured and non-cured loans.
Furthermore, the AR is a summary index of the Cumulative Accuracy Profiles (CAP)
curve, which is based on the cumulative probabilities of cured and non-cured loans for
the entire dataset. Thus, AR measures the model’s predictive accuracy across all the
data [BCBS, 2006, Chap 3]. Moreover, The AUC statistic is the area under the Re-
ceiver Operating Characteristics (ROC) curve, which is the plot of Se(c) against 1-Sp(c)
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Table 3.14: Kolmogorov-Smirnov test statistics, Accuracy Ratios, Area under the ROC
curves and confidence intervals for the in-sample validation dataset

Model Statistic Confidence interval (95%)

Kolmogorov-Smirnov . Lowerbound  Upper bound

Fixed Effects logit 08729 096749 0g977a

Fooledlogit 05308 049049 05708
Accuracy Ratio

Fixed Effects logit 0.9983 0.9971 0.9996

Pooledlogit 0.6339 0.5974 06704
AlC

Fixed Effects logit 0.9992

Fooled logit 0.81649

across different probability values of ¢ [Engelmann et al., 2003, Reza¢ and Rezac, 2011].
This statistic gives the probability that a randomly selected cured loan has assigned
with higher cure likelihood than a randomly selected non-cured loan. Additionally,
AUC is linearly related with the AR and therefore they use the same information
and lead to the same conclusions [Rezéé and Reza¢, 2011, Medema et al., 2009]. For
proof see [Rasero, 2006]. The AUC statistic is also known as c-statistics or AUROC
[Rezac¢ and Rezac, 2011]. Regarding the statistics AR and AUC, the higher their out-
put value the better the model distinguishes between cured and non-cured loans
[Medema et al., 2009].

The resulted test statistics are presented in Table The high ability of the FE
model to differentiate the contracts among cured and non-cured, is deduced from the
very high statistics output values shown in the table. Specifically, all three statistics
score almost 1.00 for the FE model. Whilst, the Pooled model scores are lower than the
FE model output values. Consequently, by comparing the results of the two models, we
can conclude that the model which incorporates loan-specific fixed effects outerperform
the pooled model under these tests and it can discriminate better the loans.

Calibration quality analysis

¢

According to |Giancristofaro and Salmaso, 2007] the calibration is “ a measure of how
close the predicted probabilities are to the observed rate of the positive outcome for any
given configuration of the independent variables of the model”. In addition,

[on Banking Supervision, 2004] states “Banks must regularly compare realized default
rates with estimated PDs for each grade and be able to demonstrate that the realized
default rates are within the expected range for that grade. Banks using the advanced
IRB approach must complete such analysis for their estimates of LGDs and EADs.
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Hence, with regard the calibration quality of a model the differences of the predicted
probabilities that a defaulted client will cure and the realised cure rates, must be studied.

Binomial test The calibration ability of the two models was firstly assessed by means
of a two-sided Binomial test. This test can be used to examine whether the observed
number of cured rates within different classes is consistent with the predicted cure prob-
abilities (BCBS Chapter 3, 2005b). The null hypothesis of this test is that the estimated
cure rate of the class is correct and is normally distributed. A model can be considered
as “Conservative” when the upper bound of its prediction’s confidence interval is lower
than the realised probability, while when the lower bound of the confidence interval is
higher than the realised cure ratio the model is classified as “Optimistic”. If none of the
above cases occur, we have an “Accurate” model and the null hypothesis is not rejected.

The Tables and below present the results of the assessment regarding the
predictive accuracy of the two models in the in-sample period. For the binomial test the
validation dataset was divided into 10 groups of the same size. The test was employed
on two levels, on the 10 deciles as well as on the entire one-year dataset. Tables|3.15(and
[3.16] show the differences between the realized and the observed cure rates which were
calculated for the entire validation dataset and for every decile, respectively. When the
difference is negative, it means that the predicted cure rate is higher than the observed
one and when it is positive means the opposite. The last column of the tables indicates
if the estimated cure rates are “Conservative”, “Optimistic” or “Accurate” based on
the aforementioned definitions. Therefore, when the difference between the cure rates
is negative and the lower bound of the predicted cure rate confidence interval is higher
than the realised cure ratio the model is classified as “Optimistic”. On the opposite situ-
ation, where the difference is positive and the upper bound of its prediction’s confidence
interval is lower than the realised probability, the estimations are called “Conservative”.
The exact observed and predicted cure rates are confidential information and for this
reason are not shown in this thesis. For a better understanding of the different predic-
tions that the two models give, the difference between the observed and predicted cure
rates are illustrated graphically in Table [3.16]

What is striking in the results, is the performance of the FE model which predicts
optimists cure rates for the half deciles and conservative for the rest of them. For none
of these classes managed to estimate an accurate probability. Only when the entire
validation dataset is considered as one class, in Table [3.15] succeed to predict a cure
rate almost equal to the realized one. In contrast, the Pooled model has an overall
“Conservative” character for the entire dataset which align with its predictions for most
of the classes. This means that the model predicts a lower number of defaulted loans
that will cure than the real one. But, for four classes managed to estimate accurate
rates. It is better for a company to predict that less clients will cure and calculate
higher loss than the realized, in other words to get conservative results, rather than
expecting a higher cure rate than the true one and be in the unpleasant position to
find out that its loss will be higher than the expected one. The last case will happen
with optimistic results. Consequently, if we considered only the results for the different
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deciles, the bank’s model calibrates better the data since gives accurate and conservative
results whereas the FE model either predicts higher or lower rates than the observed.

Table 3.15: Binomial test results for the entire in-sample validation dataset

Model Spread between observed Result
and predicted cure rate
Pooled logit 7.63% Conservative
Fixed Effect logit -0.72% Accurate

Table 3.16: Binomial test results for the in-sample validation dataset per decile

Pooled model Differences among observed and pooled logit predicted cure rates
Spread between observed and 40.00%
! . Result
Decile predicted cure rate 30.00%
1 -2.27% Accurate 2000%
2 -2.29% Accurate » 1000%
3 6.51% Conservative 2
. 2 0.00%
4 9.46% Conservative £ T 7 ] 4 s P ; 8 g 10
5 13.30% Conservative S -10.00%
6 15.94% Conservative -20.00%
7 16.02% Conservative 30.00%
8 11.77% Conservative
9 3.92% Accurate +40.00% Deciles
10 3.92% Accurate
MM Differences among observed and fixed logit predicted cure rates
Spread between observed and o
. P ‘ Result 40.00%
Decile predicted cure rate
30.00%
1 -4.96% Optimistic
20.00%
2 -10.64% Optimistic
3 -21.77% Optimistic g 1000%
4 -25.00% Optimistic 5 000
5 -31.27% Optimistic 5 -1000%
6 21.54% Conservative 20.00%
7 25.00% Conservative
-30.00%
8 18.82% Conservative
9 12.91% Conservative ~40.00% Deciles
10 8.14% Conservative

Hosmer-Lemeshow test The calibration power of the two models was also tested
by means of one-sided Hosmer-Lemeshow (HL) test which tests the results of several
classes simultaneously |Giancristofaro and Salmaso, 2007]. The HL test results in one
outcome covering all rating classes and it examines whether the predicted cure prob-
abilities assigned to the different classes, which used in the binomial test before, are
not significantly different from the observed cure rates. The test statistic follows a
Chi-square distribution and the null hypothesis of all predicted cure rates being correct
is rejected when the test statistic is larger than the 95%-quantile of the distribution.
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Table 3.17: Hosmer-Lemeshow test results for the out-of-sample validation dataset per
decile and year

Model Class HL,y Result for HL,,, Result for
H Lal! H Lexc
Pooled logit Deciles 163.26 HO Rejected 4.61 HO Not Rejected

Fixed Effect  Deciles 794.84 HO Rejected  431.95 HO Rejected
logit

As we mentioned earlier the conservative estimations are not harmful for the bank, in
contrast with the optimistic ones. Thus, the HL test statistic was computed first based
on all the predictions per class (H Ly ), and thereafter excluding the conservative cases
(H Love).

From the Table we see that by considering all the estimations that are not
classified as accurate to be “bad” predictions, then both models are failed to predict
correct cure rates, since there test statistics H L, are higher than the chi-square critical
value. However, when the conservative estimations are excluded from the calculations
the Pooled model’s accuracy changed and the null hypothesis was not rejected. This
comes in contradiction with the resulting test statistic regarding the FE, which remains
very high. These results were expected given the many conservative outputs of the
Pooled model and optimistic of FE model, as regards the binomial test. Therefore,
under the condition that the conservative estimations are not “bad” estimations, the
Pooled model performed better than the FE model with respect to their calibration
ability.

2.1.2.b Out-of-sample test.

On the contrary to the in-sample method, in an out-of-sample test, the model perfor-
mance is validated on a dataset out of the training dataset. Given

[Giancristofaro and Salmaso, 2007] an accredited method to perform out-of-sample test
is by Data — splitting, where the entire dataset is splitted randomly into two sub-
datasets, obtaining the development and testing datasets. The split ratio, most of the
times, is between two thirds and three quarters, with the biggest subsample used for the
training dataset and the remaining set as the validation dataset. For other methods to
obtain the development and validation dataset consult [Giancristofaro and Salmaso, 2007].
However, a fixed effects panel data model can be applied only on data with the same
individuals that are used to build the model and not on new ones. The reason for this is
the individual-specific fixed effect which is unique for every individual. As a result, the
development and validation datasets will be different but dependent. In this thesis that
data are unbalanced and a simple data split into two subdatasets is not appropriate.
Therefore, all defaulted units between the first 3 years of the 5-years dataset were chosen
to construct the model, and from the units with remaining years were selected only the
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ones which were observed in the development dataset. For that reason, the estimation
of new models was nessecary. The resulting models based on the contracts which were
get into default or were already defaulted between the fisrt 3 years, are:

Pooled logit model:

1

Cure ratey; = , , (3.1.11)
1+ exp —(1.176 —0.311 - Drwerlit)
and Fixed effect logit model:
1
Cure ratey; = (3.1.12)

1+ exp —(1.661 + p; — 0.091 - Dm’verlit) '

where p; measures the specific fixed effects for each contract ¢ throughout the years t.
The two models were assessed regarding their discriminatory and calibration power,
as in the in-sample test.

Discriminatory power

Model accuracy. As in the in-sample backtesting test, the accuracy, sensitivity
Se(c), specificity Sp(c), FPF and FNF measures were calculated for the two mod-
els [Metz, 1978, [Steyerberg et al., 2010 [Lépez-Ratén et al., 2014]. Four different ap-
proaches were used to get an optimal cutpoint ¢ for the prediction rule in [3.1.0]
[Lopez-Ratén et al., 2014]. The resulting threshold probabilities ¢ are again very differ-
ent across the two models indicating the different probabilities for cure that the models
assign to the same contracts. The Table depicts that for the FE model the optimum
¢ is approximately 0.70 in all cases and using this it correctly classifies the 90.44% until
96.48% of cured units. Fortunately, these high sensitivity values are not harmful for
the specificity measure, which lies between 87.69% and 90.45%. At the same time, the
Pooled model with cutpoint value 0.33 manages to capture 80.63% of the cured con-
tracts and 69.00% of the non-cured ones. Using the SpEqualSe and MaxSpSe methods
the specificity rose slightly to 72.79% as the cutpoint value increased from 0.33 to 0.44
and 0.45, respectively, but the sensitivity yields a reduction by 5%.

In addition, Se(c) and Sp(c) measures were computed for a number of different
threshold probabilities ¢ for the two models. Plots in Appendix B? show graphically
that the FE model always performs better when it comes to classify correctly a cured
loan. Specifically, for ¢ € {0.1,...,0.5} the FE model predicts successfully all the actual
cured loans. As regards the false non-cured predictions (FNF) the Pooled model suffers
from a lower discriminatory power than the other model for all the values for ¢ except
when ¢=0.1. In that case the Pooled model manages to classify correctly 44.38% of the
non-cured loans, whereas the FE model captures only the 16.94%.

Overall, it is noticeable from Table [3.18| and plots in Appendix B that the FE model
is better in distinguishing cured from non-cured loans in the out-of-sample validation
dataset than the pooled model. This is evidenced by the higher accuracy, Sp(c) and
Se(c) values of the first model over the pooled one. Only when ¢ = 0.1 the model which
ignores the loan-specific effects performs better regarding the specificity measure.
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Table 3.18: Model accuracy results for the Pooled logit model

Pooled Logit model
Method Cutpoint | Accuracy Sensitivity Specificity FPF FNF
Youden Index 033 73.06% a0.63% 69.00% 18 37% 31%
ROCO1 033 73.06% a0.63% 69.00% 19.37% 3%
SpEqualSe 0.44 74 68% ThAT7% T279% 24 53% | 27.21%
MaxSpSe 045 74.10% ThAT% T279% 24 53% | 2721%

Table 3.19: Model accuracy results for the Fixed Effects logit model

Fixed Effect Bias Reduction Logit model
Method Cutpoint | Accuracy Sensitivity Specificity FPF FNF
Youden Index 068 9177% 96.48% a7 .69% 1231% | 12.31%
ROCO1 070 90.75% 94 .65% 29.07% 10.93% | 10.93%
SpEqualSe 071 90.72% 90.44% 90.45% 8.55% 9.55%
Max5pSe 0y 90.72% 90.44% 90.45% 9.55% 9.55%

Kolmogorov-Smirnov test, Accuracy Ratio and AUC For the forecasting per-
formance of the two models, three more statistics were calculated. The AR , KS
and AUC statistic values [Engelmann et al., 2003}, [Reza¢ and Rezaé¢, 2011](BCBS Ch.3,
2005) are presented in Table [3.20] The FE model has KS statistic 0.84 and AR 0.92,
meaning that it achieves to make the distinction perfectly among cured and non-
cured contracts. On the contrary, the Pooled logit reaches KS test statistic value
0.49 and AR at the level of 0.59. Therefore, it is considered to be not good as the
FE model based on their discriminatory power. Another statistic that captures the
different performance of the two models is the area under the ROC curve (AUC)
[Engelmann et al., 2003, Rezac¢ and Rezac, 2011]. The model which takes into consider-
ation the loan-specific fixed effect appears to score any random client from the dataset
who is going to cure with a higher event probability than any non-cure client, since its
AUC value is 0.962. The bank’s model accomplishes that in 79.5% of the cases. All
in all, all three statistics indicate that the FE logit model performs better regarding
discrimination of the cure/non-cure clients than the pooled logit model.

Calibration quality analysis

Binomial test The binomial test (BCBS Chapter 3, 2005b) was carried out on the
validation dataset in the out-of-sample period. First, the test was applied on the entire
validation dataset, and then on every year of the dataset separately (Table [3.21]). Fol-
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Table 3.20: Kolmogorov-Smirnov test statistics, Accuracy Ratios, Area under the ROC
curves and confidence intervals for the out-of-sample validation dataset

Maodel Statistic Confidence interval (95%)

Kolmogorov-Smirnoy . Lower bound  Upper bound

Fixed Effects logit 0.8417 0.8151 08682

Fooled logit 04964 04537 0.5390
Accuracy Ratio

Fixed Effects logit 0.9230 0.8041 0.94149

Fooled logit 0.5901 0.5504 0.6298
ALIC

Fixed Effects logit 04962

Fooled logit 07495

lowing that, the data were grouped into deciles and predicted cure rates were generated
for every decile for both models (Table [3.22)). In Tables and the differences
between the realized and the observed cure rates are shown. Moreover, in the last col-
umn of the tables the model is classified as "Conservative", "Optimistic" or "Accurate',
based on the distance between the observed and realized rates. For more details about
these terms see the Binomial test in the In-sample test section.

The results in Tables and regarding the Pooled model are the same as
in the in-sample test. The bank’s model estimates lower number of cured loans than
the observed when the test employed on the entire dataset and on each year separately
(Table and on the most of deciles (Table [3.22)). In the rest of deciles, the Pooled
model predicts probabilities very close to the true ones which are ranked as accurate.
While, the FE model has an overall optimistic character, despite some accurate and
conservative estimations. This is caused because most of the times the FE model predicts
higher cure probabilities than the realised ones. Additionally, from the first graph in
Table we can see that the Pooled model always predict rates that are higher than
the realized ones with maximum error at 14.07% level. On the other hand, the graph
which illustrates the differences among fixed effect predicted and observed rates, shows
that the FE model gives higher errors compared to the pooled logit errors. Therefore,
considering that for a bank is better to be “Conservative” rather than “Optimistic”, one
can result that the Pooled model is better as regards the calibration power.
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Table 3.21: Binomial test results for the entire out-of-sample validation dataset

Model Year(s) Spread between observed Result
and predicted cure rates
Pooled logit Year 4 2.66% Conservative
Year 5 12.77% Conservative
Total 6.79% Conservative
Fixed Effect Year 4 -11.13% Optimistic
logit Year 5 0.45% Accurate
Total -4.56% Optimistic

Table 3.22: Binomial test results for the out-of-sample validation dataset per decile

Pooled model

Spread between observed Differences among observed and pooled logit predicted cure rates

Decile and predicted cure rate Reqult 40.00%
1 -0.42% Accurate 30.00%
2 1.73% Accurate 20.00%
3 9.87% Conservative 10.00% .__./—"”—A\“—*—'
4 8.43% Conservative E 0.00%
5 11.03% Conservative 8 ooo% 1 : : N > e ’ 8 ? 10
; 5 -20.00%
6 14.07% Conservative S0.00%
7 9.47% Conservative £0.00%
8 5.65% Conservative £0.00%
9 3.88% Accurate 60.00%
10 4.19% Accurate Deciles
Fixed EﬂeE model Differences among fobserved and ixed logit predicted cure rates
Spread between observed Result 10.00%
Decile and predicted cure rate 20.00%
1 -6.77% Optimistic 20.00%
2 -31.08% Optimistic 10.00%
3 -18.10% Optimistic 3 o000%
4 -53.54% Optimistic 5 -10.00%
5 15.03% Conservative 5 2000%
6 -8.31% Optimistic 30.00%
7 2.46% Accurate 40.00%
8 32.31% Conservative 50.00%
9 2.15% Accurate 60.00% Deciles
10 1.84% Accurate

Hosmer-Lemeshow test. Moreover, the Hosmer-Lemeshow test

|Giancristofaro and Salmaso, 2007] was applied on the out-of-sample validation dataset
which was grouped first by deciles and then by ultimo year. It tests whether the pre-
dicted cure probabilities assigned to the different classes, are not significantly different
from the observed cure rates. Therefore, the null hypothesis of this test is that all pre-
dicted cure rates are correct. The HL test statistic was computed first based on all the
predictions per class (H L,ll) and thereafter excluding the conservative cases (H L.xc),
as we did in the In-sample test. The results in Table reflect the same conclusions
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as in the in-sample method. In more details, the Pooled model achieves to estimate
accurate probabilities when the conservative estimations are excluded from the calcula-
tions, whereas it fails to predict accurate when all the data are taken into consideration.
The FE model, on the other hand, rejects the null hypothesis in all the cases. As a
consequence, if a company classifies the conservative estimations as “good” then the
Pooled model is preferable than the FE.

Table 3.23: Hosmer-Lemeshow test results for the out-of-sample validation dataset per
decile and year

Model Class HLqy Result for HLgy, Result for
HLg, HL,,.
Pooled logit Deciles 108.96 HO Rejected 0.08 HO Not Rejected
Year 90.23 HO Rejected 0 HO Not Rejected
Fixed Effect  Deciles 822.99 HO Rejected  637.99 HO Rejected
logit
Year 97.33 HO Rejected  97.22 HO Rejected

To conclude, according to in-sample and out-of-sample back-tests the FE model can
discriminate better among cured and non-cured loans than a pooled model. Thing
that conflicts with the poor calibration performance of the FE model and the accurate
predictions of the Pooled model. According to [Diamond, 1992] this is not a surprise,
since “a prediction model cannot be both perfectly reliable and perfectly discriminatory”.
A predictive model with excellent discriminatory power does so sacrificing its calibration
ability to give accurate estimations.

3.2 The Loss-given-no cure (LGN) model

Following the Cure rate defaulted model, the LGN defaulted model is constructed in
order to complete the development of LGD model for already defaulted loans. Given the
particularity of the mortgage products in the Netherlands, the LGN defaulted model is
split into two sub-segments depending whether loans are NHG-guaranteed or not.

3.2.1 Model construction

For the construction of the LGN model a sub-dataset was constructed with all the
non-cure defaulted contracts form the 5-years dataset. Hence, we are dealing again
with an unbalanced panel dataset, but now the number of contracts N is smaller than
in the entire 5-year dataset. As a first step, we test the contribution of each of the
dataset variables to the explanatory power of the model. For the association between
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the explanatory variable and the different continuous and categorical variables, the
Kruskal-Wallis test and Wilcoxon-Mann-Whitney test were performed. Following this,
a Kendall tau correlation analysis was performed.Considering the results of these tests,
the explanatory variables xy,zs for the LGN model was chosen. The results of these
tests are confidential and therefore were removed from this report. Hence, here we will
call the explanatory variables as Driverl and Driverb.

Based on pooled data and in-default contracts, a multilinear regression based on
Driverl and Driver) is built as follows:

LGN;; = a+ (1 - Driverl + 85 - Driverb + ¢, (3.2.1)

where « is the itnercept, 51 and [y are regression coefficeints of independent variables
Driverl and Driver), €; stands for the disturbance term of each unit 7 in every year t.

We are going to construct the aforementioned model and the defaulted LGN model
for panel data, using the same explanatory variables and datasets, and then compare
their performance. The panel data model is:

LGNy = a+ p; + 51 - Driverl + By - Driverb + vy (3.2.2)

where p1; +v; 4 is the error component of the model, y1; denotes the unobservable effect for
cach unit and v;; represents the remainder disturbance term. The remaining variables
are the same as in pooled model.

2.2.1.i NHG portfolio

2.2.1.i.a Pool data modelling

For the NHG model, firstly, a pooled Ordinary Least Squares (OLS) regression is per-
formed with Driverl and Driver5 as explanatory variables in a model with LGN as
dependent variable. The results are shown in Table [3.24] This model has not signifi-
cant intercept. Hence, the same regression is conducted with no intercept. Driverl and
Driverb remain both significant whereas the measure R? increases from 1.9% to 33.54%.
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Table 3.24: Pooled OLS regression output (OLS 1), without intercept (OLS 2) and with
HAC standard errors (OLS 3)

Variables OLS1 0OLS2 0L53

constant 0.030
standard 0.029
error
t-value 1.02
p-value 0.306
Drivert 0.062 0.091 0.091
standard 0.029 0.009 0.008
error
t-value 212 10.17 10.73
p-value 0.034 <0001 =.0001
Drivers 0.005 0.005 0.005
standard 0.001 0.001 0.001
error
t-value 402 412 4.05
p-value =.0001 =.0001 = 0001
R? 0.019 0.335 0.335

Adjusted R* 0017 0334 0334

Mumber of 1255 1255 1255
observations

Then, the model assumptions were tested. We performed both White and Durbin-
Watson tests to check if the error terms suffer from heteroscedasticity and first-order
autocorrelation, respectively. Details about these tests can be found in Appendix A.
The null hypothesis of the White test is that the variance of the error terms is constant.
This hypothesis is rejected at a significance level of 0.03 (Table . Moreover, Table
depicts the Durbin-Watson statistic and the p-values for testing positive (Pr <
DW) and negative (Pr > DW) serial correlation with null hypothesis of no first-order
autocorrelation. Having p-value 0.03 for positive autocorrelation and 0.97 for negative,
we can conclude that our model remainder disturbances are positive autocorrelated.
Therefore, heteroscedasticity-and-autocorrelation-consistent (HAC) standard errors or
simply Newey—West standard errors have been estimated in order to correct the unknown
form of serial correlation and heteroscedasticity in the residuals [Verbeek, 2004].

Lastly, the degree of dependence among the residuals and the two covariates was
examined using the Kendall rank correlation tau ([Chok, 2010]). From the Table
we can see that the associations of Driverl and Driver5 between the residuals are both
very low and negative, since the abosolute values of the two correlation coefficients are
very smaller from 0.5. The value 0.50 is considered as the critical value to determine
if the correlation among two variables is high or not. Therefore, we can consider them
not correlated enough to violate the assumption of independency between residuals and
regressors.
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Table 3.25: White test for heteroscedasticity pooled OLS model

HO: sigmaliy*2 = sigma™2 for all i
chi2 (A)=12.32
Prob=chi2 = 0.031

Table 3.26: Durbin-Watson test for serial correlation pooled OLS model

HO: no first order autocorrelation
DW-value = 1.891
Frob=DW = 0.974 (negative correlation)
Frob=DW = 0.026 (positive correlation)
alternative hypothesis: serial correlation in idiosyncratic errors

Table 3.27: The correlation analysis among regression residuals and explanatory vari-
ables for the OLS pooled NHG model

kKendall Tau b Correlation Coefficients
Frob = |r] under HO: Rho=0

. . -0.138
Residuals and Driver1 <0001
. . -0.128
Residuals and Drivera <0001

2.2.1.i.b Panel data modelling

After the pooled OLS regression analysis, the relation of the explanatory variable with
the independent variables has been examined through a panel data analysis with fixed
and random effects. The fixed effects model tests individual differences in intercepts
without making any assumption about the correlation among p; and the regressors z; ;.
This model is estimated by within effect estimation method. However, the random
effects model assumes the individual differences to be part of the error term and inde-
pendent of the x; ;. The Swamy and Arora (SA)-type estimators captures these random
effects and are illustrated in the following table (Table [3.28)).
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Table 3.28: Regression results of Pooled OLS model without intercept and HAC stan-
dard errors (HAC OLS estimators), Fixed effects model (Within estimators), Random
effects model (Swamy and Arora (SA)-type estimators) for the LGN defaulted NHG
contracts

Variables HAC  Within SA
LS
constant - 0.249 0.213
standard error - 0.034 0.019
t-value - 741 11.365
p-value - =< 0001 =.0001
Driver 0091  -0180  -0.113
standard error 0.010 0.022 0.019
t-value 9164 -8.088 -6.073
p-value =.0001 =.0001 <0001
Drivers 0.005 0.001 0.001
standard error 0.001 0.000 0.000
t-value 3764 2824 2464
p-value < 0002 0.005 0.014
[ - - 0.001
T:“r_i - - 0.029
R? 0.335 0.992 -
Adjusted R*? 0.334 0.979

Mumber of observations 1255 1255 1255
Mumber of contracts 815 815 815

According to [Hausman, 1978] we can distinguish between fixed or random effects
by performing a test based on the random effects estimator property to be inconsistent
under the alternative hypothesis of correlation among the regressors x;; and contract-
specific effect ;. The Hausman type test has been performed among the within esti-
mates and the SA Anova estimator. The result in Table indicates the rejection of
the null hypothesis.

Table 3.29: Hausman test for choosing Fixed effects model or Random effects model

Ho: Random effect is more appropriate
chi2(2) = (b-BYIV_b-V_B-1)l(b-B)
=39.785
p-value = 2.295e-09

alternative hypothesis: one model is inconsistent

Thereafter, the F-test has been performed (Table testing the assumption of
fixed individual effects presence under the null hypothesis of zero unobserved individual
effects. When the null hypothesis is rejected we accept that there is a significant increase
in goodness-of-fit in the fixed effect model and thus the last model is more suitable than a
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Table 3.30: F test for choosing Fixed effects model or Pooled OLS model

Ho: Fooled QLS is more appropriate
test that all u_i=0: F(§14 438)=70.16
p-value = 0001
alternative hypothesis: significant effects

pooled OLS. The large F statistic suggests rejection of HO in favor of the fixed individual
effects (p < .0000).

Finally, the FE model was tested regarding the heteroskedasticity and autocorrela-
tion among the model’s error terms, likewise in the pooled OLS regression. The tests
are illustrated in Tables and [3.32] The White test statistic is 20.833, value that
signifies the presence of heteroskedastic residuals, while the Durbin Watson test mod-
ified for unbalanced panel data indicates that there is positive serial correlation in the
regression at the 0.01 significance level. As a consequence, the Arellano robust estima-
tors [Arellano, 1987] of the standard errors are necessary to be estimated. These fixed
effects estimator’s standard errors are robust to heteroskedasticity and serial correlation
of arbitrary form.

Table 3.31: White test for heteroskedasticity in FE model

Ho: sigma(i)}~2 = sigmas2 for all i
chi2 (5) = 20.833
Prob=chiz = 0.000871

Table 3.32: Durbin-Watson test for serial correlation in FE model

HO: no first order autocorrelation
Dw-value = 2.3866
Prob>=Dw = 1 (negative correlation)
Prob<DW = 2.619e-12 (positive correlation)
alternative hypothesis: serial correlation in idiosyncratic errors

In Table the assumption of indepenedence among residuals and explanatory
variables was investigated, testing the correlation of the model’s residuals and the two
explanatory variables. According to Kendal’s tau correlations coefficients ([Chok, 2010])
of Driverl and Driver), the first has low dependece and the last one is zero-correlated
with the regression’s residuals.
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Table 3.33: The correlation analysis among regression residuals and explanatory vari-
ables for the fixed effect NHG model

Kendall Tau b Correlation Coefficients
Frob = |r] under HO: Rhao=0

_ _ 0107
Residuals and LTMY index =000

_ _ -0.005
Residuals and Terms in arrear 0817

To conlude, the two models which will be compared, Pooled OLS and Fixed Effects
models, for modelling the LGN for the NHG defaulted models are shown in Table [3.34]

Table 3.34: Regression results of Pooled OLS model without intercept and HAC stan-
dard errors (HAC OLS estimators) and Fixed effects model with Arellano standard
errors (Arellano Within) for the LGN defaulted NHG contracts

Wariable HAC  Arellano
OLS Within
constant - 02449
standard errar - .07z
tvalue - 345
p-value - 0.001
Driver1 0.091 -0.180
standard error 0.010 0.074
tvalue 9164 -2.43
p-value =,0001 0.015
Drivers 0.005 0.001
standard error 0.001 0.000
tvalue 3.764 217
p-value =0002  0.031
G - -
G - -
r? 0335 08992
Adjusted B* 0334 0979

Mumber of observations 1255 1255
Mumber of contracts a815 a815

Using equations[3.2.1]and [3.2.2] the two estimated final models for the NHG contracts
are given by the following Pooled model:

LGN;; = 0.091 - Driverly + 0.005 - Driverb; + €, (3.2.3)
and the following Fixed effect model:

LGN;; = (0.249 + ;) — 0.180 - Driverl; + 0.001 - Driverb;; + vj. (3.2.4)
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2.2.1.ii Non-NHG portfolio
2.2.1.ii.a Pool data modelling

A pooled OLS regression employed with the same variables as in NHG portfolio and was
tested for heteroscedasticity and autocorrelation based on White and Durbin-Watson
test respectively. The detailed outputs of the regression are given in Table [3.35] and the
results regarding the tests are shown in Tables and [3.37 Similarly to the previ-
ous pooled OLS regression, the model suffers from heteroscedastic and positive serial
correlated error terms at the .01 significance level. For this reason, the HAC corrected
standard errors are used in the regression. The final pooled OLS model with robust
standard errors is presented in Table (OLS 2). As a final step, the Kendall’s tau
correlation analysis ([Chok, 2010]) among the regression’s residuals and the independent
variables Driverl and Driver5 was performed. The results in Table indicate almost
no correlation for both variables, since both correlation coefficients are closed to zero.

Table 3.35: Pooled OLS regression output (OLS 1) and with HAC standard errors (OLS
2)

Variable oLs1 oLs 2
constant -0.165  -0.165
standard error 0.010 0.013
t-value -16.23 -
12.614
p-value < 0001 =.0001
Driver1 0.412 0.412
standard error 0.0M 0.016
t-value 35.88 25762
p-value = 0001 <.0001
Drivers 0.0M 0.0M
standard error 0.001 0.001
t-value 18.16 14.793
p-value =.0001 <0001
R* 0.202 0.202
Adjusted R* 0.202 0.202

Mumber of observations Ta17 Ta17

Table 3.36: White test for heteroscedasticity in pooled OLS model

HO: sigma(i)A2 = sigmar2 for all i
chi2z (5) = 269.6
Prob=chi2 =.0001
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Table 3.37: Durbin-Watson test for serial correlation in pooled OLS momdel

HO: no first order autocorrelation
Dw-value = 1,227
Prob=DW = 1 (negative correlation)
Prob<DwW < 2.2e-16 (positive correlation)
alternative hypothesis: serial correlation in idiosyncratic errors

Table 3.38: The correlation analysis among regression residuals and explanatory vari-
ables for the OLS pooled non-NHG model

kendall Tau b Correlation Coefficients
Pprob = |r| under HO: rRho=0

. . 0,057
Residuals and Driverl <. 0001
. . -0.022
Residuals and Drivers 0. 006

2.2.1.ii.b Panel data modelling

Following the pooled model, the fixed effects and random effects panel data models were
investigated. The within estimators and Swamy and Arora estimators are illustrated in

Table with the results from the pooled OLS model.

Table 3.39: Regression results of Pooled OLS model with HAC standard errors (HAC
OLS estimators), Fixed effects model (Within estimators), Random effects model
(Swamy and Arora (SA)-type estimators) for the LGN defaulted Non-NHG contracts

Yariables HAC OLS Within SA
constant -0.165 0764 0.289
standard errar 0.013 0.035 0.009
t-value -12.614 2207 20,095
p-value = 0001 = 0001 =0001
Driver1 0412 -0.430 -0.072
standard error 0.016 ooz 0.011
tvalue 25762 -3543 -6.841
p-value = 0001 =0001 =.0001
Drivers 0.011 0.004 0.002
standard error 0.001 0.000 0.000
tvalue 14793 16.67 8.661
p-value = 0001 = 0001 =0001
‘g""j, - - 0.002
'5; - - 0.042
R? 0.202 0.985 -
Adjusted R® 0.202 0.965 -

The variances of the within and Swamy-Arora’s estimators were compared by means
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of a Hausman specification test for the choice between fixed and random effects. As can
be seen in Table [3.40, the Hausman test statistic of 3738.1 resulting the rejection of the
null hypothesis of uncorrelation among individual effects and regressors, and the fixed
effect model preference. Consequently, the absence of fixed individuals effects in the
data was examined by means of the F-test and the outcome in Table suggests that
the method which takes into consideration the ai’s is the more appropriate method. In
other words, the Fixed Effect model is a more representative candidate for the non-NHG
portfolio LGN model.

Table 3.40: Hausman test for choosing Fixed effects model or Random effects model

Ho: Random effect is more appropriate
chiz(2) = (b-B) [(v_b-v_B)A(-1)](b-B) = 373B.1
p-value < 2.2e-16
alternative hypothesis: one model is dinconsistent

Table 3.41: F test for choosing Fixed effects model or Pooled OLS model

Ho: Pooled OLS is more appropriate
test that all w_i=0: F(4296,3218) = 38. 789
p-value <« 2.2e-16
alternative hypothesis: significant effects

Moreover, the White test for heteroskedasticity and Durbin-Watson test for autocor-
relation assumptions were performed on the FE model and the results in Tabes and
indicate the appearance of both at the .01 significance level. As a consequence the
Arellano(1987) [Arellano, 1987 robust standard errors are added to the model correct-
ing these two issues. Thereafter, a correltion analysis among regression’s residuals and
explanatory variables was conducted, in order to test if the assumption of uncorrelation
between them is met. The Kendall’s tau correlation coefficients ([Chok, 2010]) which
are presented in Table denote very low dependence and as a result the assumption
is not violated.

Table 3.42: White test for heteroscedasticity in fixed effect model

Ho: sigma(i)}r2 = sigmar2 for all i
chi2 (5) = 54.874
Prob=chiz <.0001

Table 3.43: Durbin-Watson test for serial correlation in fixed effect model

HO: no first order autocorrelation
Dw-value = 2.376
Prob=DwWw = 1 (negative correlation)
Prob<DW = 2.2e-16 (negative correlation)
alternative hypothesis: serial correlation in idiosyncratic errors
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Table 3.44: The correlation analysis among regression residuals and explanatory vari-
ables for the fixed effect non-NHG model

kKendall Tau b Correlation Coefficients
Prob = |r| under HO: Rho=0

. . 0.072
Residuals and Driverl <. 0001

. . -0.018
Residuals and Drivers 0.035

Overall, the pooled OLS and Fixed Effect final models for non-NHG LGN defaulted
model are displayed in table with their robust standard errors.

Table 3.45: Regression results of Pooled OLS model without intercept and HAC stan-
dard errors (HAC OLS estimators) and Fixed effects model with Arellano standard
errors (Arellano Within) for the LGN defaulted Non-NHG contracts

Variable HAC Arellano
OLS Within
constant -0.165 0.764
standard error 0.013 0.035
t-value -12.614 22.07
p-value <.0001 <.0001
Driver1 0.412 -0.430
standard error 0.016 0.012
t-value 25.762 -35.43
p-value <.0001 <.0001
Driver5 0.011 0.004
standard error 0.001 0.000
t-value 14.793 16.67
p-value <.0001 <.0001
R? 0.202 0.985
Adjusted R? 0.202 0.965

In conclusion, the final models which measure the relation of Driverl and Dricerb
with the LGN of the defaulted contracts in Non-NHG portfolio, are: Pooled OLS model:

LGNit) = —0.165 4 0.412 - Driverlgt) + 0.011 - Driverdit) + €(it), (3.2.5)
and Fixed effect model:
LGNit) = (0.764 + ;) + 0.004 - Driverl, — 0.430 - Driverd; + vi. (3.2.6)

Thereafter the aforementioned analysis and specific after the Hausman test results,
which indicate that a Fixed Effect model is more appropriate than a Random Effect
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model for modelling the NHG and non-NHG already defaulted contracts, the relation
between the individual effects p; and the regressors Driverl; and Driverd; was anal-
ysed by means of a Kendall’s rank correlation ([Chok, 2010]). The coefficient value
0.601 in Table indicates the presence of high dependency among p; and Driverly
for non-NHG loans, while the tau value 0.350 shows a lower but significant correlation
for p; and Driverb; for NHG loans. At the same time, the Kendall tau between u; and
Driverb;; for all the contracts indicates low correlation.

Table 3.46: The correlation analysis among regression individual effects and explanatory
variables for the fixed effects LGN models

Kendall Tau b Correlation Coefficients
Prob > |tau| under HO: Tau=0

Between : NHG non-NHG

. . 0.350 0. 601
Individual effects and Driverl <. 0001 <. 0001
.. . 0.126 0.152
Individual effects and Driver5 <. 0001 <. 0001

3.2.2 Model performance

In this section, in-sample and out-of-sample backtesting were implemented for both
models of LGN (pooled OLS and Fixed Effects) from the previous section. Validating
both models on the same dataset aim to compare their’s predictive performance and
decide which model gives more accurate prediction’s values. The training and evaluation
periods for the in-sample and out-of-sample tests are the same as in the Cure rate
defaulted model performance section.

In-sample test

In this test the development dataset is the 5-year unbalanced dataset with all the non-
cured contracts, and, the validation dataset consists of the last year dataset observations.
Hence, the models [3.2.3 were used. The following tables and graphs present the
residual, calibration quality and discriminatory power analysis of the two models.

Discriminatory power analysis

Figure illustrates the absolute differences between the observed and predicted LGN
of all the contracts with ultimo year 2013. As we can see the majority of LGN predicted
with the Fixed effect model (blue) have lower absolute residuals than the one predicted
with pooled OLS model (red). The exact percentage of the fixed effect model estimated
LGN’s which are closer to the realised LGN is 98%. These results are also obtained
from the LGN averages over all the loans on the validation dataset. The averages of
predicted LGN are displayed in table 33 and compared to the averages of observed LGN
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3.2. The Loss-given-no cure (LGN) model

we can say that the Fixed effect model predicted more accurate LGN values than the
Bank’s model.

Figure 3.2: The absolute residuals from the two models on the in sample validation
dataset of the LGN defaulted developed models
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In addition, the Loss Capture Ratio (LCR) and Loss capture curve were calculated
to assess the ability of the model to rank and distinguish among low and high losses
|ILi et al., 2009].The LCR is considered as the version of AR for continues dependent
variables. Table 35 shows the results of the discriminatory power for each model based
on the Loss capture ratio (LCR). The Fixed Effect model scoring 99.53% LCR and
having its model curve tangent with the ideal model curve, can be considered that
predicts more realistic losses than the pooled model which has the half LCR value.
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Figure 3.3: The Loss Capture Ratio and Curves for each model over the in-sample
validation dataset
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Calibration quality analysis

Moreover, the calibration accuracy of the models was tested using a t-test on the average
values of the predicted LGN’s for the testing dataset [Lung et al., 2003]. For each group,
the t-test examines the null hypothesis that the population mean is equal to the LGN
estimate. The null hypothesis is accepted when the predicted LGN lies within the
confidence interval and then the model is considered “Accurate”. The cases where the
estimated LGN is lower than the lower confidence level (LCL) the model’s performance
is characterized as “Optimistic”, whereas the model is called “Conservative” when the
estimated LGN is higher than the upper confidence level (UCL). We performed the
t-test with the same way that we performed the binomial test in the Cure rate model.
Tables and show the differences between the realized and the observed losses,
which were calculated for the entire validation dataset and for every decile, respectively.
When the difference is positive, it means that the predicted loss is lower than the
observed one, and when it is negative means the opposite. The last column of the tables
indicates if the estimated LGN are “Conservative”, “Optimistic” or “Accurate”, based
on the aforementioned definitions. The exact observed and predicted percentages of
losses are confidential information and for this reason are not shown in this thesis. For a
better understanding of the different predictions that the two models give, the difference
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Table 3.47: Comparison between average observed and predicted LGN for the in sample
validation dataset

Spread between observed
Model Result
ode and predicted LGN esu
Pooled OLS -3.10% Conservative
Fixed Effect logit 0.48% Accurate

Table 3.48: The calibration accuracy for both models on the in sample validation dataset
over deciles

Pooled model

Differences among observed and pooled predicted LGN

Spread between observed and

4.00%
Decile predicted avarage LGN Result
1 -0.22% Accurate 2.00%
2 -2.65% Accurate 0.00%
3 -2.73% Accurate g
4 0.93% Accurate S -2.00%
5 -2.88% Accurate E
6 -5.63% Conservative “4.00%
7 -7.17% Conservative
-6.00%
8 -3.51% Conservative
9 -3.36% Conservative -8.00% .
10 -3.84% Conservative Deciles
Fixed Effects model _ ) )
— Differences among observed and fixed predicted LGN
S d betw b d and .
) Pprea b etween observed an Result 4.00%
Decile predicted avarage LGN
1 0.08% Optimistic 2.00% __,,.-—‘—"‘_‘\‘\/
2 0.00% Optimistic 0.00%
3 -0.07% Accurate g 1 2 3 4 5 6 7 8 9 10
4 0.30% Accurate E -2.00%
5 0.54% Accurate 5 a0
6 0.71% Optimistic o
7 0.78% Optimistic -6.00%
8 0.59% Optimistic
-8.00%
9 0.38% Accurate Deciles
10 1.48% Accurate

between the observed and predicted losses are illustrated graphically in Table |3.48

From tables and we can see that the Pooled model estimate losses very
close or higher than the real ones, in contrast with the FE model which predicts either
accurate or optimistic losses. Therefore, considering that for a bank is better to be
“Conservative” rather than “Optimistic”, one can result that the Pooled model is better
as regards the calibration power.

Out-of-sample test

The same tests were conducted as before, but this time the development dataset consists
of the loans that were in default during the first 3 years of our 5-years dataset, and from
the units with remaining years were selected only the ones which were observed in the
development dataset. The idea to split the dataset was based on the Data — smplitting
method |Giancristofaro and Salmaso, 2007], which was also used in the out-of-sample
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Chapter 3. Data analysis in credit risk modelling

Figure 3.4: The (absolute) residuals (left) from the two models on all the contracts of
the out of sample validation dataset
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test regarding the C'ure rate model. Thus, different models were constructed based on
the first three years and were applied at the contracts in the validation dataset. These
tests are given by

Pooled OLS models:

NHG : LGNy = 0.103 - Driverl;; + 0.005 - Driverb;; + €, (3.2.7)
Non — NHG : LGNy = —0.199 + 0.472 - Driverl; + 0.010 - Driverb;; + €, (3.2.8)
and the Fixed effect models:

NHG : LGNy = (0.431 + ;) — 0.110 - Driverly + 0.001 - Driverb; + vy, (3.2.9)
Non—NHG : LGNy = (0.842+ p1;) —0.494 - Driverl;; +0.003- Driverb;; +vy. (3.2.10)

After applying the aforementioned models to the testing dataset, the performance
of the two models was examined and compared.

Discriminatory power analysis

The two figures in the table demonstrate the differences between the observed and
predicted LGN of the contracts in the validation dataset. Similarly to the in-sample
validation, these figures indicate that the Fixed effect model’'w residuals (blue) are lower
than the pooled OLS residuals (red). In more details, about the 86% of the contracts
in the validation dataset got a more accurate estimation of LGN when the individual
fixed effects added to the model.

The discriminatory power of the models was also tested constructing the curves with
cumulative share of realized EAD on the horizontal axis and cumulative share of the
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3.2. The Loss-given-no cure (LGN) model

Figure 3.5: The Loss Capture Ratio and Curves for each model over the out-of-sample
validation dataset
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realized loss on the vertical axis [Li et al., 2009]. The results in Table 39 are surprisingly
the same as in the in-sample test, indicating that the discriminatory ability of the two
models is the same regarding the data that are used to build it and data which were
not included in the development dataset. The FE model manages to distinguish among
almost all the different levels of losses better than the pooled model. This is evidenced
by the LCR outputs for the two models, where for the FE model is almost 100% and
for the pooled model approximately 50%.

Calibration quality analysis

Furthermore, the model’s calibration accuracy was examined through T-test over the
averages per validation year and deciles [Lung et al., 2003]. From table we see that
the pooled model estimates loss for every year higher than the realized loss and at the
same time the fixed effect model behaves opposite giving optimistic predictions for the
LGN. When we analyse in more detail over deciles (Table , the FE model kept its
“optimistic” character across all the deciles, whereas the Pooled model predicted either
accurate or conservative losses. As we mentioned on the backtesting section of the Cure
rate model, a bank prefers a model with conservative estimations rather than optimistic.
Based on this, we may conclude that the Pooled model would be considered better for
a bank than the FE model.
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Table 3.49: The calibration accuracy for both models on the out-of-sample validation
dataset over years

Spread between observed and

Model Year(s) predicted LGN averages Result
Year 4 -2.88% Conservative
Pooled logit Year 5 -4.26% Conservative
Total -4.59% Conservative
Year 4 2.97% Optimistic
Fixed Effect logit Year 5 4.99% Optimistic
Total 3.76% Optimistic

Table 3.50: The calibration accuracy for both models on the out of sample validation
dataset over deciles

Pooled model

Differences among observed and pooled predicted LGN

Spread between observed and

Result 10.00%
Decile predicted avarage LGN "
1 -0.08% Accurate 5.00%
2 1.52% Accurate 0.00%
3 -1.45% Accurate 8
4 -1.00% Accurate 5 -5.00%
5 -5.64% Conservative b5
6 -9.98% Conservative 10.00%
7 -14.96% Conservative -15.00%
8 -5.27% Conservative
9 1.48% Accurate -20.00% Deci
eciles
10 2.07% Accurate
M&Ode' Differences among observed and fixed predicted LGN
S 9
pread Petween observed and Result 1000%
Decile predicted avarage LGN
1 0.20% Optimistic 5.00% PJ\/
2 0.59% Optimistic 0.00%
3 0.22% Optimistic g i 2 3 4 5 & 7 8 9 10
[
4 1.45% Optimistic & 0%
5 4.07% Optimistic S oo
6 6.14% Optimistic
7 6.75% Optimistic -15.00%
8 6.11% Optimistic
9 4.44% Optimistic 000 Deciles
10 6.27% Optimistic
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3.3 The LGD model

Finally, we developed two approaches regarding a LGD model with pooled and panel
data. As we mentioned at the beginning of this chapter the LGD model has been defined
as

LGD = (1 — Cure) - LGN

Having derived both underlying components in Section 1 and 2, for the defaulted
loans, we evaluate in this section, the in-sample and out-of-sample predictive perfor-
mance given both approaches.

3.3.1 Model performance

In-sample test

The development and validation datasets are constructed in the same way as before.
Hence, the original 5-years unbalanced dataset with the cure and non-cure defaulted
contracts was used, to build the Cure rate and LGN models. The models are the one
that we found previously and are given from equations|3.1.4}+(3.1.5|and |3.2.343.2.6l Then,
the resulted models were applied to the defaulted loans that were observed during the
year of the dataset.

Discriminatory power and Calibration quality analysis

The classification ability of the LGD models among the different level of losses was
tested by means of the Loss Capture Ratio (LCR) [Li et al., 2009]. The results in table
indicate that the ability of the FE model to distinguish among low and high losses
is better than the ability of the pool model, since they score almost 87% and 67% LCR,
respectively. Moreover, regarding the calibration power, the validation dataset was
grouped into deciles and therefore the two models were tested not only on the entire
validation dataset but also on each decile. A t-test was performed over the averages and
we categorised again the model as "Conservative', "Optimistic"' or "Accurate", as before
[Lung et al., 2003].

The two models compute different predictions as the FE model in most of the deciles
in Table gives optimistic estimations, in contradiction with the conservative and
accurate predictions of the pool model. This also can be seen from Table [3.52| where the
accuracy of the two models were calculated over the entire validation dataset. From the
graphs in Table we can see that both models predict losses close to the realised
ones. But, when it comes to the 9th and 10th deciles the FE model gives estimations
that are very different from the real values of losses.
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Table 3.51: The Loss Capture Ratio for each model over the entire in-sample validation
dataset

Model LCR
Pooled 66.88%
Fixed Effect 86.92%

Table 3.52: T-test results for the entire in-sample validation dataset

Model Spread between observed and Result
predicted LGD
Pooled -2.97% Conservative
Fixed Effect 8.19% Optimistic

Table 3.53: T-test results for the in-sample validation dataset per decile

Mmoﬂ Differences among observed and pooled predicted LGD

Spread between observed and

Result 50.00%
Decile predicted avarage LGD v
1 2.04% Accurate 4000%
2 1.13% Conservative 30.00%
3 2.90% Conservative e
4 4.86% Conservative g 20.00%
5 4.56% Conservative a -
6 10.05% Conservative .
7 14.04% Conservative 0.00%
8 14.47% Conservative 1 2 3 4 5 6 7 8 9 10
9 32.02% Accurate ~10.00% Deciles
10 38.64% Accurate
Fixed Effects model
maween observed and Differences among observed and fixed predicted LGD
Result 5000%
Decile predicted avarage LGD esu
1 2.22% Optimistic 4000%
2 6.28% Optimistic 3000%
3 3.04% Optimistic g
4 1.04% Accurate S 2000%
5 0.07% Accurate 5 o0
10.00%
6 1.74% Optimistic
7 0.21% Accurate 0.00%
8 4.03% Optimistic 1 2 3 4 5 6 7 8 9 10
9 22.10% Optimistic 10.06% Deciles
10 45.90% Optimistic

60



3.3. The LGD model

Out-of-sample test

For this test, the first 75% of the entire dataset was used to build the cure rate
and LGN models. This ratio corresponds to the defaulted contracts across the first
3 years of out 5-years dataset and it is based again in the Data — splitting method
(|Giancristofaro and Salmaso, 2007]). The resulting models are the models that we
found in the previous Out-of-sample tests and are given in equations [3.1.11H3.1.12| and
3.2.743.2.10] Both models were applied to the remaining loans from the original dataset.
Combining the results from the two models the LGD model were obtained.

After assessing the discriminatory power of the panel LGD and pool LGD models
we concluded to the same inference as in the in-sample test. First, the Loss Capture
Ratio (LCR) was computed for the two models [Li et al., 2009]. The FE model has
better discriminatory performance since scores a higher LCR (Table . When it
comes to the ability of the models to compute predictions as much closer to the real
ones, both models fail two compute accurate predictions according to the results from
the t-test [Lung et al., 2003] in tables [3.55 and [3.56] The model which considers the
fixed contract-specific effects gives mostly optimistic results, when the t-test was applied
on the entire validation dataset and in each decile. On the other hand, the model that
ignores the cross-sectional effects estimates accurate or conservative predictions, with
estimated amount of losses same or higher than the realized ones.

Discriminatory power analysis

Table 3.54: The Loss Capture Ratio for each model over the out-of-sample validation
dataset

Model LCR
Pooled 42.94%
Fixed Effect 68.16%
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Calibration quality analysis

Table 3.55: T-test results for the entire out-of-sample validation dataset

Model Year(s) Spread between observed and Result
predicted LGD averages

Pooled Year 4 4.46% Optimistic
Year 5 3.08% Optimistic
Total 3.90% Optimistic
Fixed Effect Year 4 8.97% Optimistic
Year 5 9.19% Optimistic
Total 9.06% Optimistic

Table 3.56: T-test results for the out-of-sample validation dataset per decile

Pooled model

Spread between observed and

Decile predicted avarage LGD Result
1 1.58% Optimistic
2 4.70% Optimistic
3 -2.37% Conservative
4 -5.25% Conservative
5 -9.37% Conservative
6 -9.98% Conservative
7 -9.96% Conservative
8 1.11% Accurate
9 22.24% Optimistic
10 46.16% Optimistic
Fixed Effects model
Spread Petween observed and Result
Decile predicted avarage LGD
1 2.24% Optimistic
2 6.36% Optimistic
3 3.19% Optimistic
4 1.03% Accurate
5 0.04% Accurate
6 1.38% Optimistic
7 1.35% Optimistic
8 8.84% Optimistic
9 21.63% Optimistic
10 44 45% Optimistic

Difference
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The conclusion regarding the model assessment can be found in the next Chapter.
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Conclusion

4.1 Conclusion

In this thesis we have constructed and compared different models which estimate a
Loss given default (LGD) for a mortgage portfolio. Our dataset was unbalanced while
every observation represents a contract-year information. This cross-sectional time-
series dataset form allows us to build either a pooled or a panel data model. For the
panel data, it was necessary to develop two different models: one with fixed unobserved
cross-section specific effects and another with random unobserved effects. A fixed-effects
model tests the individual differences in intercepts without making any assumptions
about the correlation among the individual effects and the regressors. However, the
random effects model assumes that individual differences are part of the error term and
independent of the regressors. Then, by using some statistical tests, one can choose the
most appropriate for the data.

The LGD model relied on two underlying models: a Cure rate and a Loss given No-
cure (LGN) model. The Cure rate model is a discrete choice model, and it calculates
the proportion of defaulted counterparties curing from default. The nature of the other
model is linear, and it estimates the amount of money lost from non-cured defaulted
loans with the continuous variable LGN as its dependent variable.

For both aforementioned models, linear and non-linear, bivariate analysis was em-
ployed, in order to assess the association among the dependent and the possible ex-
planatory variables. Considering the results of this analysis support by expert opinion,
we concluded that the so-called Driver) is a significantly variable and forms the best
explanatory regressor in classifying cure defaulted loans. As regards to the LGN model,
we found that the Driverl together with the Driverb are the most appropriate variables
to describe the loss from non-cured contracts. After deciding the covariates, the pooled
and panel data models were constructed for the Cure rate, LGN, and ultimately for the
LGD.

First, we focused on the estimation of the Cure rate model, where we used the tra-
ditional method of logistic regression for the pooled data assumption. As expecetd, the
resulting parameter estimator was negative underlying the negative relation of Driverb
with the probability for the client to cure. Regarding the panel data with fixed contract-
specific effects, the Firth’s bias-reduce logistic regression technique was applied, as Kunz
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et al. (|[Kunz et al., 2017]) proposed. In this approach, the MLE were obtained after
the first-order bias was removed from the score functions of the unknown parameters.
The estimators derived from an iteratively re-weighted least squares (IWLS) algorithm
[Kosmidis, 2007]. The Random effects probit model was constructed for the panel data
with random unobserved individual effects, and the MLE’s were derived by using the
conditional joint density of the error terms upon the random effects. Afterwards, for
deciding the most appropriate model to represent our data, two different statistical tests
were employed: A Wald test, based on the assumption that random individual effects
are independent of explanatory variables, and a Hausman test [Hausman, 197§|, which
uses the differences between the fixed effect biased reduction logit MLE and the usual
logit MLE. From these tests we found that the fixed effect model appears to be more
suitable for the data than the random effects or the pooled logit model.

Next, the LGN model was constructed using the Driverl and Driverb as covariates.
Assuming that the data are pooled cross-sectional time-series, an OLS linear regression
analysis was employed. From the obtained regressors estimators we found that a high
Driverl ratio results to a higher loss as well as a high Driver5 is related to a higher
loss. After the pooled OLS regression analysis, the relation of the explanatory variable
to the independent variables has been examined through a panel data analysis with
fixed and random effects. For the fixed effects linear model, we used the within effect
estimation method to derive the estimators, whereas for the random effects model the
Swamy and Arora (SA)-type estimators were computed, which is a feasible generalized
least square (FGLS) method based on the within and between estimation approaches.
The variances of the within and Swamy-Arora’s estimators were compared by means of a
Hausman specification test for the choice between fixed and random effects. Thereafter,
the absence of fixed individuals effects in the data was examined by means of an F-test.
The results of these tests have suggested that the method which does not ignore the
contract-specific effects and assumes that these unobderved effects are fixed for every
contract is the most appropriate model for the LGN.

Overall, the above analyses have indicated that, for both Cure rate and LGN models,
the assumption that individual fixed effects exist among the data is more apropriate than
assuming that these effects are random. This result was expected, since we aimed to
construct a model based on the behaviour and characteristics of the N specific contracts
that we have in our dataset and compute the different unobserved effect for each one of
them. We were not interested into building a model based on a randomly selected set
of N individuals from a large population.

Following these steps, the performance of the pooled and panel data fixed effect
(FE) models was compared through in-sample and out-of-sample backtesting tests, in
order to derive their predictive power on the contracts used to build them and on
a different dataset than the development one. All loans that were observed in the
dataset to be in default during a given year were used for the model validation process
(validation dataset). In contrast to the in-sample method, the data that the out-of-
sample test uses to validate the performance of the model are not included in the
development dataset. Using the Data-splitting method, the entire dataset is split into
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two sub-datasets, obtaining the development and testing samples. Therefore, models
were constructed, based on the defaulted contracts across a specific time window and
the performance of these models was tested on the contracts which were out of this time
window. The validation datasets of the tests were used to assess the discriminatory
power and calibration ability of the models.

We found that the two Cure rate models, pooled and FE, are not sample-specific
given the almost identical results from the in-sample and out-of-sample performance
tests for both models. Moreover, the FE model was found to be better than the pooled
model in distinguishing cured from non-cured loans. This is evidenced from the higher
overall accuracy, number of correct predicted cured contracts and number of correct
estimated non-cured loans of the first model over the pooled one when the threshold
probability ¢ belongs to . Additionally, the high ability of the model which considers
the loan-specific fixed effects in order to differentiate the defaulted contracts among
cured and non-cured, is deduced from the very high output values of the Kolmogorov-
Smirnov statistics, Accuracy Ratios and Area under the ROC curves. Specifically, all
three statistics score very close to 1.00 for the FE model, while the pooled model scores
are much lower than 1.00. With regard to the ability of the models to predict cure
rates really close to the observed ones the two models perform very differently. The
FE model based on the Binomial test and Hosmer-Lemeshow test results has an overall
“optimistic” character predicting most of the times higher cure probabilities than the
realized. On the contrary, the pooled logit model estimates either accurate probabilities
or lower cure ratios than the real one (conservative estimations). For a company, it is
better to predict that less clients will cure and calculate higher loss than the realized,
rather than expecting a higher cure rate than the true one and be in the unpleasant
position to find out that its loss will be higher than expected. Consequently, under the
condition that the conservative estimations are not “bad” estimations, the Pooled model
performed better than the FE model with respect to their calibration ability.

Additionally, the performance of the Pooled and FE LGN models was evaluated and,
as before, the results from the in-sample and out-of-sample tests were not significantly
different. The ability of the models to rank and distinguish among low and high losses
was assessed by means of the Loss Capture Ratio (LCR) and Loss capture curve. The
Fixed Effect model scoring almost 100% LCR, can be considered to predict more realistic
losses than the pooled model which has about the half LCR value. Furthermore, the
calibration accuracy of the models was examined through the use of a T-test over the
averages of the observed and estimated losses per validation year and deciles of the
validation data yielding inferences similar with the Binomial test results of the Cure
rate models. The pooled model has estimated either accurate or conservative losses,
however, by adding the contract-specific effects in the model and derive the fixed effect
model the predictions for the LGN becoming optimistic most of the times. As we
mentioned earlier, a bank prefers a model with conservative estimations rather than
optimistic ones. Based on this, we concluded that, for the purposes of a bank, the
Pooled model is considered better than the FE model as far as the calibration power is
concerned.
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Finally, by aggregating the Cure rate and the LGN models, we constructed the
LGD models for pooled and panel data. The classification ability of the model among
the different level of losses that were observed from the defaulted loans among the 5-
year period was improved when the fixed contract effects were taken into consideration
instead of being ignored. In more details, the LCR for the FE model was found to be
about 87% and 68%, whereas for the Pooled model was approximately 67% and 43%,
for the in-sample and out-of-sample tests, respectively. When it comes to the models’
ability to estimate the most accurate predictions, the two models, once again, behaved
differently. The Pooled model estimates the same or higher amount of losses than the
realized ones whilst the model with the fixed contract-specific effects gives a prediction
for losses which is the same or lower from the observed one. Therefore, as expected from
the performance of the Cure rate and LGN models the Pooled LGD model is preferable
than the FE model given its accurate and conservative behavior.

To summarize, we can conclude that by adding the unobserved contract-specific
effects in all three models (Cure rate, LGN and LGD) the form of the resulting model
and its performance has changed, particularly when compared to model that ignores
these effects. First, the discriminatory power of the FE models is better than the
Pooled model classification ability. Second, a surprising result is that, in all cases, the
two models performed differently as far as their calibration ability is concerned. On the
one hand, the model which is based on the traditional linear and logistic techniques,
the Pooled model, is a more conservative approach and on the other hand the panel
data Fixed effect model gives more optimistic predictions. Consequently, when a bank
prefers a more conservative attitude, the Pooled model has preferable estimations.

4.2 Shortcomings of the proposed approach

The panel data analysis does not only have advantages, but also includes certain short-
comings. An important drawback is the fact that it cannot be used for forecasting
predictions when the cross-sectional units are not included in the dataset that was used
to build the model. If a new individual appears in the dataset that is used to test the
performance of the model or for forecasting reasons the data analysts, this individual
will not be able to apply the panel data model, since the individual random or fixed
effects will be missing resulting to the pooled model.

Moreover, the construction of a panel data model requires more complex calculations
than the pooled data model, especially when we refer to the logistic models. Conse-
quently, more time is required for running the algorithms and deriving the parameters
estimations for the first model. In addition, it is of vital importance for the researcher to
be able to understand the tests and interpret their results when it comes to the decision
of whether fixed or random effects model represents better the data.
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4.3 Future work

In this thesis, we have constructed some models and then we assessed their performances
using the data-splitting validation method. According to [Giancristofaro and Salmaso, 2007,
this method splits randomly the original dataset into two sub-datasets with the splitting
portion to lie between 2/3 and 3/4. The biggest sub-dataset corresponds to the data
that will be used to develop the model and this model will be applied to the other dataset
in order to validate it. [Giancristofaro and Salmaso, 2007] have also mentioned the re-
peated data-splitting technique. This method repeats the steps from the data-splitting
method several times, getting different sub-datasets in each iteration. Thus, this method
is more accurate than the previous one (Harrell et al., 1996) [Harrell et al., 1996]. There-
fore, if time allows, it will be interesting to examine the model’s performance by applying
the repeated data-splitting validation technique and compare it with the accuracy of the
data-splitting method.

When choosing to apply or follow the standard statistical practice, it is necessary
to select a single model that fits the data reasonably well among a class of models and
make predictions and inferences as if the selected model is the best for the data. But is
this the best approach? If another model also fits well the data but leads to different
statistical inferences, like effect sizes or predictions, then, it is risky to derive conclusions
based only on the results of the first or second model. Therefore, the standard statistical
techniques ignore the model’s uncertainty and give over-confident results, which might
not lead to the maximum predictive coverage [Hoeting et al., 1999].

Fortunately, Bayesian model averaging (BMA) deals with the problem of uncertainty
in model selection. This approach suggests considering different models instead of using
only one. It assumes that the posterior distribution of the quantity of interest given the
data is the average of its posterior distributions under each of the different considered
models, multiplied with the posterior probability of every model. The quantity of inter-
est might be a parameter or a future observation. According to [Hoeting et al., 1999
and [Madigan and Raftery, 1994], BMA improves the predictive performance when it
is compared with the predictive ability of a single model. One of the obstacles that
might rise from this method is that the number of the considered models that fit well
the data is enormous, and this may lead to difficult computations. Two of the most
popular approaches that provide a panacea to this problem by eliminating the number
of considered models are the Occam’s window method and the Markov chain Monte
Carlo model composition (MC3) [Hoeting et al., 1999]. The first approach takes the
average of a subset of the models, and the second takes the average of a function based
on a Markov chain over every well-fitted model.
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Appendix

A. Assumption Tests

A1l. Cure rate model

LM test for heteroscedasticity on a binary response model

Heteroscedasticity is the existence of different variances between the regression distur-
bances across time and individuals. Assuming homoscedasticity (the same variance for
all the error terms) while there are heteroscedastic error terms will lead to consistent
but inefficient estimates. Therefore, it is vital to test for homoscedasticity instead of
blindly assume it (Blatagi, 2005).

If the regression errors terms suffer from heteroskedasticity then their variance de-
pends on exogenous variables z;; like that

V(ew) = 7 /3h(z},) (4.3.1)

where 72/3 is the variance of a logit model and & is some function i > 0 with h(0) = 1
and h'(0) # 0 (Verbeek, 2004, p.358) . Note that z; should not include a constant and
its dimension is J.

The Lagrange multiplier test statistic examine the null hypothesis that alpha = 0
and thereofre the residuals in the binary response model are homoscedastic is given by
LM = NR? where the measure R? will resulted from the regression of ones upon the
variables é§a, and (¢ - x},3)2, with the term ¢§ denoting the generalized residual of
the regression model. Under the null hypothesis the test statistic LM is Chi-squared
distributed with P degrees of freedom.

A2. LGN model

White test for heteroscedasticity on a linear model

The White test is using the results of an auxiliary regression analysis: the regression of
squared residuals on a constant , all first moments, second moments and cross products
of the original regressors The number of the auxiliary regressors without the intercept
is P.

This test does not make any assumption about the structure of the heteroscedasticity.
The null hypothesis of homoscedasticity is Ho : sigma;®> = sigma? for all i against the
alternative hypothesis H1 of heteroscedasticity. The test statistic is the product of the
R? value and sample size: LM = nR? and is assimptotically distributed as Chi-squared
with P degrees of freedom.

Durbin-Watson test for serial correlation on a linear model

Autocorrelation or serial correlation among the regression error terms holds when the
residuals are not independent from each other but are correlated instead [Verbeek, 2004}
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p97]. One of the forms of autocorrelation is the so called first order autocorrelation where
the regression error term is expressed as

€it = PEit—1 + Vit (432)

with | p < 1, €; be the regression error terms for every cross-sectional unit i on period t
and v, denoting a no autocorrelated error term with zero mean and constant variance
[Verbeek, 2004, pp98-101, 357]. When p is different from zero the residual from indi-
vidual i over time ¢ is linearly dependent with the its residual from the previous time
period t — 1 and therefore autocorrelation exists.

According to [Verbeek, 2004, pages 102,357] one of the most popular tests for testing
the sign of p is the Durbin-Watson test which was introduced from Bhargava et al
(1982)|Bhargava et al., 1982] with null hypothesis HO : p = 0. The test statistic is as
follows

=2

Ty )
€it — €it—1
i=1t=2
dw = N (4.3.3)
thzl K
im1t=

Il
—
-+

I

where €;; represents the OLS residual for the pooled model and the regression residual
from the within transformed model regarding the fixed effect model. The distribution of
dw depends upon the size of N, Ti and the size and values of regressors and as a result
it is difficult to obtain general critical values for the test statistic dw. Fortunately,
Bhargava et al (1982)[Bhargava et al., 1982] showed that the relation of dw with the
estimated p , p, is given by dw ~ 2 — 2p. Thus, when the dataset has a very large
number of cross-sectional units N, the model does not suffer from serial correlation and
p is close to 0, if the value of dw is close to 2. However, when dw is much smaller or
much larger than 2, it indicates that the error terms are positive correlated to each other
(p > 0) or negative (p < 0).
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B. Plots of sensitivity and specificity measures across
different threshold probabilities c, for pooled logit
and fixed effect logit models

In-sample test

Sensitivity measures for different values of ¢ for Pooled vs Fixed Spesificity measures for different values of ¢ for Pooled vs Fixed
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Out-of-sample test
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